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be a bounded linear operator. Then the split feasibility problem [5] is to find z ∈ H1

such that z ∈ C ∩ T−1Q. Putting Ai = ∂iC for all i, Bj = ∂iQ for all j and
Tj = T for all j in the split common null point problem, we see that the split
feasibility peoblem is a special case of the split common null point problem, where
∂iC and ∂iQ are the subdifferentials of the indicator functions iC of C and iQ of Q,
respectively. Defining U = T ∗(I − PQ)T in the split feasibility peoblem, we have
that U : H1 → H1 is an inverse strongly monotone operator, where T ∗ is the adjoint
operator of T and PC and PQ are the metric projections of H1 onto C and H2 onto
Q, respectively. Furthermore, if C ∩ T−1Q is non-empty, then z ∈ C ∩ T−1Q is
equivalent to z = PC(I − λU)z, where λ > 0. From [16] we also know an implicit
strong convergence theorem for finding a common point of the set of null points
of the addition of an inverse strongly monotone mapping and a maximal monotone
operator and the set of null points of a maximal monotone operator which is related
to an equilibrium problem in a Hilbert space; see also [9, 11].

In this paper, motivated by these definitions and results, we study the split
common null point problem for maximal monotone mappings in Hilbert spaces. We
first obtain some properties for resolvents of maximal monotone operators in Hilbert
spaces. Then using these properties, we establish a strong convergence theorem for
finding a solution of the split common null point problem which is characterized as a
unique solution of the variational inequality of a nonlinear operator. As applications,
we get two new strong convergence theorems which are connected with the split
feasibility problem and an equilibrium problem.

2. Preliminaries

Throughout this paper, let N and R be the sets of positive integers and real
numbers, respectively. Let H be a real Hilbert space with inner product ⟨ · , · ⟩ and
norm ∥ · ∥. When {xn} is a sequence in H, we denote the strong convergence of
{xn} to x ∈ H by xn → x and the weak convergence by xn ⇀ x. We have from [15]
that for any x, y ∈ H and λ ∈ R
(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩
and

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
Furthermore, we have that for x, y, u, v ∈ H

(2.3) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.
Let C be a non-empty, closed and convex subset of a Hilbert space H and let
T : C → H be a mapping. We denote by F (T ) be the set of fixed points of T . A
mapping T : C → H is called nonexpansive if ∥Tx−Ty∥ ≤ ∥x− y∥ for all x, y ∈ C.
A mapping T : C → H is called firmly nonexpansive if ∥Tx−Ty∥2 ≤ ⟨Tx−Ty, x−y⟩
for all x, y ∈ C. If a mapping T is firmly nonexpansive, then it is nonexpansive.
If T : C → H is nonexpansive, then F (T ) is closed and convex; see [15]. For a
non-empty, closed and convex subset C of H, the nearest point projection of H
onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for all x ∈ H and y ∈ C.
Such a mapping PC is called the metric projection of H onto C. We know that the
metric projection PC is firmly nonexpansive; ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩
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for all x, y ∈ H. Furthermore, ⟨x− PCx, y − PCx⟩ ≤ 0 holds for all x ∈ H and
y ∈ C; see [13].

Let B be a set-valued mapping ofH into 2H . The effective domain of B is denoted
by dom(B), that is, dom(B) = {x ∈ H : Bx ̸= ∅}. A set-valued mapping B is said
to be a monotone operator on H if ⟨x− y, u− v⟩ ≥ 0 for all x, y ∈ dom(B), u ∈ Bx,
and v ∈ By. A monotone operator B on H is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued
operator Jr = (I + rB)−1 : H → dom(B), which is called the resolvent of B for r.
We denote by Ar = 1

r (I − Jr) the Yosida approximation of B for r > 0. We know
from [14] that

(2.4) Arx ∈ BJrx, ∀x ∈ H, r > 0.

Let B be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈
Bx}. It is known that B−10 = F (Jr) for all r > 0 and the resolvent Jr is firmly
nonexpansive, i.e.,

(2.5) ∥Jrx− Jry∥2 ≤ ⟨x− y, Jrx− Jry⟩, ∀x, y ∈ H.

Furthermore, we have that for s, r ∈ R with s ≥ r > 0 and x ∈ H

(2.6) ∥x− Jsx∥ ≥ ∥x− Jrx∥.
In fact, since x−Jrx

r ∈ BJrx,
x−Jsx

s ∈ BJsx and B is monotone, we have that⟨x− Jrx

r
− x− Jsx

s
, Jrx− Jsx

⟩
≥ 0

and hence
1

r
⟨x− Jrx, Jrx− Jsx⟩ ≥

1

s
⟨x− Jsx, Jrx− Jsx⟩.

Using (2.3), we have that

1

r

(
∥x− Jsx∥2 + ∥Jrx− Jrx∥2 − ∥x− Jrx∥2 − ∥Jrx− Jsx∥2

)
≥ 1

s

(
∥x− Jsx∥2 + ∥Jsx− Jrx∥2 − ∥x− Jrx∥2 − ∥Jsx− Jsx∥2

)
and hence (1

r
−1

s

)(
∥x− Jsx∥2 − ∥x− Jrx∥2

)
≥ 1

r
∥Jrx− Jsx∥2 +

1

s
∥Jsx− Jrx∥2 ≥ 0.

Thus we have that

(s− r)
(
∥x− Jsx∥2 − ∥x− Jrx∥2

)
≥ 0.

Therefore ∥x − Jsx∥ ≥ ∥x − Jrx∥ for all s, r ∈ R with s ≥ r > 0 and x ∈ H. We
also know the following lemma from [12].

Lemma 2.1. Let H be a Hilbert space and let B be a maximal monotone operator
on H. For r > 0 and x ∈ H, define the resolvent Jrx. Then the following holds:

s− t

s
⟨Jsx− Jtx, Jsx− x⟩ ≥ ∥Jsx− Jtx∥2
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for all s, t > 0 and x ∈ H.

From Lemma 2.1, we have that

(2.7) ∥Jsx− Jtx∥ ≤ (|s− t| /s) ∥x− Jsx∥
for all s, t > 0 and x ∈ H; see also [7, 13].

3. Lemmas

For proving the main theorem, we need some lemmas. Let C be a non-empty,
closed and convex subset of a Hilbert space H. A mapping g : C → H is a
contraction if there exists k ∈ (0, 1) such that∥g(x) − g(y)∥ ≤ k∥x − y∥ for all
x, y ∈ C. We call such a mapping g a k-contraction. A linear bounded self-adjoint
operator G : H → H is called strongly positive if there exists γ > 0 such that
⟨Gx, x⟩ ≥ γ∥x∥2 for all x ∈ H. In general, a mapping T : C → H is called strongly
monotone if there exists γ > 0 such that ⟨x−y, Tx−Ty⟩ ≥ γ∥x−y∥2 for all x, y ∈ C.
Such T is also called γ-strongly monotone. The following results were essentially
obtained in [16]. However, for the sake of completeness, we give the proofs.

Lemma 3.1. Let H be a Hilbert space. Let g be a k-contraction of H into itself and
let G be a strongly positive bounded linear self-adjoint operator on H with coefficient
γ > 0. Take γ > 0 with γ < γ

k and t > 0 with t(∥G∥ + γ k)2 < 2(γ − γ k) and
2t(γ − γ k) < 1. Then

0 < 1− t{2(γ − γ k)− t(∥G∥+ γ k)2} < 1

and I − t(G− γg) is a contraction of H into itself.

Proof. Taking γ > 0 with γ < γ
k , we have that G−γg is γ−γ k-strongly monotone.

Furthermore, taking t > 0 with t(∥G∥+ γ k)2 < 2(γ − γ k) and 2t(γ − γ k) < 1, we
have that

0 < 1− t{2(γ − γ k)− t(∥G∥+ γ k)2} < 1.

Then we have that for any x, y ∈ H

∥x− t(G− γg)x− (y − t(G− γg)y)∥2

= ∥x− y∥2 − 2t⟨x− y, (G− γg)x− (G− γg)y⟩
+ ∥t(G− γg)x− t(G− γg)y∥2

≤ ∥x− y∥2 − 2t(γ − γ k)∥x− y∥2

+ t2(∥G∥2 + 2∥G∥γ k + (γ k)2)∥x− y∥2

= {1− 2t(γ − γ k) + t2(∥G∥+ γ k)2}∥x− y∥2

=
(
1− t{2(γ − γ k)− t(∥G∥+ γ k)2}

)
∥x− y∥2.

This implies that I − t(G− γg) is a contraction. �
Lemma 3.2. Let H be a Hilbert space and let C be a non-empty, closed and convex
subset of H. Let g be a k-contraction of H into itself and let G be a strongly positive
bounded linear self-adjoint operator on H with coefficient γ > 0. Take γ > 0 with
γ < γ

k and t > 0 with t(∥G∥+ γ k)2 < 2(γ − γ k) and 2t(γ − γ k) < 1. Let w ∈ C.
Then the following are equivalent:
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(1) w = PC(I − t(G− γg))w;
(2) ⟨(G− γg)w,w − q⟩ ≤ 0, ∀q ∈ C;
(3) w = PC(I −G+ γg)w.

Such w ∈ C exists always and is unique.

Proof. We have that for w ∈ C

w = PC(I − t(G− γg))w ⇔ ⟨w − t(G− γg)w − w,w − q⟩ ≥ 0, ∀q ∈ C

⇔ ⟨(G− γg)w,w − q⟩ ≤ 0, ∀q ∈ C

⇔ ⟨w −Gw + γgw − w,w − q⟩ ≥ 0, ∀q ∈ C

⇔ w = PC(I −G+ γg)w.

Then (1), (2) and (3) are equivalent. We also have from Lemma 3.1 that I−t(G−γg)
is a contraction of H into itself. Then PC(I − t(G− γg)) is a contraction of C into
itself. Therefore, such w ∈ C exists always and is unique. �

In the proof of the main theorem, we also need properties of firmly nonexpansive
mappings in a Hilbert space. Let C be a non-empty, closed and convex subset
of a Hilbert space H. If a mapping T : C → H is firmly nonexpansive, i.e.,
∥Tx− Ty∥2 ≤ ⟨x− y, Tx− Ty⟩ for all x, y ∈ C, then I − T : C → H is also firmly
nonexpansive. In fact, put S = I−T . Since T is firmly nonexpansive, we have that

∥(I − S)x− (I − S)y∥2 ≤ ⟨x− y, (I − S)x− (I − S)y⟩
for all x, y ∈ C. Then we have that

∥x− y∥2 − 2⟨x− y, Sx− Sy⟩+ ∥Sx− Sy∥2 ≤ ∥x− y∥2 − ⟨x− y, Sx− Sy⟩
and hence ∥Sx− Sy∥2 ≤ ⟨x− y, Sx− Sy⟩. This implies that

(3.1) ∥(I − T )x− (I − T )y∥2 ≤ ⟨x− y, (I − T )x− (I − T )y⟩.
Furthermore, we have the following result for maximal monotone mappings in a
Hilbert space.

Lemma 3.3. Let H be a Hilbert space and let A be a maximal monotone mapping
on H such that A−10 is non-empty. Let Jλ = (I + λA)−1 be the resolvent of A for
λ > 0. Then

⟨x− Jλx, Jλx− y⟩ ≥ 0

for all x ∈ H and y ∈ A−10.

Proof. We know that Jλ is firmly nonexpansive and Jλy = y for all y ∈ A−10. Then
we have that for all x ∈ H and y ∈ A−10

⟨x− Jλx, Jλx− y⟩ = ⟨x− y + y − Jλx, Jλx− y⟩
= ⟨x− y, Jλx− y⟩+ ⟨y − Jλx, Jλx− y⟩
≥ ∥Jλx− y∥2 − ∥Jλx− y∥2

= 0.

This completes the proof. �

Using Lemma 3.3, we prove the following result.
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Lemma 3.4. Let H1 and H2 be Hilbert spaces and let A and B be maximal mono-
tone mappings on H1 and H2 such that A−10 and B−10 are non-empty, respectively.
Let T : H1 → H2 be a bounded linear operator such that A−10∩ T−1(B−10) is non-
empty and let T ∗ be the adjoint operator of T . Let Jλ and Qµ be the resolvents of
A for λ > 0 and B for µ > 0, respectively. Let λ, µ, ν, r > 0 and z ∈ H. Then the
following are equivalent:

(i) z = Jλ(I − rT ∗(I −Qµ)T )z;
(ii) 0 ∈ T ∗(I −Qν)Tz +Az;
(iii) z ∈ A−10 ∩ T−1(B−10).

Proof. Since A−10∩ T−1(B−10) ̸= ∅, there exists z0 ∈ A−10 such that Tz0 ∈ B−10.
(i) ⇒ (iii). From z = Jλ(I − rT ∗(I −Qµ)T )z and the definition of Jλ, we have

z − rT ∗(I −Qµ)Tz ∈ z + λAz

and hence −rT ∗(I −Qµ)Tz ∈ λAz. Since A is monotone and 0 ∈ Az0, we have⟨
− r

λ
T ∗(I −Qµ)Tz, z − z0

⟩
≥ 0.

Then we have that ⟨T ∗(I −Qµ)Tz, z − z0⟩ ≤ 0 and hence

(3.2) ⟨Tz −QµTz, Tz − Tz0⟩ ≤ 0.

On the other hand, we have from Lemma 3.3 that ⟨Tz − QµTz,QµTz − Tz0⟩ ≥ 0
and hence

(3.3) ⟨Tz −QµTz, Tz0 −QµTz⟩ ≤ 0.

From (3.2) and (3.4) we have that

(3.4) ∥Tz −QµTz∥2 = ⟨Tz −QµTz, Tz −QµTz⟩ ≤ 0

and hence Tz = QµTz. This implies that Tz ∈ B−10. We also have from z =
Jλ(I − rT ∗(I −Qµ)T )z that z = Jλ(z − rT ∗(I −Qµ)Tz) = Jλz. This implies that
z ∈ A−10. Therefore z ∈ A−10 ∩ T−1(B−10).

(ii) ⇒ (iii). From 0 ∈ T ∗(I −Qν)Tz +Az, we have −T ∗(I −Qν)Tz ∈ Az. Since
A is monotone and 0 ∈ Az0, we have that

⟨−T ∗(I −Qν)Tz, z − z0⟩ ≥ 0.

Thus we have that ⟨T ∗(I −Qν)Tz, z − z0⟩ ≤ 0 and hence

(3.5) ⟨Tz −QνTz, Tz − Tz0⟩ ≤ 0.

As in the proof of (i) ⇒ (iii), we have

(3.6) ⟨Tz −QνTz,QνTz − Tz0⟩ ≥ 0.

From (3.5) and (3.6) we have that

(3.7) ∥Tz −QνTz∥2 = ⟨Tz −QνTz, Tz −QνTz⟩ ≤ 0

and hence Tz = QνTz. This implies that Tz ∈ B−10. As in the proof of (i) ⇒ (iii),
we have z ∈ A−10 ∩ T−1(B−10).

(iii) ⇒ (i). From z ∈ A−10∩T−1(B−10), we have that Tz ∈ B−10 and z ∈ A−10.
This implies that Tz = QµTz and z = Jλz. Thus we have

Jλ(I − rT ∗(I −Qµ)T )z = Jλz − rT ∗0 = Jλz = z.
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(iii) ⇒ (ii). From z ∈ A−10 ∩ T−1(B−10), we have that Tz = QνTz and 0 ∈ Az.
Thus we have 0 ∈ T ∗(I −Qν)Tz +Az. The proof is complete. �

We also have the following lemma.

Lemma 3.5. Let H1 and H2 be Hilbert spaces and let α > 0. Let T : H1 → H2

be a bounded linear operator such that T ̸= 0. Let S : H2 → H2 be an α-inverse
strongly monotone mapping. Then a mapping T ∗ST : H1 → H1 is α

∥TT ∗∥ -inverse

strongly monotone.

Proof. Since S is α-inverse strongly monotone, we have that for all x, y ∈ H1

α

∥TT ∗∥
∥T ∗STx− T ∗STy∥2 = α

∥TT ∗∥
⟨T ∗STx− T ∗STy, T ∗STx− T ∗STy⟩

=
α

∥TT ∗∥
⟨TT ∗(STx− STy

)
, STx− STy⟩

≤ α

∥TT ∗∥
∥TT ∗(STx− STy

)
∥∥STx− STy∥

≤ α

∥TT ∗∥
∥TT ∗∥∥STx− STy∥2

= α∥STx− STy∥2

≤ ⟨STx− STy, Tx− Ty⟩
= ⟨T ∗STx− T ∗STy, x− y⟩.

This implies that T ∗ST : H1 → H1 is α
∥TT ∗∥ -inverse strongly monotone. �

Remark. If B is a maximal monotone mapping on H2 and Qµ is the resolvent of
B for µ > 0, then Qµ is a firmly nonexpansive mapping. Using (3.1), we also have
that (I − Qµ) is firmly nonexpansive, i.e., 1-inverse strongly monotone. Thus we
have that T ∗(I −Qµ)T is 1

∥TT ∗∥ -inverse strongly monotone. This fact is used in the

proof of our main theorem.

4. Strong convergence theorem

Let C be a non-empty, closed and convex subset of a Hilbert space H. Let α > 0
and let U be an α-inverse strongly monotone mapping of C into H. If 0 < λ ≤ 2α,
then I − λU : C → H is nonexpansive. In fact, we have that for all x, y ∈ C

∥(I − λU)x− (I − λU)y∥2 = ∥x− y − λ(Ux− Uy)∥2

= ∥x− y∥2 − 2λ⟨x− y, Ux− Uy⟩+ (λ)2∥Ux− Uy∥2

≤ ∥x− y∥2 − 2λα∥Ux− Uy∥2 + (λ)2∥Ux− Uy∥2

= ∥x− y∥2 + λ(λ− 2α)∥Ux− Uy∥2

≤ ∥x− y∥2.

Thus I − λU : C → H is nonexpansive. Now we can prove a strong convergence
theorem of Browder’s type [3] which solves the split common null point problem
in Hilbert spaces. For proving the theorem, we need another lemma obtained by
Marino and Xu [8].



800 S. M. ALSULAMI AND W. TAKAHASHI

Lemma 4.1 ([8]). Let H be a Hilbert space and let G be a strongly positive bounded
linear self-adjoint operator on H with coefficient γ > 0. If 0 < γ ≤ ∥G∥−1, then
∥I − γG∥ ≤ 1− γγ.

Theorem 4.2. Let H1 and H2 be Hilbert spaces. Let A and F be maximal monotone
mappings on H1 and let B be a maximal monotone mapping on H2 such that A−10,
F−10 and B−10 are non-empty. Let T : H1 → H2 be a bounded linear operator such
that A−10 ∩ T−1(B−10) ∩ F−10 is non-empty. Let T ∗ be the adjoint operator of T .
Let Jλ and Tr be the resolvents of A for λ > 0 and F for r > 0, respectively and let
Qµ be the resolvent of B for µ > 0. Let 0 < k < 1 and let g be a k-contraction of H1

into itself. Let G be a strongly positive bounded linear self-adjoint operator on H1

with coefficient γ > 0. Let 0 < γ < γ
k . Assume that {αn} ⊂ (0, 1), {λn} ⊂ (0,∞)

and {rn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0, 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2

∥TT ∗∥
,

lim inf
n→∞

µn > 0 and lim inf
n→∞

rn > 0.

Then the following hold:

(i) For any n ∈ N, define Tn : H1 → H1 by

Tnx = αnγg(x) + (I − αnG)Jλn(I − λnT
∗(I −Qµn)T )Trnx, ∀x ∈ H1.

Then Tn has a unique fixed point xn in H1 and {xn} is bounded;
(ii) the set A−10∩ T−1(B−10)∩F−10 is a non-empty, closed and convex subset

of H1 and PA−10∩T−1(B−10)∩F−10(I −G+ γg) has a unique fixed point z0 in

A−10 ∩ T−1(B−10) ∩ F−10;
(iii) the sequence {xn} converges strongly to z0 ∈ A−10 ∩ T−1(B−10) ∩ F−10,

where {z0} = V I(A−10 ∩ T−1(B−10) ∩ F−10, G− γg).

Proof. Let us prove (i). For any n ∈ N, define An = T ∗(I − Qµn)T . Then Tn :
H1 → H1 is written by

Tnx = αnγg(x) + (I − αnG)Jλn(I − λnAn)Trnx, ∀x ∈ H1.

From limn→∞ αn = 0, we may have αn ≤ ∥G∥−1. Then we have from Lemma 4.1
that for any x, y ∈ H1

∥Tnx− Tny∥ = ∥αnγg(x) + (I − αnG)Jλn(I − λnAn)Trnx

− {αnγg(y) + (I − αnG)Jλn(I − λnAn)Trny}∥
≤ αnγ∥g(x)− g(y)∥

+ ∥I − αnG∥∥Jλn(I − λnAn)Trnx− Jλn(I − λnAn)Trny∥
≤ αnγ k∥x− y∥+ (1− αnγ)∥(I − λnAn)Trnx− (I − λnAn)Trny∥
≤ αnγ k∥x− y∥+ (1− αnγ)∥Trnx− Trny∥
≤ αnγ k∥x− y∥+ (1− αnγ)∥x− y∥
= (αnγ k + 1− αnγ)∥x− y∥
= (1− αn(γ − γ k))∥x− y∥.
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Since 0 < 1 − αn(γ − γ k) < 1, Tn is a (1 − αn(γ − γ k))-contraction of H1 into
itself and hence Tn has a unique fixed point xn in H1. Next we show that {xn} is
bounded. Let u ∈ A−10 ∩ T−1(B−10) ∩ F−10. We have from F−10 = F (Trn) and
Lemma 3.4 that Trnu = u and Jλn(I − λnAn)u = u. Using u = αnGu+ u− αnGu,
we have that for all n ∈ N

∥xn − u∥ = ∥Tnxn − αnGu− u+ αnGu∥
= ∥αn(γg(xn)−Gu) + (I − αnG)(Jλn(I − λnAn)Trnxn − u)∥
≤ αn∥γg(xn)−Gu∥+ ∥I − αnG∥∥Jλn(I − λnAn)Trnxn − u∥
≤ αnγ k∥xn − u∥+ αn∥γg(u)−Gu∥+ (1− αnγ)∥xn − u∥.

Thus we have αn(γ − γ k)∥xn − u∥ ≤ αn∥γg(u)−Gu∥ and hence

(γ − γ k)∥xn − u∥ ≤ ∥γg(u)−Gu∥.

Then we have ∥xn − u∥ ≤ ∥γg(u)−Gu∥
γ−γ k . This implies that {xn} is bounded.

Let us prove (ii). Since A,F and B are maximal monotone operators, we have
from [15] that A−10, F−10 and B−10 are closed and convex. Furthermore, since T
is a bounded linear operator from H1 to H2, it is obvious that T−1B−10 is closed
and convex. Therefore, A−10∩T−1B−10∩F−10 is closed and convex. We also have
from Lemma 3.2 that PA−10∩T−1B−10∩F−10(I −G+ γg) has a unique fixed point z0
in A−10 ∩ T−1B−10 ∩ F−10.

Let us prove (iii). Put yn = Jλn(I − λnAn)Trnxn and un = Trnxn for all n ∈ N.
Since {xn} is bounded, {un} and {yn} are bounded. Furthermore, {g(xn)} and
{Gxn} are also bounded. Let z ∈ A−10 ∩ T−1(B−10) ∩ F−10. We have from
z ∈ T−1(B−10) that (I − Qµn)Tz = 0 and hence Anz = T ∗(I − Qµn)Tz = 0.
Furthermore, we have from Lemma 3.5 and 0 < lim supn→∞ λn < 2

∥TT ∗∥ that

∥yn − z∥2 = ∥Jλn(I − λnAn)un − Jλn(I − λnAn)z∥2

≤ ∥(I − λnAn)un − (I − λnAn)z∥2

= ∥un − z − λnAnun∥2

= ∥un − z∥2 − 2λn⟨un − z,Anun⟩+ (λn)
2∥Anun∥2(4.1)

= ∥un − z∥2 − 2λn⟨Tun − Tz, (I −Qµn)Tun⟩+ (λn)
2∥Anun∥2

≤ ∥un − z∥2 − 2λn∥(I −Qµn)Tun∥2 + (λn)
2∥TT ∗∥∥(I −Qµn)Tun∥2

= ∥un − z∥2 + λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2

≤ ∥un − z∥2

and hence ∥yn − z∥ ≤ ∥un − z∥. We also have that

∥un − yn∥ ≤ ∥un − xn∥+ ∥xn − yn∥
= ∥un − xn∥+ ∥αnγg(xn) + (I − αnG)yn − yn∥(4.2)

= ∥un − xn∥+ αn∥γg(xn)−Gyn∥.

Furthermore, using (2.5) and (2.3), we get that

2∥un − z∥2 = 2∥Trnxn − Trnz∥2
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≤ 2⟨xn − z, un − z⟩
= ∥xn − z∥2 + ∥un − z∥2 − ∥un − xn∥2

and hence

(4.3) ∥un − z∥2 ≤ ∥xn − z∥2 − ∥un − xn∥2.

Since z = αnGz + z − αnGz, we have from (2.1), (4.1) and (4.3) that

∥xn − z∥2 = ∥(I − αnG)(yn − z) + αn(γg(xn)−Gz)∥2

≤ (1− αnγ)
2 ∥yn − z∥2 + 2αn⟨γg(xn)−Gz, xn − z⟩

≤ (1− αnγ)
2(∥un − z∥2 + λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2)

+ 2αn⟨γg(xn)−Gz, xn − z⟩

= (1− αnγ)
2 ∥un − z∥2 + (1− αnγ)

2λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2

+ 2αn⟨γg(xn)−Gz, xn − z⟩

≤ (1− αnγ)
2(∥xn − z∥2 − ∥xn − un∥2)

+ (1− αnγ)
2λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2

+ 2αnγ k∥xn − z∥2 + 2αn∥γg(z)−Gz∥∥xn − z∥

= {1− 2αn(γ − γ k) + α2
nγ

2} ∥xn − z∥2 − (1− αnγ)
2∥xn − un∥2

+ (1− αnγ)
2λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2

+ 2αn∥γg(z)−Gz∥∥xn − z∥

≤ ∥xn − z∥2 + α2
nγ

2 ∥xn − z∥2 − (1− αnγ)
2∥xn − un∥2

+ (1− αnγ)
2λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2

+ 2αn∥γg(z)−Gz∥∥xn − z∥

and hence

(1− αnγ)
2λn(2− λn∥TT ∗∥)∥(I −Qµn)Tun∥2 + (1− αnγ)

2∥xn − un∥2

≤ α2
nγ

2 ∥xn − z∥2 + 2αn∥γg(z)−Gz∥∥xn − z∥.

Then we have that

(1− αnγ)
2λn(2− λn∥TT ∗∥)∥(I −Qµn)Tun∥2

≤ α2
nγ

2 ∥xn − z∥2 + 2αn∥γg(z)−Gz∥∥xn − z∥.

and

(1− αnγ)
2∥xn − un∥2 ≤ α2

nγ
2 ∥xn − z∥2 + 2αn∥γg(z)−Gz∥∥xn − z∥.

From limn→∞ αn = 0 and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2
∥TT ∗∥ , we have

(4.4) ∥(I −Qµn)Tun∥ → 0 and ∥xn − un∥ →0.

We have from (4.2) and (4.4) that

(4.5) ∥Tun −QµnTun∥ → 0 and ∥yn − un∥ →0.
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Take λ0 ∈ (0, 2
∥TT ∗∥). Putting Aµ = T ∗(I − Qµ)T and zn = (I − λnAn)un, where

0 < µ < lim infn→∞ µn, we have from (2.6) and (2.7) that

∥Jλ0(I−λ0Aµ)un − yn∥
≤ ∥Jλ0(I − λ0Aµ)un − Jλ0(I − λnAn)un∥+ ∥Jλ0(I − λnAn)un − yn∥
≤ ∥(I − λ0Aµ)un − (I − λnAn)un∥+ ∥Jλ0zn − Jλnzn∥
= ∥λ0Aµun − λnAnun∥+ ∥Jλ0zn − Jλnzn∥
= ∥λ0Aµun − λ0Anun + λ0Anun − λnAnun∥+ ∥Jλ0zn − Jλnzn∥
≤ λ0∥T∥∥(I −Qµ)Tun − (I −Qµn)Tun∥(4.6)

+ ∥λ0Anun − λnAnun∥+ ∥Jλ0zn − Jλnzn∥
≤ λ0∥T∥(∥(I −Qµ)Tun∥+ ∥(I −Qµn)Tun∥)

+ ∥λ0Anun − λnAnun∥+ ∥Jλ0zn − Jλnzn∥
≤ 2λ0∥T∥∥(I −Qµn)Tun∥) + ∥λ0Anun − λnAnun∥+ ∥Jλ0zn − Jλnzn∥

≤ 2λ0∥T∥∥(I −Qµn)Tun∥) + |λn − λ0|∥Anun∥+
|λn − λ0|

λ0
∥Jλ0zn − zn∥.

Furthermore, we have that

(4.7) ∥Jλ0(I − λ0Aµ)un − un∥ ≤ ∥Jλ0(I − λ0Aµ)un − yn∥+ ∥yn − un∥.
We will use these inequalities (4.6) and (4.7) later. We know from (ii) and Lemma
3.2 that there exists a unique z0 ∈ A−10 ∩ T−1(B−10) ∩ F−10 such that

⟨(G− γg)z0, q − z0⟩ ≥ 0, ∀q ∈ A−10 ∩ T−1(B−10) ∩ F−10.

In order to show that xn → z0, it suffices to show that if {xni} is any subsequence
of {xn}, then we can find a subsequence of {xni} converging strongly to z0; see [15,
p. 28]. Since {xni} is bounded and {λni} is bounded, without loss of generality
there exist a subsequence {xnij

} of {xni} and a subsequence {λnij
} of {λni} such

that xnij
⇀ w and λnij

→ λ0 for some λ0 ∈ (0, 2
∥TT ∗∥). From xn −un → 0, we have

unij
⇀ w. Using λnij

→ λ0, (4.4) and (4.6), we have that

∥Jλ0(I − λ0Aµ)unij
− ynij

∥ → 0.

Furthermore, we have from ∥ynij
− unij

∥ → 0 and (4.7) that

∥Jλ0(I − λ0Aµ)unij
− unij

∥ → 0.

Since Jλ0(I − λ0Aµ) is nonexpansive, we have that w = Jλ0(I − λ0Aµ)w and hence
w ∈ A−10∩T−1(B−10) from Lemma 3.4. We show w ∈ F−10. Since F is a maximal
monotone operator, we have from (2.4) that Arnij

xnij
∈ FTrnij

xnij
, where Ar is the

Yosida approximation of F for r > 0. Furthermore we have that for any (u, v) ∈ F⟨
u− unij

, v −
xnij

− unij

rnij

⟩
≥ 0.

Since lim infn→∞ rn > 0, unij
⇀ w and xnij

− unij
→ 0, we have

⟨u− w, v⟩ ≥ 0.
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Since F is a maximal monotone operator, we have from [15, Theorem 6.5.4] that
0 ∈ Fw and hence w ∈ F−10. Thus we have w ∈ A−10∩T−1(B−10)∩F−10. Finally,
we show xnij

→ z0. For showing xnij
→ z0, we follow the idea of [3]; see also the

proof of [15, Theorem 6.3.1]. Since z0 = αnGz0 + z0 − αnGz0, we have that

xn − z0 = αn(γg(xn)−Gz0) + (I − αnG)(yn − z0).

Using ∥yn − z0∥ ≤ ∥un − z0∥ ≤ ∥xn − z0∥, we have that

∥xn − z0∥2 = ⟨xn − z0, xn − z0⟩
= αn⟨γg(xn)−Gz0, xn − z0⟩+ ⟨(I − αnG)(yn − z0), xn − z0⟩
≤ αn⟨γg(xn)−Gz0, xn − z0⟩+ ∥I − αnG∥∥yn − z0∥∥xn − z0∥
≤ αn⟨γg(xn)−Gz0, xn − z0⟩+ (1− αnγ)∥xn − z0∥2.

Thus we have that αnγ∥xn − z0∥2 ≤ αn⟨γg(xn)−Gz0, xn − z0⟩ and hence

γ∥xn − z0∥2 ≤ ⟨γg(xn)−Gz0, xn − z0⟩.
Then we have that

∥xn − z0∥2 ≤
1

γ
⟨γg(xn)−Gz0, xn − z0⟩

=
1

γ
⟨γg(xn)− γg(z0) + γg(z0)−Gz0, xn − z0⟩

≤ 1

γ
γ k∥xn − z0∥2 +

1

γ
⟨γg(z0)−Gz0, xn − z0⟩.

This implies that

∥xn − z0∥2 ≤
⟨γg(z0)−Gz0, xn − z0⟩

γ − γ k
.

In particular, we have that

∥xnij
− z0∥2 ≤

⟨γg(z0)−Gz0, xnij
− z0⟩

γ − γ k
.

From xnij
⇀ w we have that

lim sup
j→∞

∥xnij
− z0∥2 ≤ lim

j→∞

⟨γg(z0)−Gz0, xnij
− z0⟩

γ − γ k

=
⟨γg(z0)−Gz0, w − z0⟩

γ − γ k
.

Furthermore, since w ∈ A−10 ∩ T−1(B−10) ∩ F−10 and

⟨(G− γg)z0, q − z0⟩ ≥ 0, ∀q ∈ A−10 ∩ T−1(B−10) ∩ F−10,

we have that lim supj→∞ ∥xnij
− z0∥2 ≤ 0. Thus xnij

→ z0. Therefore, we have

that {xn} converges strongly to a unique z0 ∈ A−10∩ T−1(B−10)∩F−10 such that

⟨(G− γg)z0, q − z0⟩ ≥ 0, ∀q ∈ A−10 ∩ T−1(B−10) ∩ F−10.

We know that this z0 is a unique fixed point of PA−10∩T−1(B−10)∩F−10(I −G+ γg).
This completes the proof. �
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5. Applications

In this section, using Theorem 4.2, we obtain two new strong convergence theo-
rems which are related to the split inverse problem and an equilibrium problem in
Hilbert spaces. Let H be a Hilbert space and let f be a proper lower semicontinuous
convex function of H into (−∞,∞]. Then the subdifferential ∂f of f is defined as
follows:

∂f(x) = {z ∈ H : f(x) + ⟨z, y − x⟩ ≤ f(y), ∀y ∈ H}
for all x ∈ H. From Rockafellar [10], we know that ∂f is a maximal monotone
operator. Let C be a non-empty, closed and convex subset of H and let iC be the
indicator function of C, i.e.,

iC(x) =

{
0, x ∈ C,

∞, x /∈ C.

Then iC is a proper, lower semicontinuous and convex function on H. Thus the sub-
differential ∂iC of iC is a maximal monotone operator. We can define the resolvent
Jλ of ∂iC for λ > 0, i.e.,

Jλx = (I + λ∂iC)
−1x

for all x ∈ H. We have that for any x ∈ H and u ∈ C

u =Jλx ⇐⇒ x ∈ u+ λ∂iCu ⇐⇒ x ∈ u+ λNCu

⇐⇒ x− u ∈ λNCu

⇐⇒ 1

λ
⟨x− u, v − u⟩ ≤ 0, ∀v ∈ C

⇐⇒ ⟨x− u, v − u⟩ ≤ 0, ∀v ∈ C

⇐⇒ u = PCx,

where NCu is the normal cone to C at u, i.e.,

NCu = {z ∈ H : ⟨z, v − u⟩ ≤ 0, ∀v ∈ C}.

Theorem 5.1. Let H1 and H2 be Hilbert spaces. Let C and D be non-empty, closed
and convex subsets of H1 and let Q be a non-empty, closed and convex subset of H2.
Let T : H1 → H2 be a bounded linear operator such that C∩T−1Q∩D is non-empty.
Let T ∗ be the adjoint operator of T . Let PC and PD be the metric projections of H1

onto C and D, respectively and let PQ be the metric projection of H2 onto Q. Let
0 < k < 1 and let g be a k-contraction of H1 into itself. Let G be a strongly positive
bounded linear self-adjoint operator on H1 with coefficient γ > 0. Let 0 < γ < γ

k .
Assume that {αn} ⊂ (0, 1), {λn} ⊂ (0,∞) and {rn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0, and 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2

∥TT ∗∥
.

Then the following hold:

(i) For any n ∈ N, define Tn : H1 → H1 by

Tnx = αnγg(x) + (I − αnG)PC(I − λnT
∗(I − PQ)T )PDx, ∀x ∈ H1.

Then Tn has a unique fixed point xn in H1 and {xn} is bounded;
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(ii) the set C ∩ T−1Q ∩D is a non-empty, closed and convex subset of H1 and
PC∩T−1Q∩D(I −G+ γg) has a unique fixed point z0 in C ∩ T−1Q ∩D;

(iii) the sequence {xn} converges strongly to z0 ∈ C ∩ T−1Q ∩D, where {z0} =
V I(C ∩ T−1Q ∩D,G− γg).

Proof. Put A = ∂iC , F = ∂iD and B = ∂iQ in Theorem 4.2. Then we have that for
λn > 0, rn > 0 and µn > 0, Jλn = PC , Trn = PD and Qµn = PQ. Furthermore, we
have (∂iC)

−10 = C, (∂iD)
−10 = D and (∂iQ)

−10 = Q. Thus we obtain the desired
result by Theorem 4.2. �

Let H be a Hilbert space and let C be a non-empty, closed and convex subset of
H. Let f : C ×C → R be a bifunction. Then an equilibrium problem (with respect
to C) is to find x̂ ∈ C such that

f(x̂, y) ≥ 0, ∀y ∈ C.(5.1)

The set of such solutions x̂ is denoted by EP (f), i.e.,

EP (f) = {x̂ ∈ C : f(x̂, y) ≥ 0, ∀y ∈ C}.
For solving the equilibrium problem, let us assume that the bifunction f : C×C → R
satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

We know the following lemma which appears in Blum and Oettli [2].

Lemma 5.2 ([2]). Let C be a non-empty, closed and convex subset of H and let f
be a bifunction of C×C into R satisfying (A1)− (A4). Let r > 0 and x ∈ H. Then
there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

The following lemma was also given in Combettes and Hirstoaga [6].

Lemma 5.3 ([6]). Assume that f : C × C → R satisfies (A1) − (A4). For r > 0
and x ∈ H, define a mapping Tr : H → C as follows:

Trx =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
for all x ∈ H. Then the following hold:

(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;
(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.
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We call such Tr the resolvent of f for r > 0. Using Lemmas 5.2 and 5.3, Takahashi,
Takahashi and Toyoda [12] obtained the following lemma. See [1] for a more general
result.

Lemma 5.4 ([12]). Let H be a Hilbert space and let C be a non-empty, closed and
convex subset of H. Let f : C ×C → R satisfy (A1)− (A4). Let Af be a set-valued
mapping of H into itself defined by

Afx =

{
{z ∈ H : f(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C.

Then EP (f) = A−1
f 0 and Af is a maximal monotone operator with dom(Af ) ⊂ C.

Furthermore, for any x ∈ H and r > 0, the resolvent Tr of f coincides with the
resolvent of Af , i.e.,

Trx = (I + rAf )
−1x.

Using Theorem 4.2, we can also prove a strong convergence theorem for finding
solutions of equilibrium problems in Hilbert spaces.

Theorem 5.5. Let H1 and H2 be Hilbert spaces. Let C and D be non-empty, closed
and convex subsets of H1 and let Q be a non-empty, closed and convex subset of
H2. Let f1 and f2 be bifunctions of C × C into R and D × D into R satisfying
(A1) − (A4). Let f3 be a bifunction of Q × Q into R satisfying (A1) − (A4) such
that EP (f1), EP (f2) and EP (f3) are non-empty. Let T : H1 → H2 be a bounded
linear operator such that EP (f1) ∩ T−1EP (f3) ∩ EP (f2) is non-empty. Let T ∗ be
the adjoint operator of T . Let Jλ and Tr be the resolvents of f1 for λ > 0 and f2
for r > 0, respectively and let Qµ be the resolvent of f3 for µ > 0. Let 0 < k < 1
and let g be a k-contraction of H1 into itself. Let G be a strongly positive bounded
linear self-adjoint operator on H1 with coefficient γ > 0. Let 0 < γ < γ

k . Assume
that {αn} ⊂ (0, 1), {λn} ⊂ (0,∞) and {rn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0, 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2

∥TT ∗∥
,

lim inf
n→∞

µn > 0 and lim inf
n→∞

rn > 0.

Then the following hold:

(i) For any n ∈ N, define Tn : H1 → H1 by

Tnx = αnγg(x) + (I − αnG)Jλn(I − λnT
∗(I −Qµn)T )Trnx, ∀x ∈ H1.

Then Tn has a unique fixed point xn in H1 and {xn} is bounded;
(ii) the set EP (f1) ∩ T−1EP (f3) ∩ EP (f2) is a non-empty, closed and convex

subset of H1 and PEP (f1)∩T−1EP (f3)∩EP (f2)(I − G + γg) has a unique fixed

point z0 in EP (f1) ∩ T−1EP (f3) ∩ EP (f2);
(iii) the sequence {xn} converges strongly to z0 ∈ EP (f1)∩T−1EP (f3)∩EP (f2),

where {z0} = V I(EP (f1) ∩ T−1EP (f3) ∩ EP (f2), G− γg).

Proof. For the bifunctions f1 : C × C → R, f2 : D ×D → R and f3 : Q ×Q → R,
we can define Af1 , Af2 and Af3 in Lemma 5.4. Putting A = Af1 , F = Af2 and
B = Af3 in Theorem 4.2, we obtain from Lemma 5.4 that Jλn = (I + λnAf1)

−1,
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Trn = (I + rnAf2)
−1 and Qµn = (I + µnAf3)

−1 for all λn > 0, rn > 0 and µn > 0,
respectively. Thus we obtain the desired result by Theorem 4.2. �
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