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ALTERNATING CQ-ALGORITHMS FOR CONVEX FEASIBILITY
AND SPLIT FIXED-POINT PROBLEMS

A. MOUDAFI

ABSTRACT. Let Hi, Ho, Hs be real Hilbert spaces, let C C Hi, Q C Hz be two
nonempty closed convex sets, let A : Hy — Hs, B : Hy, — Hs be two bounded
linear operators. We first consider the following new convex feasibility problem

(SEP) Find z € C,y € @ such that Az = By.

Given a sequence (7yx) of positive parameters and two initial arbitrarily points
xo € Hy and yo € Ha, we then present and study the convergence of the following
new alternating CQ-algorithm
Trt1 = Po(xe — A" (Azk — Byr));

(ACQA) { Yr+1 = Po(yr + v B™ (Azr+1 — Byr)),
where A™ and B* denote the adjoint operators of A and B respectively.
Note that, by taking B = I, in (SEP), we recover the convex feasibility prob-
lem originally introduced in Censor and Elfving [9] and used later in intensity-
modulated radiation therapy. If in addition vy, = 1, in (ACQA), we obtain the
related CQ-algorithm introduced by Byrne [6] and applied to dynamic emission
tomographic image reconstruction. An extension to a new split common fixed-
point problem governed by firmly quasi-nonexpansive mappings is presented and
some examples are also provided.

1. INTRODUCTION AND PRELIMINARIES

Due to their extraordinary utility and broad applicability in many areas of ap-
plied mathematics (most notably, fully-discretized models of problems in image
reconstruction from projections, in image processing, and in intensity-modulated
radiation therapy), algorithms for solving convex feasibility problems continue to
receive great attention, see for instance [1,5,7,13] and also [12,17-20]. In this paper
our interest is in the study of the convergence of an alternating algorithm for solving
a new split feasibility problem (SEP). This general class allows asymmetric and par-
tial relations between the variables x and y. The interest is to cover many situation,
for instance in decomposition methods for PDE’s, applications in game theory and
in intensity-modulated radiation therapy (IMRT). In decision sciences, this allows
to consider agents who interplay only via some components of their decision vari-
ables, for further details, the interested reader is referred to [3]. In (IMRT), this
amounts to envisage a weak coupling between the vector of doses absorbed in all
voxels and that of the radiation intensity, for further details, the interested reader
is referred to [8].
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To begin with, let us recall that the split feasibility problem originally introduced
in Censor and Elfving [9] is to find a point

(1.1) x € C such that Az € Q,

where C'is a closed convex subset of a Hilbert space Hi, @ is a closed convex subset
of a Hilbert space Ho, and A : Hi — H> is a bounded linear operator.
Assuming that the (SFP) is consistent (i.e (1.1) has a solution), it is no hard to see
that € C solves (1.1) if and only if it solves the fixed-point equation

(1.2) x=Po(I —vA* (I — Pg)A)z, z € C,

where Pc and Py are the (orthogonal) projection onto C' and @, respectively, v > 0
is any positive constant and A* denotes the adjoint of A.

To solve the (1.2), Byrne [6] proposed his CQ algorithm which generates a sequence
(zx) by

(1.3) Tpi1 = Po(I —yA*(I — Pg)A) g, k€ N,

where v € (0,2/)\) with A being the spectral radius of the operator A*A.

In the present paper, we present our idea in the context of feasibility problems,
provide an extension to the split common fixed-point context and state some special
cases.

Denote the solution set of (SEP) by

'={zeC,y€Q; Az = By}.

Now x,y solves (SEP) means that there exists x € C,y € @ such that Ax — By = 0.
This motivates us to consider the distance function (x,y) — | Az — By|| and the
minimization problem
.1 2
LB 2 |Az — By||".
Observe that by writing down the optimality conditions and by denoting by N¢, Ng
the normal cone to the convex sets C' and (), we obtain

0 € A*(Axz — By)) + N¢(x);
{ 0 € —B*(Az — By)) + Ng(y),
which implies
{ x —yA*(Az — By) € x + yNeo(z);
y +7B*(Az — By) € y + vNo(y),
which in turn leads to the fixed point formulation
{ x = (I +7yNc) ! (z — vA*(Az — By)) = Po(z — yA*(Az — By));
y = (I +7yNg)~'(y +vB*(Az — By)) = Po(y + vB*(Az — By)).
This equation suggests the possibility of iterating and thus consider our alternating
CQ-algorithms for solving problem (SEP), namely

= Po(ay - A" Az — By
AC A Th+4+1 C\<Lk "
(4cQ4) { Yk+1 = Po(yr + mB* (Axpq1 — Byg)).

Clearly, by taking B = I we recover the classical feasibility problem and obtain
a method which resembles to the CQ-algorithm (1.3). If in addition ~; = 1, the
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second equality in (ACQA) reduces to yi11 = Po(Axk4+1) and thus the first equality
gives

zp1 = Po(xy, — A" (Axy — Po(Axy))) = Po(xy — A*(I — Pg)(Axy)),
which is exactly the CQ-algorithm (1.3) proposed by Byrne [6] with v = 1.

2. CONVERGENCE OF THE ALTERNATING CQ-ALGORITHM

Remember that the projection operators have very attractive properties that
make them particularly well suited for iterative algorithms. For instance, Pc is
firmly nonexpansive, namely for all x,y

(21)  |Pe(@) = Pe)|® < |l = yl* = |1 = Pe)(z) — (I = Pe)(y)lI>
Now, we are in a position to prove our convergence result.
Theorem 2.1. Let Hy, Hy, H3 be real Hilbert spaces, let C C Hy, Q C Hs be two

nonempty closed convex sets, let A : Hy — Hs, B : Hy — Hj3 be two bounded

linear operators. Assume that the solution set I' is nonempty, (yx) is a positive no-

deacreasing sequence such that vy € (g, min(ﬁ, é) —¢€) for a small enough £ > 0,

where Aa, A\p stand for the spectral radius of A*A and B*B respectively. Then, the
sequence (x, yx) generated by our algorithm weakly converges to a solution (Z,y) of
(SEP). Moreover (Axy — Byy) strongly converges to 0 and both (xx) and (y) are
asymptotically reqular.

Proof. Taking (x,y) € T i.e., x € C; y € Q, Ax = By and using the fact that the
projection operator P¢ is firmly nonexpansive, the first equality of the algorithm
gives
(2.2) [Jzepr—zl® < loe—z—yA* (Azg—Byp) || — || @hs1 —2p+ 70 A" (Az, — Byg) ||
We also have
& oy — 2| + 7i || A" (Azy, — By)||?
2y (A (Axy, — Byg), x — ).
On the other hand, from the definition of A4 it follows
A (Azy, — Byp)|I? = i(Awy — Byg, AA*(Axy — Byy))
< Aavi(Azy — Byg, Azy, — By)
= AavillAzy, — Bys|.
Now, by setting 0 := 2+, (A*(Azy — Byg), x) — x), we obtain
0 = 2y (Axy — By, Az, — Az) = 2y (|| Azy, — Bi)||* + (Azi — Byp, By — Ax)).

Combining the key inequalities above with relation (2.5), we derive

|lzx — 2 — A" (Axy, — Byy)

|z —2|? < ok — 2|* — 2y (Azx — By, Byy — Az)
= W(2 = wAa) | Azg — Bygl®
— |l@ker — 2 + A (A — By |,
Similarly, the second equality of the algorithm leads to

ks —yl> < lluk — ylI* + 296 (Azgy1 — Byg, Azgy1 — By)
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— (2 = AB)||Azyi1 — Byl®
— NYk+1 — Yk — 1B (Azg41 — Byg)

By adding the two last inequalities and by taking into account the assumptions
n (), the fact that Az = By and the two key equalities

2(Azy, — Byy, By — Ax) = —||Azy, — Byg|® — | By, — Az||* + || Azy — Ax|?.
and

2(Byy — Azgr1, Azpir — By) = || Byr — Az |* = | A1 — By|* + | Bar — By,

[

we finally obtain
< ok — 2l + llyk — Yl — el Azy, — Az
+ Vel Azpgr — Azl]* — (1 — weda) | Az — Byg|?
— (L = wAB)|[Azks1 — Byl
= N@rg1 — o + A" (Azg — Byg)
— k1 — yr — B (Azpy1 — Byr)
Now, by setting T'x(z,y) := ||lzr — z||® + lyx — yl|* — Yx|| Az — Az||?, we obtain the
following key inequality (%)
Tri(z,y) < Tr(z,y) — (1 — veda)l|Aze — Byl
k(1 = 7AB) || Azr 1 — Byl
—||zk+1 — 2 — A" (Azg — Byy)
—yks1 — yx + B (Azpq1 — Byy)
On the other hand, note that

k1 = 2l® + lyesr — ol

I

I°.

I

1.

Yl Az — Az||® = yp(ap — 2, A" A(zg — 2)) < Aallz, — ).
Hence
(2.3) Ti(,y) > (1= yeda) e — zl” + [lyx — ylI* > 0.

The sequence (I'y(z,y)) being decreasing and lower bounded by 0, consequently it
converges to some finite limit, says [(z,y), and by passing to the limit in (%), we
obtain that

lim ||Azg — Byl = kgrfoo lxp+1 — xp + A" (Azg, — Byg)|| = 0,

k—+o0
and
lim ||Azgy1 — Byl = lim  |Jykr1 — yx — B (Azg1 — Byg)|| = 0.
k—+o0 k—+o00
Since

lzer1 — 2| < |Thg1 — zr + A" (Azg, — Byg)|| + || A% (Azy — Byg) ||

and thanks to the fact that (vx) is bounded, we infer that (zx) is asymptotically
regular, namely limy ||zx+1 — zx|| = 0. Similarly (yg) is asymptotically regular too.
Conditions on (%) and relation (2.6) imply

Ti(,y) > edallze — ] + [lye — yll*,
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which ensures that both the sequences (x) and (yx) are bounded, because (I'y(z, y))
convergences to a finite limit.

Let z* and y* be respectively weak cluster points of the sequences (zy) and (yg).
Then there exist two subsequences of (zx) and (yx) (again labelled (zx) and (yx))
which converge weakly to * and y*. By noting that the two equalities in (ACQA)
can be rewritten as

{ LRI A*( Ay, — Byg) € No(@gs);

Vi
UL 4 B*(Axpi1 — Byk) € No(yk+1),
that the graphs of the maximal monotone operators N¢, Ng are weakly-strongly

closed and by passing to the limit in the last inclusions, we obtain that

0 € N¢(z*) and 0 € Ng(y*), which assures that * € C and y* € Q.

(2.4)

Furthermore, the weak convergence of (Axy — Byy) to Az* — By* and lower semi-
continuity of the squared norm imply

|Az* = By"|[* < lim nf | Az, — Byi|* =0,
k—+o00

hence (z*,y*) € I'. To show the uniqueness of the weak cluster point, we will use
the same idea as in the celebrate Opial Lemma. Indeed, let T,y be other weak
cluster points of () and (yg) respectively, by passing to the limit in the relation

Te(a*y*) = Tw(@9) +llz* = 2l + lly* — 7> — wlAe* — Az|?
+ 2z -z, — 2"+ 2(yk — 4,5 — y*) — 2y (Axy — Az, AT — Ax™),
we obtain
((2*,y") = U(z,5) + 2" —2|* + |ly* — gl* — 7"[|Az* — Az|?,
with v* = limg_, 4 7%. Reversing the role of (z*,y*) and (Z,y), we also have
(z,9) = (=", y") + 2" = 2|* + |ly* — gl* — 7*[|Az* — Az|.

By adding the two last equalities and having in mind that () is an no-decreasing
sequence satisfying 1 — yxAa > €4, we obtain

edallz™ = z|* + |ly* — 7lI* < 0.

Hence z* = z and y* = g, this implies that the whole sequence (xg,yx) weakly
converges to a solution of problem (1.1), which completes the proof. O

3. FROM CONVEX FEASIBILITY TO SPLIT FIXED-POINT

The CQ algorithm (1.3) involves the computation of the projections Pc and Py
onto the sets C' and @ and is therefore implementable in the case where the pro-
jections have closed-form expressions. A generalization to split common fixed point
problems (SCFP) was given by Censor and Segal [11]. This formalism is in itself
at the core of the modeling of many inverse problems in various areas of math-
ematics and physical sciences and has been used to model significant real-world
inverse problems in sensor networks, in radiation therapy treatment planning, in
resolution enhancement, in wavelet-based denoising, in antenna design, in comput-
erized tomography, in materials science, in watermarking, in data compression, in
magnetic resonance imaging, in holography, in color imaging, in optics and neural
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networks, in graph matching, we refer to [10] for the exact references. Censor and
Segal consider the following problem

(3.1) find z* € C such that Az* € Q,

where A : Hy — Hs is a bounded linear operator, U : Hy — Hy and T : Hy — Hy
be two nonexpansive operators with non empty fixed-point sets FiaxU = C and
FizT = Q. To solve (3.8), Censor and Segal [11] proposed and proved, in finite
dimensional spaces, the convergence of the following algorithm

(3.2) Ty = Ulxy +yAYT — I)Axy), k € IN,

where v € (0,2/)) with A being the largest eigenvalue of the matrix A*A (¢ stands
for matrix transposition).

This suggest in our case to introduce the following problem
(3.3) find z* € FizU,y* € FizT such that Az™ = By",
and to consider the following alternating SCFP-algorithm

1 = Ulxg — e A* (Azy, — Byk));
SCFPA ;
( ) { Yr+1 = T(yr + 1 B*(Azp1 — Byr)).
By taking B = I we recover clearly the classical (SCFP) and obtain a method which

resembles to (3.9). If in addition ~; = 1, the second equality in (SCFPA) reduces
to yp+1 = T (Axgi1) and thus the first equality leads to

g1 = Uz — A" (Axy — T(Azy))) = U(xp — AL — T)(Axy)),

which is exactly the algorithm (3.9) proposed by Censor and Segal with v = 1.
Now, remember that a mapping 7" is firmly quasi-nonexpansive, if for all x € H and
y € FizT one has

(3-4) IT(2) = ylI* < |z = yl* = lla = T(2)]*.

An example is the sub-gradient projection operator, that is the driving behind the
majority of the algorithms, that employ the subgradients of convex loss functions,
in order to solve for instance nonsmooth minimization tasks.

Theorem 3.1. Let Hi, Hy, H3 be real Hilbert spaces, letU : Hy — Hy, T : Hy — Ho
be two firmly quasi-nonexpansive mappings such that I — U, I — T are demiclosed
at 0. Let A : Hi — Hs, B : Hy — H3 be two bounded linear operators. Assume
that the solution set T' is nonempty, () is a positive nodeacreasing sequence such
that i € (g, min(ﬁ, ﬁ) —¢) for a small enough € > 0, where A, \p stand for the
spectral radius of A*A and B*B respectively. Then, the sequence (xy,yx) generated
by (SCFPA) weakly converges to a solution (Z,y) of (3.3).

Moreover kgrfooHAxk_Bka =0, kEToonk_kaH =0 and kETooHyk_kaH = 0.

Proof. Taking (z,y) € I' and using the fact that U is firmly quasi-nonexpansive,
the first equality of the algorithm exactly gives

zri1 — zl|® < |loe — 2 — A" (Azg — Byl — lzks1 — zx + A* (Azk — Bye) |1
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Thanks to the fact that T is firmly quasi-nonexpansive, we also obtain

ki1 —ylI? < llyk —y+ e B (Azrr1 — Byi) > = lyk1 — vk — e B (Azpy1 — By 1>
Thus following the lines of the proof of Theorem 2.1, we obtain that the sequences
(zx) and (yx) are both bounded, asymptotically regular, verify limy, || Az —Byg| = 0
and

lm ||zgpr1—2p+7A"(Azg—Byg)|| = lim  ||ygs1—yx—7B* (Azg1—Byk)| = 0.
k—+o0 k—+4o0

Now, let z* and y* be respectively weak cluster points of the sequences (xj) and
(yx) and note that the two equalities in (SCFPA) imply that
{ T — Ty — A" (Azy — Byg) = (I — U)(xk — e A" (Az, — Byk));
Yk — Ykt1 T 1B (A1 — Byy) = (I — T)(yk+1 + mB* (Azp1 — Byi))-

By passing to the limit in the last two equalities and by taking into account the fact
that (v — 241 — e A*(Azy, — Byy)) converges strongly to 0, that (zg — v A*(Axy —
Byy)) converges weakly to 2* and that I — U is demiclosed at zero, we obtain that
x* € FizU Likewise we obtain that y* € FizT. Again, the weak convergence of
(Axp— Byy) to Az*— By* and the lower semicontinuity of the squared norm amount
us to obtain

|Az* — By*||? < liminf || Az, — Byx||* = 0,

k——+o0

hence (z*,y*) € I'. The rest of the proof is analogous to that of Theorem 2.1. [

4. INTERESTING SPACIAL CASES

We now turn our attention to provide some applications relying on some convex
and nonlinear analysis notions, see for example W. Takahashi [16].

4.1. Convex optimization via proximity mappings. Let f: Hy — IRU {400}
be a proper convex lower semicontinuous function and remember that x € argminf
means that  minimizes the function f. It is well-known that

1
x € argminf < x = prox,s(x) = argmin{ f(u) + 2—Hu —z|%}.
w

That is fixed point set of the proximity mapping is precisely the set of minimizers
of f. Such properties allow us to envision the possibility of developing algorithms
based on the proximity operators. Indeed, let g : Hy — IR U {400} be another
proper convex lower semicontinuous function, by setting U = prox,f, T' = prox,,
the problem under consideration is nothing but

(4.1) Find z* € argminf,y* € argming such that Ax™ = By*,
hence (z*,y*) solves
. 1
min{f(z) +g(y) + 5[l Az — By|*}
an optimization problem with weak coupling in the objective function as well as

rgcl’iyn{f (z) + g(y); Az = By},
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an optimization problem with weak coupling in the constraint. These problems
attract many authors’s attention due to the fact that they model Surface energy
variational problems, Domain decomposition for PDE s, Optimal control prob-
lems, Potential Games, see the excellent communication [2] (or [4]) by H. Attouch
where a different proximal approach is proposed. In this context, our algorithm
takes the following equivalent form

= ) 1 _ _ * o 2.
(SCFPA) { Tyl = argm?nu{f(U) + %HHu (g fyk/i (Azy, — Byg))|| ];
Yk+1 = argming{g(v) + 55 llv — (yr + W B*(Azpqr — Buk))|I°}-

4.2. Null-point problems via resolvent mappings. Given a maximal mono-
tone operator M : Hy — 21 it is well-known that its associated resolvent mapping,
Jé\/l(aj) := (I+pM)~1, is firmly nonexpansive and we have 0 € M (z) < x = Jli\/[(ac)
In other words zeroes of M are exactly fixed-points of its resolvent mapping. By
taking U = Ji\/[(x), T = JY(z), where N : Hy — 22 is another maximal monotone
operator, the problem under consideration is nothing but

(4.2) find z* € M~1(0),y* € N~1(0) such that Az* = By*,
and the algorithm takes the following equivalent form

Tpy1 = JM (zp — A% (Azy — Byy)),
SCFPA i -
(SCFPA) { Vs = I (g + B (s — Byy)).

4.3. Equilibrium problems via resolvent mappings. Having in mind the con-
nection between monotone operators and equilibrium functions, we may consider
the following problem

(4.3) find 2* € C,y* € Q; F(z*,u) >0,H(y",v) >0 and Az* = By* Yu,v,

with C, @ closed convex sets and F, H belong in the class of bifunctions G verifying
the following usual conditions:

(A1) G(xz,z) =0 for all =,y € D;

(A2) G is monotone, i.e., G(z,y) + G(y,z) <0 for all z,y € D;

(A3) limsup; o G(tz + (1 —t)z,y) < G(x,y) for any x,y,z € D;

(A4) for each x € D,y — G(z,y) is convex and lower-semicontinuous.

It is well-known; see for example [14], that the associated resolvent operator
S\ag : H — D defined by

1
Sxa(z)={z€D: G(z,y)+x<y—z,z—x> >0, Yy € D},

is firmly nonexpansive and its fixed-points are exactly the equilibria of G, that is
H(y*,v) > 0 Vu.

By setting U = S,r, T = S,p, the problem under consideration is nothing but
(4.14) and the algorithm takes the following equivalent form

Tpy1 = Sur(xp — WA (Azk — Byr)),
SCFPA .
( ) { Ye+1 = Sur (Yk + 1 B* (Azg11 — Byr)).

In the present paper, we considered a new convex feasibility problem, presented
our alternating method and established its convergence. We also extended our algo-
rithm to an alternating method for solving a new split common fixed-point problem,
highlighted its applicability in modeling significant real world problems. Finally, we
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provided some applications to convex optimization, null point and equilibrium prob-
lems.
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