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788 Z. D. MITROVIĆ AND I. D. ARANDJELOVIĆ

For a nonempty subset A of vector space X, let co(A) denote the convex hull of
A.

For a nonempty subset B of metric space Y , let diam(B) denote the diameter of
B.

Definition 2.1. Let C be a nonempty subset of a topological vector space X. A
map G : C → 2X is called KKM map if for every finite set {x1, . . . , xn} ⊂ C, we
have

co({x1, . . . , xn}) ⊆
n∪

k=1

G(xk).

Theorem 2.2. Let X be a topological vector space, K be a nonempty subset of X
and G : K → 2X a KKM map with closed values. Then

∩
x∈A

G(x) ̸= ∅, for any

A ∈ F(K).

The next statement is Ky Fan’s KKM principle.

Theorem 2.3 ([5]). Let X be a topological vector space, K be a nonempty subset
of X and G : K → 2X a KKM map with closed values. If G(x) is compact for at
least one x ∈ K then

∩
x∈K

G(x) ̸= ∅.

Now we give L. Pasicki’s [11] definition of measure of non-compactness.

Definition 2.4 ([11]). Let X be a metric space. Measure of non-compactness on
X is an arbitrary function ϕ : P(X) → [0,∞] which satisfies following conditions:

1) ϕ(A) = 0 if and only if A is totally bounded set;
2) from A ⊆ B follows ϕ(A) ≤ ϕ(B);
5) for each A ⊆ X and x ∈ X ϕ(A ∪ {x}) = ϕ(A).

Theorem 2.5 ([11]). Let X be a complete metric space and ϕ measure of non-
compactness on X. If {Bn}n∈N is a sequence of its nonempty closed subsets such
that:

1) Bn+1 ⊆ Bn for any n ∈ N ;
2) limn→∞ ϕ(Bn) = 0;

then K =
∩

n∈N Bn is a nonempty, compact set.

The most important examples of measures of non-compactness on a metric space
(X, d) are:

1) Kuratowski’s measure
α(A) = inf{r > 0 : A ⊆

∪n
i=1 Si, Si ⊆ X, diam(Si) < r, 1 ≤ i ≤ n};

2) Hausdorff’s measure
χ(A) = inf{ε > 0 : A has a finite ε− net in X};

3) measure of Istratescu
I(A) = inf{ε > 0 : A contains no infinite ε− discrete set in A}.

Relations between this functions are given by following inequality, which are
obtained by Danes [3]

χ(A) ≤ I(A) ≤ α(A) ≤ 2χ(A).
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Definition 2.6. Let E a metric linear space, ϕ measure of non-compactness on E,
and X ⊆ E. A multi-function G : X → 2E is a condensing multi-function if for
every ε > 0 there exist n ∈ N and x1, . . . , xn ∈ X such that

ϕ(G(x1)
∩

· · ·
∩

G(xn)) < ε.

A condensing multi-function G : X → 2E is a condensing KKM multi-function if it
is KKM multi-function.

Definition 2.7. Let X be a normed space and C a nonempty convex subset of X.

(i) A map g : C → X is almost affine if for all x, y ∈ C and u ∈ C

||g(λx+ (1− λ)y)− u|| ≤ λ||g(x)− u||+ (1− λ)||g(y)− u||,
for each λ with 0 < λ < 1.

(ii) A map g : C → X is almost quasi-convex if for all x, y ∈ C and u ∈ C

||g(λx+ (1− λ)y)− u|| ≤ max{||g(x)− u||, ||g(y)− u||}
for each λ with 0 < λ < 1.

3. Results

The next theorem is a generalization of a Theorem 2.3 and of recent results of
Horvath [6], [7], which used Kuratowski’s measure of non-compactness. The proof
is essentially the same as in [7]. For the convenience of the reader we shall give it.

Theorem 3.1. Let E be a complete metric linear space, ϕ measure of non-
compactness on E, X ∈ 2E and let G : X → 2E be a condensing KKM multi-
function. If G(x) is a closed set for each x ∈ X, then

∩
x∈X G(x) is non-empty and

compact set.

Proof. For each n ∈ {1, 2, . . . } there exists a finite set F (n) ∈ 2X such that

ϕ(
∩

x∈F (n)

G(x)) <
1

n
. We define a sequence of sets Bn by:

B1 =
∩

x∈F (1)

G(x); . . . .;Bn+1 = Bn

∩
(

∩
x∈F (n+1)

G(x)); . . .

By Theorem 2.2 Bn is a nonempty set, for all n ∈ {1, 2, . . . }. Also, α(Bn) <
1

n
.

Other conditions of Theorem 2.5: Bn closed and Bn+1 ⊆ Bn trivially holds. So we
have that K =

∩
n∈N Bn is a nonempty, compact set. For every finite set H ∈ 2X ,

by Theorem 2.2 we have that CH,n = (
∩

x∈H G(x))
∩

Bn is a nonempty closed
set for any n ∈ N . The sequence {CH,n}n∈N , also satisfies other the conditions of
Theorem 2.5 and so

∩
n∈N CH,n is a nonempty closed subset of K. This implies

that (
∩

x∈H G(x))
∩

K is a nonempty set for any finite H ∈ 2X . Since the family of
closed sets {G(x)

∩
K}x∈X} has the finite intersection property, then∩

x∈X
(G(x)

∩
K) ̸= ∅
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because K is compact and so
∩

x∈X G(x) ̸= ∅. This set is compact because it is a
closed subset of compact set K. �

Now we present the following best approximation theorem in normed spaces,
which is our main result in this paper.

Theorem 3.2. Let X be a normed linear space, C a nonempty convex complete
subset of X, ϕ measure of non-compactness on X, f : C → X and g : C → C
continuous maps. If there exists an almost quasi-convex onto map h : C → C such
that

(3.1) ∥g(x)− f(x)∥ ≤ ∥h(x)− f(x)∥ for each x ∈ C

and for each t > 0 there exists y ∈ C such that

(3.2) ϕ({x ∈ C : ∥g(x)− f(x)∥ ≤ ∥h(y)− f(x)∥}) ≤ t,

then there exists a point x0 ∈ C such that

∥g(x0)− f(x0)∥ = inf
x∈C

∥x− f(x0)∥.

Proof. Let for every y ∈ C, G : C → 2C be defined by

G(y) = {x ∈ C : ∥g(x)− f(x)∥ ≤ ∥h(y)− f(x)∥}.
From (3.2) it follows that G is a condensing multi-function. We have that G(y)
is nonempty for all y ∈ C, because y ∈ G(y) for all y ∈ C. Since f and g are
continuous maps, then G(y) is closed for all y ∈ C. Now, we show that for each
finite set {x1, . . . , xn} ⊂ C,

(3.3) co{x1, . . . , xn} ⊆
n∪

k=1

G(xk).

Suppose that

co{x1, . . . , xn} *
n∪

k=1

G(xk) for some {x1, . . . , xn} ⊂ C.

Then there exists y0 ∈ co{x1, . . . , xn} such that y0 /∈ G(xk) for each k ∈ {1, . . . , n}.
So, we have

∥g(y0)− f(y0)∥ > ∥h(xk)− f(y0)∥ for each k ∈ {1, . . . , n}.
Therefore,

∥g(y0)− f(y0)∥ > max
k

∥h(xk)− f(y0)∥ ≥ ∥h(y0)− f(y0)∥.

This is a contradiction with condition (3.1). Hence, condition (3.3) is true for each
finite {x1, . . . , xn} ⊂ C and map G is a condensing KKM map. Now, from Theorem
3.1 it follows that there exists x0 ∈ C such that

x0 ∈
∩
y∈C

G(y).

Therefore,
∥g(x0)− f(x0)∥ = inf

x∈C
∥x− f(x0)∥.

�
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When C is a compact set from Theorem 3.2 we obtained the next result.

Theorem 3.3. Let X be a normed linear space, C a nonempty convex compact
subset of X, f : C → X and g : C → C continuous maps. If there exists an almost
quasi-convex onto map h : C → C such that

(3.4) ∥g(x)− f(x)∥ ≤ ∥h(x)− f(x)∥ for each x ∈ C,

then there exists a point x0 ∈ C such that

∥g(x0)− f(x0)∥ = inf
x∈C

∥x− f(x0)∥.

Example 3.4. Let C = [0, 1] and define maps f, g, h : C → C by

f(x) = 0, h(x) = x,

g(x) =


x, x ∈ [0, 14);

−x+ 1
2 , x ∈ [14 ,

1
2);

2x− 1, x ∈ [12 , 1].

Then map g is not almost quasi-convex and results of J. B. Prolla [12] and A. Car-
bone [1, 2] are not applicable. Note that the maps f, g and h satisfy all hypotheses
of Theorem 3.3.
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