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THE SPLIT COMMON NULL POINT PROBLEM
FOR MAXIMAL MONOTONE MAPPINGS IN HILBERT SPACES
AND APPLICATIONS

SAUD M. ALSULAMI AND WATARU TAKAHASHI

ABSTRACT. Based on recent works by Byrne-Censor-Gibali-Reich [C. Byrne, Y.
Censor, A. Gibali and S. Reich, The split common null point problem, J. Non-
linear Convex Anal. 13 (2012), 759-775] and the second author [W. Takahashi,
Strong convergence theorems for maximal and inverse-strongly monotone map-
pings in Hilbert spaces and applications, J. Optim. Theory Appl. 157 (2013),
781-802], we study the split common null point problem for maximal monotone
mappings in Hilbert spaces which is related to the split feasibility problem by
Censor and Elfving [Y. Censor and T. Elfving, A multiprojection algorithm using
Bregman projections in a product space, Numer. Algorithms 8 (1994), 221-239].
We first obtain some properties for resolvents of maximal monotone operators in
Hilbert spaces. Then using these properties, we establish a strong convergence
theorem for finding a solution of the split common null point problem which is
characterized as a unique solution of the variational inequality of a nonlinear
operator. As applications, we get two new strong convergence theorems which
are connected with the split feasibility problem and an equilibrium problem.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a non-empty, closed and convex
subset of H. Let U : C — H be a mapping. The set of solutions of the variational
inequality for U is defined by

V(C,U)={2eC: (Ui,y—2) >0, VyeC)}

A mapping U : C' — H is called inverse strongly monotone if there exists a > 0
such that
(x —y, Uz —Uy) > a||Uz — Uy|?, Vz,yeC.
Such a mapping U is called a-inverse strongly monotone. Let H; and Hy be two
real Hilbert spaces. Given set-valued mappings A; : Hy — 2H1, 1 < i < m, and
Bj : Hy — 2H2 1 < j < n, respectively, and bounded linear operators T; : H —
Hy, 1 < j < mn, the split common null point problem [4] is to find a point z € H;
such that
ze (N A710) N (N7, T; (B 10)),

where A, 10 and B;l() are null point sets of A; and Bj, respectively. Let C' and @) be
non-empty, closed and convex subsets of H; and Hs, respectively. Let T : Hy — Ho
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be a bounded linear operator. Then the split feasibility problem [5] is to find z € Hy
such that z € C N T~'Q. Putting A; = Jic for all 1, Bj = 0ig for all j and
T; = T for all j in the split common null point problem, we see that the split
feasibility peoblem is a special case of the split common null point problem, where
Oic and 0ig are the subdifferentials of the indicator functions ¢ of C' and i of @,
respectively. Defining U = T*(I — Pg)T in the split feasibility peoblem, we have
that U : Hy — H; is an inverse strongly monotone operator, where T is the adjoint
operator of 1" and Pc and Fg are the metric projections of H; onto C' and Hs onto
Q, respectively. Furthermore, if C N T~'Q is non-empty, then z € C N T7'Q is
equivalent to z = Po(I — AU)z, where A > 0. From [16] we also know an implicit
strong convergence theorem for finding a common point of the set of null points
of the addition of an inverse strongly monotone mapping and a maximal monotone
operator and the set of null points of a maximal monotone operator which is related
to an equilibrium problem in a Hilbert space; see also [9, 11].

In this paper, motivated by these definitions and results, we study the split
common null point problem for maximal monotone mappings in Hilbert spaces. We
first obtain some properties for resolvents of maximal monotone operators in Hilbert
spaces. Then using these properties, we establish a strong convergence theorem for
finding a solution of the split common null point problem which is characterized as a
unique solution of the variational inequality of a nonlinear operator. As applications,
we get two new strong convergence theorems which are connected with the split
feasibility problem and an equilibrium problem.

2. PRELIMINARIES

Throughout this paper, let N and R be the sets of positive integers and real
numbers, respectively. Let H be a real Hilbert space with inner product (-, -) and
norm || -|. When {z,} is a sequence in H, we denote the strong convergence of
{zn} to z € H by z,, — = and the weak convergence by z,, — x. We have from [15]
that for any x,y € H and A € R

(2.1) Iz +yl* < llz))* + 2(y, = + )
and
(2.2) Az 4+ (1 = Nyl = Allz)l* + (1= Nyl = A1 = X[z — y]>.

Furthermore, we have that for =, y,u,v € H
(2.3) 20z —y,u—v) = [lz = of* + [ly — ul|* = [l — ul® = [ly — v|*,

Let C' be a non-empty, closed and convex subset of a Hilbert space H and let
T: C — H be a mapping. We denote by F(T') be the set of fixed points of T. A
mapping T : C' — H is called nonexpansive if | Tx — Ty|| < ||z —y|| for all z,y € C.
A mapping T : C' — H is called firmly nonexpansive if ||To—Ty||?> < (Tex—Ty, z—1y)
for all z,y € C. If a mapping T is firmly nonexpansive, then it is nonexpansive.
If T: C — H is nonexpansive, then F(T) is closed and convex; see [15]. For a
non-empty, closed and convex subset C' of H, the nearest point projection of H
onto C' is denoted by Pg, that is, || — Pox| < ||z —y|| for all x € H and y € C.
Such a mapping P¢ is called the metric projection of H onto C. We know that the
metric projection Pp is firmly nonexpansive; | Pox — Poyl||* < (Pox — Poy,x — )
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for all x,y € H. Furthermore, (x — Pox,y — Pcx) < 0 holds for all x € H and
y € C; see [13].

Let B be a set-valued mapping of H into 2. The effective domain of B is denoted
by dom(B), that is, dom(B) = {z € H : Bx # 0}. A set-valued mapping B is said
to be a monotone operator on H if (x — y,u — v) > 0 for all z,y € dom(B), u € Bz,
and v € By. A monotone operator B on H is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued
operator J, = (I +rB)~!': H — dom(B), which is called the resolvent of B for r.
We denote by A, = %(I — J,) the Yosida approximation of B for r > 0. We know
from [14] that

(2.4) Arx € BJyx, VYrxe H, r>0.

Let B be a maximal monotone operator on H and let B~'0 = {z € H : 0 €
Bx}. Tt is known that B~10 = F(J,) for all 7 > 0 and the resolvent J, is firmly
nonexpansive, i.e.,

(25) ||‘]7”‘T_J7“y||2 < <x_ya er_‘]’r' >a VfUaZUGH-
Furthermore, we have that for s,r € R with s >r >0and x € H
(2.6) |z — Jsz|| > ||l — Jrx]|.

In fact, since mj‘,]”ﬁ € BJ,x, % € BJsx and B is monotone, we have that

<x —TJT:J: oz _SJsx,Jrif B Js$> >0

and hence 1
—(z — Jyx, Jyx — Jsz) >
,

Using (2.3), we have that

®w |

(x — Jsz, Jrx — Jsx).

1
;(Ilﬂf = Jsz|* + | frx = Jpa|? — lz = Jpal|* — || Jyx — Tz ]|?)

> — (e = Jsa|® + | sz = Jyall* = o = Jya|? = || sz = Jsa||?)

W | =

and hence
1 1

(5=3) Ul = Tl = o = Jyal?)
> %Iler — Joz||* + §||Jsx — Jyz||? > 0.
Thus we have that
(s =) (lz = Jsz|* = [l — Jz|*) > 0.

Therefore ||z — Jsz|| > ||z — Jyz|| for all s,7 € R with s >r > 0and x € H. We
also know the following lemma from [12].

Lemma 2.1. Let H be a Hilbert space and let B be a maximal monotone operator
on H. Forr >0 and x € H, define the resolvent J,x. Then the following holds:

s—t

(Jox — Jyx, Jex — ) > || Jox — Jyz||?
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for all s,t >0 and x € H.

From Lemma 2.1, we have that
(2.7) [Jsx = Jx|| < (|s —t] /s) [lx — Jsz|
for all s,t > 0 and = € H; see also [7, 13].

3. LEMMAS

For proving the main theorem, we need some lemmas. Let C' be a non-empty,
closed and convex subset of a Hilbert space H. A mapping g : C — H is a
contraction if there exists k € (0,1) such that|g(z) — g(y)|| < k|lz — y|| for all
xz,y € C. We call such a mapping g a k-contraction. A linear bounded self-adjoint
operator G : H — H is called strongly positive if there exists 7 > 0 such that
(Gx,z) > 7||z||? for all x € H. In general, a mapping T : C — H is called strongly
monotone if there exists ¥ > 0 such that (x—y, Te—Ty) > 7||lz—y|? for all z,y € C.
Such T is also called F-strongly monotone. The following results were essentially
obtained in [16]. However, for the sake of completeness, we give the proofs.

Lemma 3.1. Let H be a Hilbert space. Let g be a k-contraction of H into itself and
let G be a strongly positive bounded linear self-adjoint operator on H with coefficient
5 > 0. Take vy > 0 with vy <  and t > 0 with ¢t(|G|| + v k)* < 2(y — v k) and
2t(F —v k) < 1. Then
0<1—t{2(7 =7 k) = (|G|l +~ k)*} < 1
and I —t(G — ~vg) is a contraction of H into itself.
Proof. Taking v > 0 with v < %, we have that G —yg is ¥ — v k-strongly monotone.
Furthermore, taking t > 0 with t(||G|| ++v k)2 <2(F —v k) and 2t(F — v k) < 1, we
have that
0<1-#{2(7 =7 k) — 416l +7 b} < 1.
Then we have that for any xz,y € H
lz = (G = vg)z — (y — t(G —v9)y)|?
= |l = y|* = 2t{x — y, (G — vg)z — (G —19)y)
+ UG = vg)x — H(G —v9)y|?
< o —yl* = 2t(7 = k)llz — ylI?
+ (|G +2(Glly K+ (v k) |z = y]?

={1-2t(F =7 k) + (|G| + 7 k)*}|z — y||?

= (1-t{2(7 =7 k) = t(|G] +7 k)*}) |z — y]|*.
This implies that I — (G — ~yg) is a contraction. O
Lemma 3.2. Let H be a Hilbert space and let C' be a non-empty, closed and convex
subset of H. Let g be a k-contraction of H into itself and let G be a strongly positive
bounded linear self-adjoint operator on H with coefficient ¥ > 0. Take v > 0 with

v< 7T andt>0 witht(|G| +v k)? <2 —v k) and 2t(y— v k) < 1. Let w € C.
Then the following are equivalent:
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(1) w= Po(I = (G —yg))w;
(2) ((G=rg)w,w—q) <0, VgeC;
(3) w= Po(I — G+ vg)w.
Such w € C exists always and is unique.
Proof. We have that for w € C
w=Pc(I —tG—yg))w e (w—tG—-v9)w—w,w—q) >0, VYgeC
& (G—yg)w,w—q) <0, VgeC
< (w—Gw+ygw —w,w—q) >0, VYgel
s w=Po(I — G+ vg9)w.
Then (1), (2) and (3) are equivalent. We also have from Lemma 3.1 that I —t(G—~g)

is a contraction of H into itself. Then Po(I —t(G — 7g)) is a contraction of C' into
itself. Therefore, such w € C' exists always and is unique. O

In the proof of the main theorem, we also need properties of firmly nonexpansive
mappings in a Hilbert space. Let C be a non-empty, closed and convex subset
of a Hilbert space H. If a mapping 7" : C' — H is firmly nonexpansive, i.e.,
Tz — Ty|?> < (x —y,Tx — Ty) for all 2,y € C, then I — T : C — H is also firmly
nonexpansive. In fact, put S = I —7T. Since T is firmly nonexpansive, we have that

I(Z = S)a = (I = S)yll* < (x —y,(I = )z — (I = S)y)
for all x,y € C. Then we have that
le = ylI* = 2z — y, Sz — Sy) + Sz = Sy||* < [|lz — y|I* — (x — y, Sz — Sy)
and hence [|Sz — Sy||* < (z — y, Sz — Sy). This implies that
(3.1) (I =T)e — (I = T)y|* < (@ —y, (I =Tz — (I = T)y).

Furthermore, we have the following result for maximal monotone mappings in a
Hilbert space.

Lemma 3.3. Let H be a Hilbert space and let A be a mazimal monotone mapping
on H such that A=10 is non-empty. Let Jy = (I + AA)~! be the resolvent of A for
A> 0. Then
(x — o, Jyx —y) >0
for all x € H and y € A~10.
Proof. We know that .Jy is firmly nonexpansive and Jyy = y for all y € A=10. Then
we have that for all z € H and y € A~10
(x— Do, he—y) =(x-—y+y—Jww,hx—y)

=@ -y, hx—y) +{y— I,z —y)

> || = yl|* = | =yl

=0.
This completes the proof. Il

Using Lemma 3.3, we prove the following result.



798 S. M. ALSULAMI AND W. TAKAHASHI

Lemma 3.4. Let Hi and Hy be Hilbert spaces and let A and B be mazimal mono-
tone mappings on Hy and Hy such that A~'0 and B0 are non-empty, respectively.
Let T : Hy — Ho be a bounded linear operator such that A~'0NT~1(B~10) is non-
empty and let T™ be the adjoint operator of T'. Let Jy and Q, be the resolvents of
A for A > 0 and B for u > 0, respectively. Let \,pu,v,7 >0 and z € H. Then the
following are equivalent:
() = = Ja(I =1 T*(I = Q,)T)z;
(i) 0eT*(I —Q,)Tz+ Az;
(iii) z € A~tonT-1(B~10).
Proof. Since A~10NT~1(B~10) # 0, there exists zg € A710 such that Tz € B~10.
(i) = (iii). From z = Jy(I — rT*(I — Q,)T)z and the definition of Jy, we have

z2—rT*"(I — Qu)Tz € 2+ NAz
and hence —rT*(I — Q,)Tz € MAz. Since A is monotone and 0 € Az, we have

<—§T*(I - Qu)Tz,z— zo> > 0.

Then we have that (T*(I — Q,)T'z,z — zp) < 0 and hence
(3.2) (Tz — QT2 Tz—Tz) <0.

On the other hand, we have from Lemma 3.3 that (T'z — Q,T2,Q,Tz — Tz) > 0
and hence

(3.3) (Tz— QT2 Tz —Qu.Tz) <0.
From (3.2) and (3.4) we have that
(3.4) Tz — QuT2||> = (Tz — Q,T2,Tz—Q,Tz) <0

and hence Tz = (), Tz. This implies that Tz € B~10. We also have from z =
I =rT*(I — Qu)T)z that z = Jy\(z —rT*(I — Qu)Tz) = Jyz. This implies that
z € A710. Therefore z € A~ 0N T~1(B~10).

(i) = (iii). From 0 € T*(I — Q,)Tz + Az, we have —T*(I — Q,)Tz € Az. Since
A is monotone and 0 € Az, we have that

(=T*(I — Qu,)Tz,z— z9) > 0.
Thus we have that (T*(I — Q,)T'z,z — zp) < 0 and hence
(3.5) (Tz—Q,Tz,Tz—Tzy) <0.
As in the proof of (i) = (iii), we have
(3.6) (Tz—Q,T2,Q,Tz—Tz) > 0.
From (3.5) and (3.6) we have that
(3.7) Tz - Q,Tz|* = (T2 - Q,T2,Tz —Q,Tz) <0

and hence Tz = Q,Tz. This implies that Tz € B710. As in the proof of (i) = (iii),
we have z € A~t0NT~1(B~10).

(iii) = (i). From z € A710NT~1(B~10), we have that Tz € B~10 and z € A~!0.
This implies that Tz = Q,Tz and z = Jyz. Thus we have

NI —rT*(I - Qu)T)z = Jyz —rT*0 = Jyz = z.
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(iii) = (ii). From z € A~'0NT~1(B~10), we have that Tz = Q,Tz and 0 € Az.

Thus we have 0 € T*(I — Q,)Tz + Az. The proof is complete. d
We also have the following lemma.

Lemma 3.5. Let Hy and Ho be Hilbert spaces and let o« > 0. Let T : Hy — Hy
be a bounded linear operator such that T # 0. Let S : Hy — Hs be an a-inverse
strongly monotone mapping. Then a mapping T*ST : Hy — Hy is HTO‘W”—im)erse
strongly monotone.

Proof. Since S is a-inverse strongly monotone, we have that for all x,y € H;

|T*STx — T*STy||> = (T*STx — T*STy, T*STx — T*STy)

||TT*H ||TT*H
||TT*|| (TT"(STx ~ STy), STz ~ STy)
= ||TT*\| ITT*(STx — STy)|[|STx — STy||
= ||TT*|| | TT*||STz — STy|

= a||STz — STy||?

<(STx — STy, Tx — Ty)

=(T"STx —T*STy,z — y).
This implies that T*ST : Hy — Hy is

|TT*H -inverse strongly monotone. U

Remark. If B is a maximal monotone mapping on Hy and @, is the resolvent of
B for > 0, then @, is a firmly nonexpansive mapping. Using (3.1), we also have
that (I — Q) is firmly nonexpansive, i.e., l-inverse strongly monotone. Thus we
have that T*(I — Q)T is ||TT*H -inverse strongly monotone. This fact is used in the
proof of our main theorem.

4. STRONG CONVERGENCE THEOREM

Let C be a non-empty, closed and convex subset of a Hilbert space H. Let a > 0
and let U be an a-inverse strongly monotone mapping of C into H. If 0 < A < 2a,
then I — AU : C' — H is nonexpansive. In fact, we have that for all z,y € C

I = AU)a — (I = MN)yl* = ||z —y = AUz — Uy)|®
= |l = y|I* = 2\ (= — y, Uz — Uy) + (V)?||[Uz — Uy|?
< lz —ylI* = 22| Uz — Uy|* + (A)?|Uz — Uy|?
= llz = yl* + A — 20) Uz — Uyl|?
< llz —yl*.

Thus I — AU : C' — H is nonexpansive. Now we can prove a strong convergence
theorem of Browder’s type [3] which solves the split common null point problem
in Hilbert spaces. For proving the theorem, we need another lemma obtained by
Marino and Xu [8].
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Lemma 4.1 ([8]). Let H be a Hilbert space and let G be a strongly positive bounded
linear self-adjoint operator on H with coefficient ¥ > 0. If 0 < v < ||G||7Y, then
I =Gl <1—-77.

Theorem 4.2. Let Hi and Hs be Hilbert spaces. Let A and F' be maximal monotone
mappings on Hy and let B be a mazimal monotone mapping on Hy such that A~10,
F~10 and B~'0 are non-empty. Let T : Hy — Hy be a bounded linear operator such
that A=L0NT~Y(B~10) N F~10 is non-empty. Let T* be the adjoint operator of T.
Let Jy and T, be the resolvents of A for A > 0 and F for r > 0, respectively and let
Q. be the resolvent of B for p > 0. Let 0 < k < 1 and let g be a k-contraction of Hy
into itself. Let G be a strongly positive bounded linear self-adjoint operator on Hi
with coefficient ¥ > 0. Let 0 < v < }. Assume that {an} C (0,1), {\,} C (0,00)
and {ry,} C (0,00) satisfy

lim a, =0, 0 <liminf\, <limsup A, < ————,

liminf pu,, >0 and liminfr, > 0.
n—00 n—00
Then the following hold:
(i) For any n € N, define T,, : Hy — H; by
Thx = onyg(x) + (I — anG)Jy, (I = XTI — Qp,)T)Ty,x, Yx € Hy.
Then T, has a unique fized point x,, in Hy and {x,} is bounded;

(ii) the set A~'0NT~1(B~10)N F~10 is a non-empty, closed and convexr subset
of Hy and Py-1onp-1(g-10)nr-10( — G +7g) has a unique fized point z in
A~tonT-Y(B~10)n F~1o;

(iii) the sequence {x,} converges strongly to zo € A~'0 N T~Y(B~0) N F~10,
where {z0} = VI(A7'0NT~YB~10) N F~10,G — ~g).

Proof. Let us prove (i). For any n € N, define A, = T*(/ — Qu,)T. Then T, :
H, — H; is written by
Thwx = anyg(x) + (I — anG)Jy, (I — M\AR)Ty,x, Yz € Hj.

From lim,, 4, a;, = 0, we may have oy, < [|G||~!. Then we have from Lemma 4.1
that for any =,y € H;

[Thz = Toyll = llanyg(z) + (I — anG) I, (I = AnAn) T}, @
—{anvg(y) + (I — anG) I, (I — M An) Ty, y} |
< an7llg(z) — g
+ ||I - anGHHJ)\n(I - )‘nAn)Trnif - J)\n(l - )‘nAn)Trn?/H
< oy klle = yll+ (1= an (T = AAa)Trw — (I = AT
< any klle =yl + (1 = @)1 T2 — T, 9]
< any kllz =yl + (1 — @)z -yl
= (v k+1—any)|lz -y
= (1= an(T—7 Bz =yl
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Since 0 < 1 —a, (7 —7v k) <1, T, is a (1 — an(§ — v k))-contraction of H; into
itself and hence T}, has a unique fixed point z, in Hy. Next we show that {z,} is
bounded. Let u € A~'0NT~Y(B~10) N F~'0. We have from F~'0 = F(T}, ) and
Lemma 3.4 that 7, u = v and Jy, (I — A\, Ap)u = u. Using u = a,Gu + u — o, Gu,
we have that for all n € N
lzn — ul| = || Thzn — anGu — u + o, Gul|

= [lan(vg(zn) — Gu) + (I — anG)(Jr, (I = A\ An)Tr, 20 — u)|

< anlvg(zn) = Gull + |1 — anGl[[|Ix,(I = AnAn)Tr, 0 — ull

< any kllzn — ull + anlvg(uw) — Gull + (1 — an¥)[|zn — ul|.
Thus we have ap (7 — v k)||zn — ul| < anl|vg(u) — Gul| and hence

V=7 B)llzn — ull < [lvg(u) — Gul|.

Then we have ||z, —u|| < W' This implies that {x,} is bounded.

Let us prove (ii). Since A, F' and B are maximal monotone operators, we have
from [15] that A=10, F~0 and B0 are closed and convex. Furthermore, since T
is a bounded linear operator from H; to Hs, it is obvious that 77'B~10 is closed
and convex. Therefore, A~10NT~1B~10N F~10 is closed and convex. We also have
from Lemma 3.2 that Py-1gn7-15-10nr-10( — G + 7g) has a unique fixed point zy
in A~tonT-'B~ton F1o.

Let us prove (iii). Put v, = J\, (I — MyAn)Ty, xy and u,, = Tz, for all n € N.
Since {z,} is bounded, {u,} and {y,} are bounded. Furthermore, {g(z,)} and
{Gz,} are also bounded. Let 2 € A7'0 N T~Y(B~10) N F~'0. We have from
z € T Y(B710) that (I — Q,)T% = 0 and hence A,z = T*(I — Q,,)Tz = 0.
Furthermore, we have from Lemma 3.5 and 0 < limsup,,_,., A\p < ||T7§“*H that

llyn — ZH2 = |, (I = AnAn)un — Iy, (I — )\nAn)z”z

< T = MAn)ug — (I — A Ap)z|)?
= |lun — 2 — MAptig|?
(4.1) = |lun — 2||* — 200 {tn — 2, Apun) + (An)2 || Antin |2
= [lun = 21> = 22 (Tun — Tz, (I - Qu, ) Tun) + (M)l Apan |
<l = 21* = 22l (1 = Quu ) Tunl® + M) I TT (1 = Q) Tun |
= llun = 217 + Al TT*| = 2)I1(I = Qpu,,) T
<l — 2|2
and hence ||y, — z|| < ||lun, — z||. We also have that
[un = ynll < llun = 2nll + 20 = ynll
(4.2) = [[un — 2 + lonvg(zn) + (I — anG)yn — ynl|
= [lun = znl| + anllvg(zn) — Gynll-
Furthermore, using (2.5) and (2.3), we get that

2||wn — Z||2 = 2| Ty, n — TrnzH2
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< 2y — 2z, up — 2)

= lon — 2l + lJun — 2|* = [Jun — zn|?
and hence
(4.3) un = 2|° < [lzn — 2)1* = [lun — 20|,

Since z = a,Gz + z — a, Gz, we have from (2.1), (4.1) and (4.3) that

lzn = 21> = (I = @) (yn = 2) + an(vg(xn) — G2)|°
<(1- an’Y) yn — ZH + 200 (v9(20) — Gz, 2 — 2)
< (1= an®)?(lun = 2l + 2Ol ITT* || = 2N = Qp ) Tun|®)

+ 20, (vg(xn) — Gz, 20 — 2)

= (1= a¥)” [Jun — 2|° + (1 = @) Xa QI TT*|| = 2)I|(T = Qpuo) Tt ||
+ 20, (vg(2n) — Gz, — 2)

< (1= ) (lon = 2)* = |20 — unl®)
+ (1= anM)* ANl TT*|| = 2) (I = Q) Tunlf?
+ 2007 klln — 21 + 200]79(2) — Gl — 2|

= {1 =20,(7 =7 k) + 077} |z — 2> = (1 = )20 — un®
+ (L= ) MMl TT* || = 2)|( = Q) Tun||?
+ 20mlvg(2) — Gz[[[|zn — 2|

< lzn — ZH2 + a?ﬁQ |n — ZH2 -(1- avﬁ)szn - unH2
+ (1= ) ? ANl TT*|| = 2) (1 = Qpu,,) Tun|?
+ 2an|lvg(2) — Gz|||lzn — 2|

and hence

(1= a2 = Ml TT* DI = Qu) Tun|® + (1 = a¥)?|ln — un
< g an — 2|° + 2an)v9(2) = Gz|ll|lzn — 2.
Then we have that
(1= an)*An(2 = Ml TT* DI = Qpuy) T
< ap¥? ||z — 2l + 20m)79(2) — Gzl[l@n — 2]
and
(1= an®)?[lzn = unll® < a7 20 — 2II + 2anll79(2) — Gllllan — 2]I-

From lim, o0 oy = 0 and 0 < liminf, o0 Ay < limsup,, oo An < T we have

HTT*
(4.4) (I = Qu,)Tun|| =0 and ||z, — up|| —0.
We have from (4.2) and (4.4) that

(4.5) I Tup — Qu,Tup|| =0 and ||y, — un| —0.
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Take )y € (0, ﬁ) Putting A, = T*(I — Q)T and z, = (I — X\, Ayn)uy,, where

0 < p < liminf,_ s fin, we have from (2.6) and (2.7) that

[ Txo (I=A0Ap)un — ynl|
<[ Ia (I = AoAp)un — Ing(I = AnAn)un || + [T (I — AnAn)un — yull
< (I = AoAp)un — (I = A An)un || + |20 — JIn, 2l
= || XMoAuun — A Antn || + || Iro2n — JIn, 20|
= [[MoAuun — NoAntn + MoAntn — A Apun |l + || Ixg2n — JIa, 20|
(4.6) <Al TI = Qu)Tun — (I = Qpu,)Tun|
+ [[MoAntn — A Apun || + | Iag 20 — I, 2nll
< Ml TN = Qu)Tunll + (I = Qu,, ) Tunl)
+ [[MoAntn — A Aptn || + || Iag 20 — I, 2nll
< 200[ITNI( = Qua)Tunll) + [[MoAntun — AnAnun || + [[Jxg2n — I, 20l
‘)‘n - /\0’

< 20| T = Qun ) Tunll) + [An = Aoll| Antn|| + o

HJ)\oZn - ZnH

Furthermore, we have that
(4.7) [0 (I = Ao Ap)un — un|| < (| T3 (I = AoAp)tn = ynll + l[yn — unl-

We will use these inequalities (4.6) and (4.7) later. We know from (ii) and Lemma
3.2 that there exists a unique zgp € A0 NT~*(B~10) N F~10 such that

(G =~g)z0,q — %) >0, Yge ATlonT YB~t0)n F~lo.

In order to show that x, — zp, it suffices to show that if {x,,} is any subsequence
of {xy}, then we can find a subsequence of {z,,} converging strongly to zp; see [15,
p. 28]. Since {x,,} is bounded and {\,,} is bounded, without loss of generality
there exist a subsequence {:(:m]} of {zy,} and a subsequence {)‘nij} of {\,,} such

that Ty, — W and )‘nij — Ao for some \g € (0, HTi%H) From x, —u, — 0, we have

Un;, = w. Using Ay, — Ao, (4.4) and (4.6), we have that
[ T30 (I = Ao Ay )tin;, = yn, || = 0.
Furthermore, we have from Hynij — Un,, | — 0 and (4.7) that
[ T30 (I = AoAy)tin;, — un, || = 0.

Since Jy,(I — AoA,) is nonexpansive, we have that w = Jy,(I — AgA,)w and hence

w € A~0NT~1(B710) from Lemma 3.4. We show w € F~10. Since F is a maximal

monotone operator, we have from (2.4) that A, Tn;, e F1,, Tn, where A, is the
ij ij

7

Yosida approximation of F' for > 0. Furthermore we have that for any (u,v) € F

Ty, — Un,,
U— Uy, ,0— ——) > 0.
i
Tni,

Since liminf,, o 7 > 0, Un, — w and Tn;, = Un,, — 0, we have

(u—w,v) > 0.
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Since F' is a maximal monotone operator, we have from [15, Theorem 6.5.4] that
0 € Fw and hence w € F~10. Thus we have w € A~10NT~1(B~10)NF~10. Finally,
we show Tn;, = 20: For showing z,, i, T 20, We follow the idea of [3]; see also the

proof of [15, Theorem 6.3.1]. Since zg = @, Gz + 20 — a Gz, we have that
Tn — 20 = on(79(2n) — Gz0) + (I — anG)(yn — 20)-

Using ||yn — 20|| < ||un — 20|| < ||zn — 20||, we have that

lzn — 20)|% = (&n — 20, Tn — 20)

= an(79(xn) — G20, 2n — 20) + ((I = anG)(Yn — 20), Tn — 20)
< an(vg9(@n) — G20, 20 — 20) + [T — anG|[[[yn — 2o0llllzn — 20|
< an(y9(xn) — G20, 2 — 20) + (1 — @) @0 — 20|>.

Thus we have that o, 7|7, — 20[|? < an{vg(zn) — G20, Tn — 20) and hence

Fan — ZOH (vg(wn) — G20, 70 — 20)-
Then we have that

1
[ 2n — 20]* < %Wg(ﬂfn) — G20, T — 20)
1
= %WQ(%) —79(20) +v9(20) — G20, Tn — 20)
1 , 1
< %7 kllxn — 20l + %WQ(ZO) — G2y, 2n — 20)-

This implies that

e _
”xn _ ZOH2 < <fyg(20) _ 20, Tn ZO>.

In particular, we have that

I, — 20l <
From z,, — w we have that

(v9(20) — Gz, 2n,, — 20)

lim sup ||:13n — 2|* < lim —
j—roo J—roo Y-k
_ {(19(20) — Gz, w — 20)

=7k
Furthermore, since w € A~10NT~Y(B~10) N F~10 and
(G —=~9)20,q0 — 2) >0, Yge A~'onT YB~t0)n F~ 1o,
we have that limsup;_, mej — 20]|> £ 0. Thus Zn;, — 20. Therefore, we have
that {z,} converges strongly to a unique z9 € A~'0NT~*(B~10)N F~10 such that
(G —=~9)z0,q — 20) >0, VYge A 'onT Y(B~'o)n Flo.

We know that this 2o is a unique fixed point of Py-1pnp-1(g-10)nr-10( — G +79).
This completes the proof. O
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5. APPLICATIONS

In this section, using Theorem 4.2, we obtain two new strong convergence theo-
rems which are related to the split inverse problem and an equilibrium problem in
Hilbert spaces. Let H be a Hilbert space and let f be a proper lower semicontinuous
convex function of H into (—oo, 00]. Then the subdifferential 0f of f is defined as
follows:

f(x) ={z € H: f(z) +(z,y —x) < f(y), Vy € H}
for all x € H. From Rockafellar [10], we know that 0f is a maximal monotone

operator. Let C be a non-empty, closed and convex subset of H and let i¢ be the
indicator function of C, i.e.,
0 eC
ic(z) = { P

oo, z¢C.

Then i¢ is a proper, lower semicontinuous and convex function on H. Thus the sub-
differential di¢ of i is a maximal monotone operator. We can define the resolvent
Jy of di¢ for XA > 0, i.e.,

Iz = (I + \ic) 'z
for all z € H. We have that for any x € H and u € C

u=J\r <=z €u+ Nicu <= x € u+ ANcu
< x—u € AN¢gu

1
<:>X(x—u,v—u>§0, YveC

= (z—u,v—u) <0, VYvel
<— u = Pz,
where Ngou is the normal cone to C' at u, i.e.,
Neu={z€ H:(z,v—u) <0, YveC}

Theorem 5.1. Let Hy and Hy be Hilbert spaces. Let C' and D be non-empty, closed
and convex subsets of Hy and let Q) be a non-empty, closed and convex subset of Ho.
Let T : Hy — Hj be a bounded linear operator such that CNT~1QND is non-empty.
Let T™ be the adjoint operator of T'. Let Po and Pp be the metric projections of Hq
onto C' and D, respectively and let Py be the metric projection of Ha onto (). Let
0 <k <1 andlet g be ak-contraction of Hy into itself. Let G be a strongly positive
bounded linear self-adjoint operator on Hy with coefficient 7 > 0. Let 0 < v < %
Assume that {an,} C (0,1), {A\n} C (0,00) and {r,} C (0,00) satisfy

lim o, =0, and 0 <liminf\, <limsup A\, <

n—00 n—oo n—00 ||TT*|| '
Then the following hold:
(i) For any n € N, define T,, : Hy — Hy by
Thx = oanyg(x) + (I — anG)Po(I — \,T*(I — Po)T)Ppx, Vx € H;.

Then T, has a unique fized point x,, in Hy and {x,} is bounded;
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(ii) the set CNT~1Q N D is a non-empty, closed and convex subset of Hy and
Porr-1gnp(I — G +g) has a unique fived point zy in C N T-'QnD;
(iii) the sequence {x,} converges strongly to zo € CNT~*Q N D, where {29} =
VICNT QN D,G —~g).
Proof. Put A = 0ic, F' = 0ip and B = 0ig in Theorem 4.2. Then we have that for
An >0, 7, >0and p, >0, Jy, = Fc, T, = Pp and Q,, = Pg. Furthermore, we
have (9ic)~0 = C, (9ip)~0 = D and (dig) 10 = Q. Thus we obtain the desired
result by Theorem 4.2. O

Let H be a Hilbert space and let C' be a non-empty, closed and convex subset of
H. Let f: C x C — R be a bifunction. Then an equilibrium problem (with respect
to C) is to find & € C such that
(5.1) f(#,y) >0, VyeC.

The set of such solutions Z is denoted by EP(f), i.e.,

EP(f)={¢ € C: f(i,y) > 0, Vy € C}.
For solving the equilibrium problem, let us assume that the bifunction f : CxC — R
satisfies the following conditions:

(A1) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e., f(x,y)+ f(y,z) <0 for all z,y € C;
(A3) for all z,y,z € C,

limsup f(tz + (1 — t)z,y) < f(z,y);
£10

(A4) for all z € C, f(x,-) is convex and lower semicontinuous.
We know the following lemma which appears in Blum and Oettli [2].
Lemma 5.2 ([2]). Let C be a non-empty, closed and convez subset of H and let f
be a bifunction of C x C into R satisfying (A1) — (A4). Letr >0 and x € H. Then

there exists z € C' such that

1
f(z,y)—{—;(y—z,z—:@ZO, vyec

The following lemma was also given in Combettes and Hirstoaga [6].

Lemma 5.3 ([6]). Assume that f : C x C — R satisfies (A1) — (A4). Forr >0
and z € H, define a mapping T, : H — C' as follows:

1
TTx:{zGC:f(z,y)—l—r(y—Z,Z—l‘)>0, VyGC}

for all x € H. Then the following hold:
(1) T, is single-valued;
(2) T, is a firmly nonexpansive mapping, i.e., for all x,y € H,

| T — Toyll? < (Trx — Ty, x — y);

(3) F(T.) = EP(f);
(4) EP(f) is closed and convex.
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We call such T, the resolvent of f for r > 0. Using Lemmas 5.2 and 5.3, Takahashi,
Takahashi and Toyoda [12] obtained the following lemma. See [1] for a more general
result.

Lemma 5.4 ([12]). Let H be a Hilbert space and let C' be a non-empty, closed and
convex subset of H. Let f : C' x C — R satisfy (A1) — (A4). Let Ay be a set-valued
mapping of H into itself defined by

{{zeH:f(x,y) >(y—uwmz), Vye C}, Vrxel,
Arx =
0, VxécC.

Then EP(f) = A;lO and Ay is a mazximal monotone operator with dom(Ay) C C.
Furthermore, for any x € H and r > 0, the resolvent T, of f coincides with the
resolvent of Ay, i.e.,

Tox=(I+rAp) o

Using Theorem 4.2, we can also prove a strong convergence theorem for finding
solutions of equilibrium problems in Hilbert spaces.

Theorem 5.5. Let Hy and Hy be Hilbert spaces. Let C' and D be non-empty, closed
and convex subsets of Hy and let Q be a non-empty, closed and convex subset of
Hy. Let f1 and fs be bifunctions of C x C into R and D x D into R satisfying
(A1) — (A4). Let f3 be a bifunction of Q x Q into R satisfying (Al) — (A4) such
that EP(f1), EP(f2) and EP(fs) are non-empty. Let T : Hy — Hs be a bounded
linear operator such that EP(f1) N T-YEP(f3) N EP(fa) is non-empty. Let T* be
the adjoint operator of T. Let Jx and T, be the resolvents of f1 for X > 0 and fo
for r > 0, respectively and let @, be the resolvent of f3 for p > 0. Let 0 < k < 1
and let g be a k-contraction of Hy into itself. Let G be a strongly positive bounded
linear self-adjoint operator on Hy with coefficient ¥ > 0. Let 0 < v < % Assume
that {a,} € (0,1), {A\} C (0,00) and {r,} C (0,00) satisfy

lim o, =0, 0<liminf ), <limsup A, < ——,
n=oco n—oo 00 | TT~|

liminf yu,, >0 and liminfr, > 0.
n—oo

n—oo
Then the following hold:
(i) For any n € N, define T,, : Hy — H; by

Thx = anyg(x) + (I — anG)Jy\, (I = NI (I — Qp,)T)Ty,x, Va € Hy.

Then T, has a unique fized point x,, in Hy and {x,} is bounded;

(ii) the set EP(f1) N T *EP(f3) N EP(f2) is a non-empty, closed and convex
subset of Hy and Pgp(f\nr-1gp(f)nEP(f) (I — G +79) has a unique fived
point zg in EP(f1) N T YEP(f3) N EP(f2);

(iii) the sequence {x,} converges strongly to zo € EP(f1)NT *EP(f3)NEP(fs),
where {20} = VI(EP(f1) NT *EP(f3) N EP(f2),G — vg).

Proof. For the bifunctions f1 : C'x C = R, fo: Dx D — Rand f3:Q x Q — R,
we can define Ay, Ay, and Ay, in Lemma 5.4. Putting A = Ay, F' = Ay, and
B = Ay, in Theorem 4.2, we obtain from Lemma 5.4 that Jy, = (I + \,A4p )71,
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Ty, = (I +ryAp) "t and Qp, = (I 4+ pnAyg,)~! for all A, > 0, r, > 0 and p, > 0,
respectively. Thus we obtain the desired result by Theorem 4.2. O

REFERENCES

[1] K. Aoyama,Y. Kimura and W. Takahashi, Mazimal monotone operators and mazimal mono-
tone functions for equilibrium problems, J. Convex Anal. 15 (2008), 395-409.

[2] E.Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,
Math. Student 63 (1994), 123-145.

[3] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces,
Math. Z. 100 (1967), 201-225.

[4] C.Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear
Convex Anal. 13 (2012), 759-775.

[5] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product
space, Numer. Algorithms 8 (1994), 221-239.

[6] P. L. Combettes and S. A. Hirstoaga, Fquilibrium programming in Hilbert spaces, J. Nonlinear
Convex Anal. 6 (2005), 117-136.

[7] K. Eshita and W. Takahashi, Approzimating zero points of accretive operators in general
Banach spaces, JP J. Fixed Point Theory Appl. 2 (2007), 105-116.

[8] G. Marino and H.-K. Xu, A general iterative method for nonerpansive mappings in Hilbert
spaces, J. Math. Anal. Appl. 318 (2006), 43-52.

[9] A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems,
J. Nonlinear Convex Anal. 9 (2008), 37-43.

[10] R. T. Rockafellar, On the mazimal monotonicity of subdifferential mappings, Pacific J. Math.
33 (1970), 209-216.

[11] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium
problem and a nonezpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), 1025—
1033.

[12] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for mazimal mono-
tone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010),
27-41.

[13] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

[14] W. Takahashi, Conver Analysis and Approzimation of Fized Points (Japanese), Yokohama
Publishers, Yokohama, 2000.

[15] W. Takahashi, Introduction to Nonlinear and Conver Analysis, Yokohama Publishers, Yoko-
hama, 2009.

[16] W. Takahashi, Strong convergence theorems for maximal and inverse-strongly monotone map-
pings in Hilbert spaces and applications, J. Optim. Theory Appl. 157 (2013), 781-802

Manuscript received August 26, 2013
revised October 1, 2013

SAUD M. ALSULAMI
Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi
Arabia

FE-mail address: alsulami@kau.edu.sa

WATARU TAKAHASHI
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi
Arabia; and Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp



