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Semi-infinite optimization problems became an active research topic in applied
mathematics in recent years. Necessary conditions and stability in semi-infinite
optimization have been studied extensively in recent years; see, e.g., [2, 3, 5, 6, 8,
10, 12, 14, 15, 25–28].

Necessary conditions for nondifferentiable convex semi-infinite optimization prob-
lems (CSI for brevity) are given in [15] under the Farkas-Minkowski qualification.
More recently, a necessary and sufficient optimality condition for CSI is established
in [26] under the Farkas-Minkowski type constraint qualification (FMCQ). For more
details and discussions of optimality conditions and constraint qualifications with
their relations, we refer the reader to, e.g., [3, 10, 14, 15, 26, 28] and references
therein. As mentioned above, most of semi-infinite optimization problems under
consideration are smooth or convex.

In [1], Aubin proposed and examined the pseudo-Lipschitz behavior of solution
maps to perturbed convex minimization problems. Rockafellar’s thorough investi-
gation is addressed to the Lipschitz stability of general constraint systems including
solution maps to parametric generalized equations in [22] and marginal functions
to parametric optimization problems in [21]. Sufficient conditions for the Lipschitz
stability of the solution map of (1.1) are given in [8, 25] when the objective function
and constraint functions are twice differentiable. Another characterizations for the
same property of the solution map was presented in [2] under consideration where
the objective function and constraint functions are smooth. In the case when the
objective function and constraint functions are locally Lipschitz, the Lipschitz prop-
erty of the marginal function was obtained in [27]. In the framework of parametric
convex optimization problems, sufficient conditions for the Lipschitz property of
the solution map are presented in [12] under linear perturbation of the constraint
functions only, and sufficient conditions for the metric regularity of the inverse of
the solution map (and so is equivalent to the pseudo-Lipschitz property of the solu-
tion map) under continuous perturbations of the right-hand side of the constraints
and linear perturbations of the objective function are obtained in [5]. In addition
to these, as described in the papers mentioned above, sufficient conditions for the
pseudo-Lipschitz property of solution maps and marginal functions are given under
classical derivative or Clarke’s derivative-like constructions in nonsmooth analysis
in [7].

The coderivative of set-valued mappings, which was introduced by Mordukhovich
[16], has been well recognized as a convenient tool to study many important issues
in variational analysis and optimization. We refer the reader to the recent books
[4, 13, 17, 18, 23, 24] with their commentaries and bibliographies. Imitating the def-
inition of Mordukhovich’s coderivative where the coderivative type is defined via the
Clarke normal cone, Zheng and Yang [28] first establish Fritz John type first-order
optimality condition for semi-infinite optimization problems where the objective
function and constraint functions are locally Lipschitz at the reference point. Fur-
thermore, the optimality condition still holds with Mordukhovich coderivative when
the problem under consideration has a finite number of constraint functions and the
objective space is a finite dimensional space. This motivates us to use Mordukhovich
coderivative for investigating semi-infinite optimization problems.
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In this paper, the necessary optimality condition and the pseudo-Lipschitz prop-
erty of the solution map of (1.1) are studied under consideration where the param-
eter space P is a Banach space, the objective space X is a finite dimensional space,
the index set T is a nonempty compact metric space, and the objective function
and constraint functions are locally Lipschitz at the reference point. Namely, we
present a KKT type first-order optimality condition for (1.1) without parameter
perturbation, and then use this optimality condition to establish sufficient condi-
tions for the pseudo-Lipschitz property of the solution map of (1.1). The results
obtained are also applied to some special classes of (1.1) involving smooth as well
as convex optimization problems.

The paper is organized as follows. In Section 2 we recall some basic definitions
and preliminaries from set-valued analysis, variational analysis and generalized dif-
ferentiation. Section 3 is devoted to presenting a KKT type necessary condition for
(1.1) without parameter perturbation under a constraint qualification that covers
the existing constraint qualifications of MFCQ and FMCQ types. Section 4 is de-
voted to establishing new sufficient conditions for the pseudo-Lipschitz property of
(1.4). Examples are also discussed to illustrate sufficient conditions for the pseudo-
Lipschitz property of (1.4). In Section 5 we consider some special class of (1.1)
involving smooth as well as convex optimization problems.

2. Basic definitions and preliminaries

Let us recall some notions which are related to our problem. Throughout the
paper we use standard notation of convex analysis, set-valued analysis, variational
analysis and generalized differentiation. We refer the reader to the books [3, 11, 17,
20, 23] for more details and discussions.

Let X be a Banach space and X∗ be its topological dual. We denote by ∥ · ∥ the
norm of X and ⟨·, ·⟩ the dual pair between X∗ and X. Given a set-valued mapping
F : X ⇒ X∗, we denote by

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∃ sequences xk → x̄ and x∗k
w∗
−−→ x∗

with x∗k ∈ F (xk) for all k ∈ IN
}

the sequential Painlevé-Kuratowski upper/outer limit with respect to the norm
topology of X and the weak∗ topology of X∗, where IN := {1, 2, . . .}.

Let Ω ⊂ X. The closure of Ω will be denoted by cl(Ω) and int(Ω) stands for the
interior of Ω. We will use N (x) to denote the set of all neighborhoods of x ∈ X.
We will denote by co(Ω) the convex hull of Ω, and cone(Ω) the convex hull of the
set {λΩ |λ ≥ 0}. Write ∅ + Ω = ∅, co ∅ = ∅ and cone ∅ = {0} and, where 0 is the
zero vector of X.

Given Ω ⊂ X and ε ≥ 0, define the collection of ε-normals to Ω at x̄ ∈ Ω by

(2.1) N̂ε(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup

x
Ω−→x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≤ ε
}
,



768 N. Q. HUY, M. M. WONG, AND J.-C. YAO

where x
Ω−→ x̄ means that x → x̄ with x ∈ Ω. When ε = 0, the set N̂(x̄; Ω) :=

N̂0(x̄; Ω) in (2.1) is a cone called the prenormal cone or the Fréchet normal cone to
Ω at x̄.

The limiting or Mordukhovich normal cone N(x̄; Ω) is obtained from N̂ε(x; Ω) by
taking the sequential Painlevé-Kuratowski upper limit in the weak∗ topology of X∗

as

(2.2) N(x̄; Ω) := Lim sup

x
Ω−→x̄
ε↓0

N̂ε(x; Ω),

where one can put ε = 0 when Ω is closed around x̄ and the space X is Asplund,
i.e., a Banach space whose separable subspaces have separable duals.

In the special case when X is a finite dimensional space and Ω is closed around
x̄, the Clarke normal cone NC(x̄; Ω) [7] to Ω at x̄ always coincides with the convex
closure of (2.2), i.e.,

NC(x̄; Ω) = clcoN(x̄; Ω)

and N(·; Ω) has the robust property at x̄ which given in the following proposition
[19, Proposition 3.4].

Proposition 2.1. Let X be a finite dimensional space and Ω be closed subset of
X. Let x̄ ∈ Ω. Then, for any sequences xk → x̄ and x∗k → x∗ with x∗k ∈ N(xk; Ω),
k = 1, 2, . . ., one has x∗ ∈ N(x̄; Ω).

Let F : X ⇒ Y be a multifunction between Banach spaces. The effective domain
and the graph of F are given by the formulas

domF := {x ∈ X | F (x) ̸= ∅}, gphF := {(x, y) ∈ X × Y | y ∈ F (x)}.
The Mordukhovich normal coderivative D∗F (x̄, ȳ) : Y ∗ ⇒ X∗ of F at (x̄, ȳ) ∈ gphF
is defined by

(2.3) D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )

}
, ∀y∗ ∈ Y ∗.

The Fréchet coderivative at (x̄, ȳ) ∈ gphF is defined by

(2.4) D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂((x̄, ȳ); gphF ))} ∀y∗ ∈ Y ∗.

A single-valued mapping f : X → Y is said to be strictly differentiable at x̄ if
there is a linear continuous operator ∇f(x̄) : X → Y such that

lim
x,u→x̄

f(x)− f(u)− ⟨∇f(x̄), x− u⟩
∥x− u∥

= 0.

We known that for such mappings one has

D∗f(x̄)(y∗) = D̂∗f(x̄)(y∗) = {(∇f(x̄))∗y∗} ∀y∗ ∈ Y ∗,

i.e., the Mordukhovich normal coderivative (resp., Fréchet coderivative) is a gen-
eralization of the adjoint operator to the classical Jacobian/strict derivative. For
more details, we refer the reader to [17].

For an extended real-valued function φ : X → R̄ := [−∞,∞], we define

domφ = {x ∈ X | |φ(x)| <∞}, epiφ = {(x, µ) ∈ X × R | µ ≥ φ(x)},
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and say that φ is lower semicontinuous at x̄ ∈ X if lim inf
x→x̄

φ(x) ≥ φ(x̄). Here lim inf
x→x̄

denotes the lower limit of scalar functions in the classical sense.

The limiting or Mordukhovich subdifferential ∂φ(x̄) of φ at x̄ ∈ domφ is defined
by

∂φ(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N((x̄, φ(x̄)); epiφ)}.
If x̄ /∈ domφ then one puts ∂φ(x̄) = ∅. If x̄ is a local minimum of φ, then

(0,−1) ∈ N̂((x̄, φ(x̄)); epiφ) ⊂ N((x̄, φ(x̄)); epiφ).

The presubdifferential or Fréchet subdifferential of φ at x̄ ∈ domφ is denoted by

∂̂φ(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N̂((x̄, φ(x̄)); epiφ)}.

It is well known that if X is a finite dimensional space and φ is locally Lipschitz
at x̄ then

∂Cφ(x̄) = clco∂φ(x̄),

where ∂Cφ(x̄) stands for the Clarke generalized gradient [7].

3. Necessary optimality condition

In this section we present a necessary optimality condition for (1.1) at the refer-
ence point without parameter perturbation.

Let T be a nonempty compact metric space. We consider the Banach space
Y = C(T ) of continuous functions y : T → R, equipped with the sup-norm

||y|| = max
t∈T

|y(t)|,

and the cone K ⊂ Y has the form

(3.1) K = {y ∈ C(T ) | y(t) ≤ 0 for all t ∈ T}.
By the Riesz representation theorem, the dual space Y ∗ of Y = C(T ) is norm
isomorphic to, and so can be identified with, the space of finite signed (regular)
Borel measures on (T,B), where B is the Borel sigma-algebra of T , with the norm
given by the total variation of the corresponding measure. Namely, if ν is a finite
signed (regular) Borel measure on (T,B) and y ∈ Y then

⟨ν, y⟩ =
∫
T
y(t)dν,(3.2)

||ν|| := |ν|(T ) := ν+(T ) + ν−(T ),

where for each A ∈ B,
ν+(A) := sup {ν(B) |B ⊂ A, B ∈ B}
ν−(A) := − inf {ν(B) |B ⊂ A, B ∈ B},

denote the positive and the negative variation of ν, respectively. We recall that
|ν|(A) := ν+(A) + ν−(A) is said to be the total variation measure of the measure
ν. The support of ν, denoted by supp ν, is the smallest closed subset of T such that
its complement has total variation measure zero. A Borel measure ν is said to be
nonnegative, written ν < 0, if ν(A) ≥ 0 for any A ∈ B.
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For a function y ∈ K, we denote by

T (y) := {t ∈ T | y(t) = 0}
the set of contact points of y. It follows from [3, Example 2.63] that

N(y;K) = {ν ∈ C(T )∗ | ν ≽ 0, supp ν ⊂ T (y)}.
Consider the special case when T is a finite set {t1, t2, . . . , tm}. Then C(T ) = Rm.

For such case, consider the discrete measure

ν =
∑

t∈T (y)

λtδ(t)

where λt ≥ 0 and δ(t) denotes the (Dirac) measure of mass one at the point t ∈ T .
It follows that

N(y;K) ⊂ Rm
+ .

Let ψ : X → R̄ be locally Lipschitz at x̄. Then, for every µ ≥ 0 one has

D∗ψ(x̄)(µ) = µ∂ψ(x̄).

We recall an important result from [28] on the necessary optimality condition.
Consider the following optimization problem

(3.3) min φ(x) subject to ψ(x) ≤ 0 and x ∈ Ω,

where X is a finite dimensional space, φ, ψ are real functions from X to R.
We see that Z := X ×R×C(T ) is an Asplund space if X is a finite dimensional

space and |T | < ∞. Here |T | denotes the cardinality of T . The following theorem
is immediate from [28, Theorem 3.2] and [28, p. 180, Remark].

Theorem 3.1. For (3.3), let x̄ be a minimizer. If φ and ψ are locally Lipschitz at
x̄, then there exist λ ≥ 0, µ ≥ 0 and x∗ ∈ N(x̄; Ω) such that

λ+ µ+ ∥x∗∥ = 1 and 0 ∈ λ∂φ(x̄) + µ∂ψ(x̄) + x∗.

We recall that a multifunction F : X ⇒ Y is said to be closed at the point x0 ∈ X
if, for all sequences {xi} in X and {yi} in Y satisfying xi → x0, yi → y0, yi ∈ F (xi),
one has y0 ∈ F (x0). F is said to be lower semicontinuous (lsc for brevity) at
x0 ∈ domF if, for any open set V ⊂ Y satisfying V ∩ F (x0) ̸= ∅ there exists
U ∈ N (x0) such that V ∩ F (x) ̸= ∅ for all x ∈ U . F is upper semicontinuous
(usc for brevity) at x0 ∈ X if, for every open set V containing F (x0) there exists
U ∈ N (x0) such that F (x) ⊂ V for all x ∈ U. It is well known that if X is a compact
Hausdorff space, F is usc on X and F (x) is a compact subset of Y for all x ∈ X
then

∪
x∈X F (x) is compact.

We consider the following semi-infinite optimization problem

(3.4) min h(x) subject to x ∈ Ω and ht(x) ≤ 0 for all t ∈ T,

where X is a finite dimensional space, T is a nonempty compact metric space, Ω is
a closed subset of X, h and ht (t ∈ T ) are real functions from X to R. Let x̄ be an
element belonging to the constraint set of (3.4). In what follows we use the set of
active constraints defined by

T (x̄) := {t ∈ T |ht(x̄) = 0}.
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Denote by ∂[T ]ht(x) the set

clco{ξ∗ ∈ X | ξ∗i ∈ co∂hti(xi), xi → x, ti → t, ti ∈ T, ξ∗ is a cluster point of ξ∗i }.
Now we establish a necessary optimality condition for (3.4) which is useful in the
sequel.

Theorem 3.2. For (3.4), let x̄ be a minimizer. Suppose that h, ht (t ∈ T ) are
locally Lipschitz at x̄, there exists U ∈ N (x̄) such that, for each x ∈ U , the mapping
t 7→ ht(x) is continuous on T , the mapping (t, x) 7→ ∂ht(x) is usc on T × U , and

(CQ) 0 ̸∈ clco ∪t∈T (x̄) ∂ht(x̄) +N(x̄; Ω)

holds. Then
−∂h(x̄) ∩

[
cone

( ∪
t∈T (x̄)

∂ht(x̄)
)
+N(x̄; Ω)

]
̸= ∅.

Proof. Let x̄ be a minimizer of (3.4). The assertion of the theorem is trivial if T (x̄)
is empty. Suppose that T (x̄) ̸= ∅. Let ψ(x) := supt∈T ht(x). Since for every t ∈ T ,
ht is locally Lipschitz at x̄, so is ψ. It is well known that (3.4) is equivalent to the
following optimization problem

min h(x) subject to ψ(x) ≤ 0, x ∈ Ω.

It follows from Theorem 3.1 that there exist λ ≥ 0, µ ≥ 0 and x∗ ∈ N(x̄,Ω)
satisfying

(3.5) λ+ µ+ ∥x∗∥ = 1 and 0 ∈ λ∂h(x̄) + µ∂ψ(x̄) + x∗.

We claim that λ ̸= 0 whenever

(3.6) 0 ̸∈ ∂ψ(x̄) +N(x̄; Ω).

Indeed, if λ = 0 then, by (3.5),

µ+ ∥x∗∥ = 1 and 0 ∈ µ∂ψ(x̄) + x∗.

Hence, µ ̸= 0, and so 0 ∈ ∂ψ(x̄) + x∗

µ , contrary to (3.6). Therefore λ ̸= 0.

It suffices to show that (3.6) is valid. By T (x̄) ̸= ∅, we have ψ(x̄) = 0. From [7,
Theorem 2.8.2] it follows that

(3.7) ∂ψ(x̄) ⊂
{∫

T
∂[T ]ht(x̄)dµ |µ ∈ P [T (x̄)]

}
,

where P [T (x̄)] denotes the set of all probability Radon measures supported on T (x̄).
Since t 7→ ht(x̄) is continuous, it follows that T (x̄) is compact. We claim that

(3.8)
{∫

T
∂[T ]ht(x̄)dµ |µ ∈ P [T (x̄)]

}
⊂ clco

[ ∪
t∈T (x̄)

co ∂ht(x̄)
]
.

Indeed, if our claim is not true, then there exists an element ξ∗ of X belonging to
the right-hand side of (3.7) such that

ξ∗ ̸∈ clco
[ ∪
t∈T (x̄)

co ∂ht(x̄)
]
.

Clearly, the mapping (t, x) 7→ co ∂ht(x) is also usc on T × U . Since T (x̄) and
co ∂ht(x̄) (t ∈ T ) are compact, it follows that

∪
t∈T (x̄) co ∂ht(x̄) is compact. Hence,
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co
[∪

t∈T (x̄) co ∂ht(x̄)
]
is a convex compact subset ofX sinceX is a finite dimensional

space. Applying the separation theorem, we can assert that there exist v ∈ X and
α ∈ R such that

⟨ξ∗, v⟩ < α < ⟨η∗t , v⟩,

for all η∗t ∈ co ∂ht(x̄) and t ∈ T (x̄). Combining the compactness of T (x̄) and
co ∂ht(x̄) (t ∈ T (x̄)) with the upper semicontinuity of the mapping (t, x) 7→ co∂ht(x)
we deduce that the set{

⟨η∗t , v⟩ | η∗t ∈ co∂ht(x̄), t ∈ T (x̄)
}

is compact.

Hence,

(3.9) ⟨ξ∗, v⟩ ̸∈ clco
{
⟨η∗t , v⟩ | η∗t ∈ co∂ht(x̄), t ∈ T (x̄)

}
.

On the one hand, it follows from [7, Remark 2.8.3] that there exist a mapping
t 7→ ξ∗t ∈ ∂[T ]ht(x̄) from T to X and an element µ ∈ P [T (x̄)] such that

(3.10) ⟨ξ∗, v⟩ =
∫
T
⟨ξ∗t , v⟩dµ =

∫
suppµ

⟨ξ∗t , v⟩dµ.

By [9, Theorem II.2 and Corollary II.8], we have∫
suppµ

⟨ξ∗t , v⟩dµ ∈µ(suppµ)clco{⟨ξ∗t , v⟩ | t ∈ suppµ}

=µ(T (x̄))clco{⟨ξ∗t , v⟩ | t ∈ T (x̄)}
=clco{⟨ξ∗t , v⟩ | t ∈ T (x̄)}.(3.11)

On the another hand, since the mapping (t, x) 7→ co∂ht(x) is upper semicontinuous
it follows that

ξ∗t ∈ co∂ht(x̄) for all t ∈ T (x̄).

Combining this with (3.10) and (3.11) we obtain

⟨ξ∗, v⟩ ∈ clco{⟨η∗t , v⟩ | η∗t ∈ co∂ht(x̄) t ∈ T (x̄)},

which is contrary to (3.9). Hence (3.8) follows.
Obviously,

clco
[ ∪
t∈T (x̄)

co ∂ht(x̄)
]
⊂ clco

[ ∪
t∈T (x̄)

∂ht(x̄)
]
.

Therefore ∂ψ(x̄) ⊂ clco
[∪

t∈T (x̄) ∂ht(x̄)
]
by (3.7) and (3.8). This inclusion and

(CQ) imply (3.6). The proof is complete. �

We remark that CQ covers the existing constraint qualifications of MFCQ and
FMCQ types. The KKT type first-order optimality condition in Theorem 3.2 is a
key to establish the pseudo-Lipschitz property of the solution map for the parametric
semi-infinite optimization problem in next section.
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4. Pseudo-Lipschitz property of the solution map

In the sequel, we assume that P is a Banach space, X is an n-dimensional Eu-
clidean space, Ω is a closed subset of X and T is a nonempty compact metric space.
Let f and gt (t ∈ T ) be real functions from P ×X → R. Let (p̄, x̄) ∈ P ×X. Denote

by ∂xf(p̄, x̄) the limiting subdifferential of f with respect to x at (p̄, x̄), i.e.,

∂xf(p̄, x̄) = {x∗ ∈ X | (x∗,−1) ∈ N((x̄, f(p̄, x̄)); epip̄f)},
where epip̄f := {(x, r) ∈ X × R | r ≥ f(p̄, x̄)}. Put

T (p̄, x̄) := {t ∈ T | gt(p̄, x̄) = 0}.
We now recall the concept of the prox-regularity which was introduced by Poliquin

and Rockafellar (see [23]).

The function φ is prox-regular at x̄ for ū ∈ ∂φ(x̄), if φ is locally lower semicon-
tinuous at x̄ and there exist ε > 0 and r ≥ 0 such that

φ(x′) ≥ φ(x) + ⟨u, x′ − x⟩ − r

2
∥x′ − x∥2

whenever ∥x′ − x̄∥ < ε and ∥x − x̄∥ < ε with x′ ̸= x and |φ(x) − φ(x̄)| < ε, while
∥u− ū∥ < ε with u ∈ ∂φ(x). We say that φ is prox-regular at x̄ if it is prox-regular
at x̄ for any ū ∈ ∂φ(x̄).

A set C is called prox-regular at x̄ ∈ C for v̄ ∈ N(C; x̄) if C is locally closed
at x̄ and there exist ε > 0 and ρ ≥ 0 such that ⟨v, x′ − x⟩ ≤ ρ

2∥x
′ − x∥2 for all

x′ ∈ C ∩ B(x̄, ε) when v ∈ N(x;C), ∥v − v̄∥ < ε and ∥x− x̄∥ < ε. When this holds
for all v̄ ∈ N(x̄;C), C is said to be prox-regular at x̄.

Note that the class of prox-regular functions includes all C1,1 functions, all lower
semicontinuous, proper, convex functions, all lower-C2 functions, all primal-lower-
nice functions, and all “strongly amenable functions” (convex functions composed
with C2 mappings). This list covers most of the objective functions in finite-
dimensional optimization, including constrained optimization where constraints are
incorporated into the objective via infinite penalties. For more details of the prox-
regularity, we refer the reader to [23].

The distance from x ∈ X to a subset M of X is defined by

d(x,M) := inf {dist(x, y) | y ∈M},
where dist(x, y) := ∥x − y∥ denotes the distance between two points x and y, and
d(x,∅) := +∞.

Definition 4.1. A multifunction F : X ⇒ Y is said to be pseudo-Lipschitz or Aubin
continuous (also called Lipschitz-like) at (x0, y0) ∈ gphF if there exist U ∈ N (x0)
and V ∈ N (y0) and a constant ℓ > 0 such that

d(y2, F (x1)) ≤ ℓd(x1, x2),

for all x1, x2 ∈ U, and all y2 ∈ V ∩ F (x2).

One says that F is inner semicontinuous at (x0, y0) ∈ gphF if for any sequence
xk → x0 as k → +∞, there exists a sequence yk → y0 with yk ∈ F (xk), k = 1, 2, . . .
Clearly, for each y ∈ F (x0), F is inner semicontinuous at (x0, y) whenever it is lower
semi-continuous at x0.
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Consider the following assumptions:

(A1) f is locally Lipschitz at (p̄, x̄), i.e., there exist U ∈ N (x̄), V ∈ N (p̄) and ℓ > 0
such that

|f(p1, x1)− f(p2, x2)| ≤ ℓ(∥p1 − p2∥+ ∥x1 − x2∥), ∀p1, p2 ∈ V, ∀ x1, x2 ∈ U ;

(A2) for every t ∈ T , gt is locally Lipschitz with respect to (p, x) uniformly in t at
(p̄, x̄), i.e., there exist U ∈ N (x̄), V ∈ N (p̄) and ~ > 0 such that

|gt(p1, x1)−gt(p2, x2)| ≤ ~(∥p1−p2∥+∥x1−x2∥), ∀p1, p2 ∈ V, ∀ x1, x2 ∈ U, ∀t ∈ T ;

(A3) the mapping (p, x, t) 7→ gt(p, x) is continuous at (p̄, x̄, t̄) with any t̄ ∈ T ; there
exist U ∈ N (x̄) and V ∈ N (p̄) such that the mapping (t, p, x) 7→ ∂xgt(p, x) is usc
on T × V × U ;
(A4) there exist U ∈ N (x̄) and V ∈ N (p̄) such that the mapping (p, x) 7→ ∂xf(p, x)
is usc on V × U ;
(A5) Ω is prox-regular at x̄, there exists V ∈ N (p̄) such that for any p ∈ V , f(p, ·)
is prox-regular at x̄, and for any t ∈ T , gt(p, ·) is prox-regular at x̄ uniformly in t.

Now we state a sufficient condition for the pseudo-Lipschitz property of S at the
reference point.

Theorem 4.2. Let p̄ ∈ P and x̄ ∈ S(p̄). Suppose that the conditions (A1)–(A5)
and the following conditions hold:
(i) 0 ̸∈ cl co ∪t∈T (p̄,x̄) ∂xgt(p̄, x̄) +N(x̄; Ω);
(ii) There is no T0 ⊂ T (p̄, x̄) with |T0| < n satisfying

−∂xf(p̄, x̄) ∩
[
cone

( ∪
i∈T0

∂xgt(p̄, x̄)
)
+N(x̄; Ω)

]
̸= ∅.(4.1)

Then S is pseudo-Lipschitz at (p̄, x̄) whenever it is inner-semicontinuous at this
point.

Note that in [6] the combination of both conditions (i) and (ii) of Theorem 4.2 is
referred to as extended Nürnberger condition under consideration where the objective
function and the constraint functions are convex; for more details and discussions
we refer the reader to [5, 6].

Before proving the main result, we need to establish the following lemma.

Lemma 4.3. Under the assumptions of Theorem 4.2, one can assert that for any
{(pk, xk)}∞k=1 ⊂ gphS which converges to (p̄, x̄) ∈ gphS, there exist uk ∈ ∂xf(p

k, xk),

tki ∈ T (pk, xk), uki ∈ ∂xgtki
(pk, xk) and λki > 0 for i ∈ {1, 2, . . . , n}, such that

−uk −
n∑

i=1

λki u
k
i ∈ N(xk; Ω) for k large enough

and {uk1, . . . , ukn} forms a basis of X.
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Proof. It is easily seen that assumption (i) in Theorem 4.2 holds with (p, x) belong-
ing to some neighborhood of (p̄, x̄). Let {(pk, xk)}∞k=1 be a sequence of gphS such

that {(pk, xk)} converges to (p̄, x̄) ∈ gphS. Since (pk, xk) → (p̄, x̄) as k → ∞, it
follows that assumption (i) of Theorem 3.2 is satisfied at (pk, xk) for k large enough.
Applying Theorem 3.2, we can assert from the Carathéodory’s theorem that, for k
large enough, there exist q ∈ N, uk ∈ ∂xf(p

k, xk), tki ∈ T (pk, xk), uki ∈ ∂xgtki
(pk, xk)

and λki > 0 for i ∈ {1, 2, . . . , q}, such that q ≤ n,

(4.2) −uk −
q∑

i=1

λki u
k
i ∈ N(xk; Ω)

and {uki | i = 1, . . . , q} is a linearly independent system.
It remains to show that q = n. Suppose that q < n. By the compactness of T , we

can assume, by taking a subsequence if necessary, that {tki } converges to some ti ∈ T
for each i ∈ {1, . . . , q}. Since tki ∈ T (pk, xk) and the mapping (p, x, t) 7→ gt(p, x) is
continuous at (p̄, x̄, t̄) with any t̄ ∈ T , it follows that ti ∈ T (p̄, x̄).

We claim that for each i ∈ {1, . . . , q}, there exists λi ≥ 0 such that

(4.3) lim
k→∞

λki = λi.

Indeed, if our claim is false, then by taking a subsequence if necessary, we can
assume that there exists i0 ∈ {1, . . . , q} such that

lim
k→∞

λki0 = +∞.

Put µk :=
∑q

i=1 λ
k
i , k ≥ 1. Then lim

k→∞
µk = +∞ and there is no loss of gener-

ality in assuming that the sequence {λk
i

µk }k≥k0 converges to some µi ≥ 0 for each

i ∈ {1, . . . , q}. Dividing by µk in (4.2) and letting k → ∞, we deduce from Proposi-
tion 2.1 and the compactness of ∂xf(p̄, x̄) and ∂xgti(p̄, x̄) with (A3) and (A4) that
limk→∞ uk = u ∈ ∂xf(p̄, x̄), limk→∞ uki = ui ∈ ∂xgti(p̄, x̄) and

−
q∑

i=1

µiui ∈ N(x̄; Ω) with

q∑
i=1

µi = 1.

This means 0 ∈ co({∂xgt(p̄, x̄) | t ∈ T (p̄, x̄)}) +N(x̄; Ω) which contradicts assump-
tion (i) and (4.3) follows.

Letting k → ∞ in (4.2), we get u ∈ ∂xf(p̄, x̄), ui ∈ ∂xgti(p̄, x̄) (i = 1, 2, . . . , q),

−u−
q∑

i=1

µiui ∈ N(x̄; Ω) with {t1, . . . , tq} ⊂ T (p̄, x̄) and q < n,(4.4)

which contradicts assumption (ii). Thus q = n and the proof is complete. �

Proof of Theorem 4.2. Let p̄ ∈ P and x̄ ∈ S(p̄). Suppose, contrary to our claim,
that there exist a sequence {xk}∞k=1 ⊂ X converging to x̄, sequences {pk}∞k=1 and

{p̄k}∞k=1 belonging to P which both converge to p̄ such that xk ∈ S(pk) and

d(xk,S(p̄k)) > kd(pk, p̄k) for all k ≥ 1.(4.5)
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Since S is inner-semicontinuous at (p̄, x̄), it follows that there exist x̄k ∈ S(p̄k)
satisfying x̄k → x̄ as k → +∞. It follows from (4.5) that, for each k ≥ 1 and
xk ̸= x̄k,

d(pk, p̄k)

∥xk − x̄k∥
<

1

k
.(4.6)

From Lemma 4.3 it follows that, for k large enough, there exist uk ∈ ∂xf(p
k, xk),

ūk ∈ ∂xf(p̄
k, x̄k), tki ∈ T (pk, xk), t̄ki ∈ T (p̄k, x̄k), uki ∈ ∂xgtki

(pk, xk), ūki ∈
∂xgt̄ki

(p̄k, x̄k), λki > 0, λ̄ki > 0 for all i ∈ {1, 2, . . . , n} such that both {uk1, . . . , ukn}
and {ūk1, . . . , ūkn} form bases of X and

−uk −
n∑

i=1

λki u
k
i ∈ N(xk; Ω), −ūk −

n∑
i=1

λ̄ki ū
k
i ∈ N(x̄k; Ω).(4.7)

We can assume, by taking a subsequence if necessary, that for each i ∈ {1, . . . , n}
the sequences {tki }k≥k0 and {t̄ki }k≥k0 converge to some ti and t̄i, respectively. Since
the mapping (p, x, t) 7→ gt(p, x) is continuous at (p̄, x̄, t̄) with any t̄ ∈ T , it follows
that

ti, t̄i ∈ T (p̄, x̄), i ∈ {1, 2, . . . , n}.
As in the proof of Lemma 4.3, we can assume that {λki }k≥k0 and {λ̄ki }k≥k0 converge
to some λi and λ̄i, respectively. Since ∂xf(·) and ∂xg(·)(·) (i = 1, 2, . . . , n) are
upper semicontinuous at (p̄, x̄), by (A3) and (A4), it follows from the compactness
of ∂xf(p̄, x̄) and ∂xgi(p̄, x̄), by taking a subsequence if necessary, that limk→∞ uk =
u ∈ ∂xf(p̄, x̄), limk→∞ ūk = ū ∈ ∂xf(p̄, x̄), limk→∞ ūki = ūi ∈ ∂xgt̄i(p̄, x̄), i ∈
{1, 2, . . . , n}. Letting k → ∞ in (4.7), by Proposition 2.1, we have

−u−
n∑

i=1

λiui ∈ N(x̄; Ω), −ū−
n∑

i=1

λ̄iūi ∈ N(x̄; Ω).(4.8)

By the Carathéodory’s theorem and assumption (ii), we have λi > 0, λ̄i > 0 for all
i ∈ {1, . . . , n}, and both {u1, . . . , un} and {ū1, . . . , ūn} form bases of X.

On one hand, since tki ∈ T (pk, xk) and x̄k ∈ S(p̄k) ⊂ G(p̄k) for every i ∈
{1, . . . , n}, it follows that
(4.9) gtki

(pk, xk) = 0, gtki
(p̄k, x̄k) ≤ 0.

By (A5), we deduce that there exist r ≥ 0 such that

⟨uki , x̄k − xk⟩ ≤ gtki
(pk, x̄k)− gtki

(pk, xk) +
r

2
∥x̄k − xk∥2

for k large enough. It follows from (4.9) and (A2) that

⟨uki , x̄k − xk⟩ ≤ gtki
(pk, x̄k)− gtki

(p̄k, x̄k) +
r

2
∥x̄k − xk∥2

≤ ~∥p̄k − pk∥+ r

2
∥x̄k − xk∥2.

Therefore,

⟨uki ,
x̄k − xk

∥xk − x̄k∥
⟩ ≤ ~

∥p̄k − pk∥
∥xk − x̄k∥

+
r

2
∥x̄k − xk∥.(4.10)
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We can assume, by taking a subsequence if necessary, that { x̄k−xk

||xk−x̄k||n }k≥k0 converges

to some z ∈ X with ||z|| = 1. Letting k → ∞ in (4.10), we can assert that

⟨ui, z⟩ ≤ 0 ∀i ∈ {1, . . . , n}.(4.11)

From the first inclusion in (4.8) and the prox-regularity of Ω, it follows that there
exists ρ ≥ 0 such that, for k large enough,

⟨−u−
n∑

i=1

λiui, x̄
k − xk⟩ ≤ ρ

2
∥x̄k − xk∥2.

This implies

(4.12) ⟨−u, z⟩ ≤
n∑

i=1

λi⟨ui, z⟩ ≤ 0.

On the other hand, since t̄ki ∈ Tp̄k(x̄
k) and xk ∈ S(pk) ⊂ G(pk) for every i ∈

{1, . . . , n}, it follows that

gt̄ki
(p̄k, x̄k) = 0, gt̄ki

(pk, xk) ≤ 0.

From this and the prox-regularity of gt̄i it follows that there exist r̄i ≥ 0, i ∈
{1, 2, . . . , n} such that, for k large enough,

⟨ūki ,
xk − x̄k

∥xk − x̄k∥
⟩ ≤ ~

∥p̄k − pk∥
∥xk − x̄k∥

+
r̄i
2
∥xk − x̄k∥2.

By the same argument we can show that for every i ∈ {1, . . . , n},

⟨ūi,−z⟩ ≤ 0.

This and the second inclusion in (4.8) with the prox-regularity of Ω imply

⟨−ū,−z⟩ ≤
n∑

i=1

λi⟨ūi,−z⟩ ≤ 0.

Hence,

(4.13) ⟨ūi, z⟩ ≥ 0, ⟨−ū, z⟩ ≥ 0.

It follows from the prox-regularity of f that there exists r ≥ 0 such that, for k large
enough,

⟨uk, x̄k − xk⟩ ≤ f(pk, x̄k)− f(pk, xk) +
r

2
∥x̄k − xk∥2

and

⟨ūk, xk − x̄k⟩ ≤ f(p̄k, xk)− f(p̄k, x̄k) +
r

2
∥xk − x̄k∥2.

From this we obtain

⟨uk, x̄k − xk⟩+ ⟨ūk, xk − x̄k⟩ ≤f(pk, x̄k)− f(p̄k, x̄k) + f(p̄k, xk)− f(pk, xk)

+ r∥x̄k − xk∥2

≤2ℓ∥p̄k − pk∥+ r∥x̄k − xk∥2.(4.14)
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Dividing both sides of (4.14) by ∥xk − x̄k∥ and letting k → ∞, we have from (4.6)
that

⟨u, z⟩+ ⟨ū,−z⟩ ≤ 0,

and so,

⟨−ū, z⟩ ≤ ⟨−u, z⟩.(4.15)

Combining (4.11), (4.12), (4.13) and (4.15) we conclude that, for every i ∈ {1, . . . , n}

⟨ūi, z⟩ = ⟨ui, z⟩ = 0.

Since both {uk1, . . . , ukn} and {ūk1, . . . , ūkn} are bases of X, it follows that z = 0 which
is impossible. The proof is complete. �

Let us examine the following examples.

Example 4.4. In problem (1.1), let T = [0, 1] ∪ {2}, X = P := R and Ω := R.
Let f, gt (t ∈ T ) be functions defined by f(p, x) = −x2 + 3x− 2 + p,

gt(p, x) =

{
x− 1 + pt if t ∈ [0, 1]

−x− 1 + p if t = 2, ∀x ∈ R.

Let p̄ = 0 and let x̄ = −1 ∈ S(p̄). We have N(x̄; Ω) = {0}. It is a simple matter
to check that (A1)–(A5) are valid and S is inner semi-continuous at (p̄, x̄). Clearly,
T (p̄, x̄) = {2} and ∂xg2(p̄, x̄) = −1 and so, assumption (i) of Theorem 4.2 is fulfilled.
Let us examine assumption (ii). We have ∂xf(p̄, x̄) = 5, T (p̄, x̄) = {2}. If there
exists T0 ⊂ T (p̄, x̄) such that |T0| < 1, then T0 = ∅. Hence

−∂xf(p̄, x̄) ∩
[
cone

( ∪
t∈T0

∂xgt(p̄, x̄)
)
+N(x̄; Ω)

]
= ∅,

and assumption (ii) is fulfilled. Applying Theorem 4.2 we conclude that S is pseudo-
Lipschitz at (p̄, x̄).

The following examples show that the assertion of Theorem 4.2 may be false if
one of both assumptions (i) and (ii) is violated.

Example 4.5. In problem (1.1), let T = [0, 1] ∪ {2, 3, 4} ⊂ R, X := R2, P := R
and Ω := R2. Let f, gt t ∈ T be functions defined by

f(p, x) = (x1)
3 + p, ∀x = (x1, x2) ∈ IR2,

gt(p, x) =


−x1 + px2 − t if t ∈ [0, 1]

−x1 if t = 2

−x2 if t = 3

x1 + x2 − 1 if t = 4, ∀x = (x1, x2) ∈ IR2.

Let p̄ = 0 and let x̄ := (0, 0) ∈ S(p̄). We have N(x̄,Ω) = {0}. It is a simple
matter to check that (A1)–(A5) hold. We now check the assumptions (i) and (ii)
of Theorem 4.2. Clearly, T (p̄, x̄) = {0, 2, 3}, ∂xg0(p̄, x̄) = ∂xg2(p̄, x̄) = (−1, 0) and
∂xg3(p̄, x̄) = (0,−1). Hence, assumption (i) is fulfilled. However, assumption (ii) is
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violated. Indeed, letting T0 = {2} ⊂ T (p̄, x̄), we have |T0| = 1 < 2. It is easily seen
that ∂xf(p̄, x̄) = (0, 0) and cone

(∪
t∈T0

∂xgt(p̄, x̄)
)
= −R+ × {0}. Hence,

−∂xf(p̄, x̄) ∩
[
cone

( ∪
t∈T0

∂xgt(p̄, x̄)
)
+N(x̄; Ω)

]
= {0}.

Next we examine the pseudo-Lipschitz property of S at (p̄, x̄). Let {pk = 1
2k}

∞
k=1 ⊂

P . Then

gt(p
k, x) =


−x1 + 1

2kx2 − t if t ∈ [0, 1]

−x1 if t = 2

−x2 if t = 3

x1 + x2 − 1 if t = 4.

We see that S is inner semi-continuous at (p̄, x̄). However, S is not pseudo-Lipschitz
at (p̄, x̄). Indeed, taking p̄k = 0, x̄k = (1, 0) ∈ S(p̄k) and xk ∈ S(pk) = {(0, 0)}, we
have

1 = d(x̄k,S(pk)) > 1

2
≥ kd(pk, p̄k) ∀k ≥ 1.

Thus, S is not pseudo-Lipschitz at (p̄, x̄).

Example 4.6. In problem (1.1), let T = [0, 1] ∪ {2, 3} and X = P := R and
Ω := R. Let f, g be functions defined by

f(p, x) = −x4 + x2,

gt(p, x) =


−p2x− t if t ∈ [0, 1]

−x− 1 if t = 2

x− 1− p2 if t = 3.

Let p̄ = 0 and let x̄ = 1 ∈ S(p̄). We have N(x̄; Ω) = {0}. It is a simple matter to
check that (A1)–(A5) are satisfied and

S(p) =

{
{−1, 0, 1} if p = 0

1 + p2 if p ̸= 0.

So, S is inner semi-continuous at (p̄, x̄). Now we check assumptions (i) and (ii)
of Theorem 4.2. Clearly, T (p̄, x̄) = {0, 3} and ∂xg0(p̄, x̄) = 0 and ∂xg3(p̄, x̄) = 1.
Hence,

0 ∈ cl co ∪t∈T (p̄,x̄) ∂xgt(p̄, x̄) +N(x̄; Ω)

and assumption (i) is violated. Let us examine assumption (ii). It is easily seen
that ∂xf(p̄, x̄) = −2. If there exists T0 ⊂ T (p̄, x̄) such that |T0| < 1 then T0 = ∅.
Hence,

−∂xf(p̄, x̄) ∩
[
cone

( ∪
t∈T0

∂xgt(p̄, x̄)
)
+N(x̄; Ω)

]
= ∅,

and so, assumption (ii) is fulfilled.
New we check the pseudo-Lipschitz property of S at (p̄, x̄). Let {pk = 1

k}. We

have S(pk) = {1 + 1
k2
} for every k ≥ 1. Thus S is not pseudo-Lipschitz at (p̄, x̄).
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5. Special cases

In this section we apply the general results obtained in Section 4 to special classes
of PSI involving smooth as well as convex optimization problems. In this section,
let Ω := X.

We first establish sufficient conditions for pseudo-Lipschitz property of the so-
lution mapping of parametric smooth semi-infinite optimization problems at the
reference point.

Proposition 5.1. Let p̄ ∈ P and x̄ ∈ S(p̄). Suppose that (A1)–(A4) hold, that
f(p, ·) and gt(p, ·), p ∈ P , t ∈ T , are continuously differentiable at x̄ and their
derivatives are Lipschitz at this point, and that the following conditions hold:
(i) there exists ξ ∈ X such that ⟨∇xgt(p̄, x̄), ξ⟩ < 0 for all t ∈ T (p̄, x̄);
(ii) There is no T0 ⊂ T (p̄, x̄) with |T0| < n satisfying

−∇xf(p̄, x̄) ∈ cone
( ∪
t∈T0

∇xgt(p̄, x̄)
)
.

Then S is pseudo-Lipschitz at (p̄, x̄) whenever it is inner-semicontinuous at this
point.

Proof. Since f(p, ·) and gt(p, ·) (p ∈ P , t ∈ T ) are continuously differentiable at
x̄ and their derivatives are Lipschitz at this point, it follows from [23, Proposition
13.34] that the functions f(p, ·) and gt(p, ·) (t ∈ T ) are prox-regular at x̄. Hence,
(A5) is fulfilled. By the separation theorem, we can assert that assumption (i) in
Theorem 4.2 is equivalent to

0 ̸∈ clco{∇xgt(p̄, x̄) | t ∈ T (p̄, x̄)}.

Thus, the assertion of the corollary is immediate from Theorem 4.2. �

Before establishing sufficient conditions for pseudo-Lipschitz property of the solu-
tion mapping of parametric convex semi-infinite optimization problems, we recall a
important result from [20] on the convergence of subdifferentials of convex functions.

Lemma 5.2 ([20, Theorem 24.5]). Let φ and φk (k ∈ {1, 2, . . .}) be convex func-
tions such that φk converges pointwise to φ on an open convex set C ⊂ X as k → ∞.
Let x ∈ C and {xk}∞k=1 ⊂ C converge to x. Then, for each ε > 0, there exists an
index k0 ∈ N, such that

∂φk(xk) ⊂ ∂φ(x) + εB for all k ≥ k0.

The following result gives sufficient conditions for pseudo-Lipschitz property of
the solution mapping of parametric convex semi-infinite optimization problems at
the reference point.

Proposition 5.3. Let p̄ ∈ P and x̄ ∈ S(p̄). Suppose that (A1)–(A3) hold, that
f(p, ·) and gt(p, ·), p ∈ P , t ∈ T , are convex functions on X and that the following
conditions hold:
(i) the Slater condition for G(p̄), i.e., there is x0 ∈ X satisfying gt(p̄, x

0) < 0 for
all t ∈ T ;
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(ii) There is no T0 ⊂ T (p̄, x̄) with |T0| < n satisfying

−∂xf(p̄, x̄) ∩
[
cone

( ∪
t∈T0

∂xgt(p̄, x̄)
)]

̸= ∅.(5.1)

Then S is pseudo-Lipschitz at (p̄, x̄).

Proof. Clearly, (A4) is valid by Lemma 5.2. Since f(p, ·) and gt(p, ·), t ∈ T , are
convex functions on X, it follows that they are prox-regular at x̄, and so (A5)
is valid. By [11, Theorem VI.4.4.2], we can assert that G(p̄) satisfies the Slater
condition if and only if 0 ̸∈ cl co ∪t∈T (p̄,x̄) ∂xgt(p̄, x̄). We claim that G(·) is lower
semicontinuous at p̄. Indeed, let W be an open set such that W ∩G(p̄) ̸= ∅. Since
G(p̄) satisfies the Slater condition and T is compact, there exist an element x̂ ∈ G(p̄)
and ρ > 0 such that

gt(p̄, x̂) ≤ −ρ ∀t ∈ T.(5.2)

Take any x̄ ∈W ∩G(p̄) and choose a number r ∈ (0, 1] such that

xr := x̄+ r(x̂− x̄) ∈W.

By the convexity of G(p̄), xr ∈W ∩G(p̄). It follows from (5.2) that

gt(p̄, xr) ≤(1− r)gt(p̄, x̄) + rgt(p̄, x̂) ≤ −rρ ∀t ∈ T.(5.3)

By the continuity of gt and the compactness of T , there exists a neighborhood U of
p̄ such that gt(p, xr) ≤ 0 for all p ∈ U and t ∈ T . Thus, xr ∈ G(p) andW ∩G(p) ̸= ∅
for all p ∈ U . This means that G is lower semicontinuous at p̄ as claimed.

It suffices to show that S is inner-semicontinuous at (p̄, x̄). We claim that S(p̄) =
{x̄}. Indeed, since x̄ ∈ S(p̄), it follows from Theorem 3.2, the Carathéodory’s
theorem and assumption (ii) that there exist u ∈ ∂xf(p̄, x̄), ti ∈ T (p̄, x̄), ui ∈
∂xgti(p̄, x̄) and λi > 0 for i ∈ {1, . . . , n} such that {u1, . . . , un} is a basis of X and

−u =
n∑

i=1

λiui.(5.4)

Suppose that there exists

y ∈ S(p̄).
Then, for each i ∈ {1, . . . , n}, gti(p̄, x̄) = 0 and

⟨ui, y − x̄⟩ ≤ gti(p̄, y)− gti(p̄, x̄) = gti(p̄, y).

Hence,

⟨ui, y − x̄⟩ ≤ 0.(5.5)

Besides, by (5.4),

⟨−u−
n∑

i=1

λiui, y − x̄⟩ = 0.

Therefore, by (5.5),

0 = f(p̄, y)− f(p̄, x̄) ≥ ⟨u, y − x̄⟩
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= −
n∑

i=1

λi⟨ui, y − x̄⟩ ≥ 0.

This implies that
∑n

i=1 λi⟨ui, y − x̄⟩ = 0 and so, ⟨ui, y − x̄⟩ = 0 for every i ∈
{1, . . . , n}. Since {u1, . . . , un} is a basis of X, it follows that there must exist real
numbers βi, i ∈ {1, . . . , n} such that y − x̄ =

∑n
i=1 βiui. Hence,

||y − x̄||2 = ⟨y − x̄, y − x̄⟩ =
n∑

i=1

βi⟨ui, y − x̄⟩ = 0.

Thus y = x̄ and our claim follows. We next claim that there is U(p̄) ∈ N (p̄) such
that S(p) ̸= ∅ for all p ∈ U(p̄). Indeed, if our claim is false, then there exists
{pk}∞k=1 ∈ P converging to p̄ such that

(5.6) S(pk) = ∅ for all k ≥ 1.

It follows from the lower semicontinuity of G at p̄ that there exist λ > 0, yk ∈
G(pk) ∩ clB(x̄, λ) for all k ≥ 1 such that yk → x̄ as k → ∞. For each k = 1, 2, . . .,
since S(pk) = ∅, it follows that there exists zk ∈ G(pk) \ B(x̄, λ) such that

f(pk, zk)− f(pk, yk) < 0(5.7)

(otherwise, for all z ∈ G(pk) \ B(x0, λ), f(pk, z) ≥ f(pk, yk). Then f(pk, ·) has a
minimizer on G(pk) ∩ clB(x0, λ)).

Consider the following two possible cases:

(a) limk→∞ zk = z0. Letting k → ∞ in (5.7), we obtain from the closedness of G at
p̄ that z0 ∈ G(p̄) and

f(p̄, z0)− f(p̄, x̄) ≤ 0.

Hence, z0 = x̄ which contradicts to the fact that z0 ∈ G(p̄) \ B(x̄, λ).

(b) limk→∞ ∥zk∥ = +∞. Without loss of generality we may assume that

lim
k→∞

zk

∥zk∥
= ẑ, ∥ẑ∥ = 1.

By convexity of f(pk, ·), we have

f
(
pk,

1

∥zk∥
zk + (1− 1

∥zk∥
)yk

)
− f(pk, yk) ≤ 1

∥zk∥
(f(pk, zk)− f(pk, yk)).

It follows from (5.7) that

f
(
pk,

1

∥zk∥
zk + (1− 1

∥zk∥
)yk

)
− f(pk, yk) < 0.(5.8)

Obviously, 1
∥zk∥z

k + (1− 1
∥zk∥)y

k ∈ G(pk) for all k ≥ 1. Letting k → ∞ in (5.8), we

have

ẑ + x̄ ∈ G(p̄) and f(p̄, ẑ + x̄)− f(p̄, x̄) ≤ 0.

Hence ẑ + x̄ = x̄, which is impossible. Combining these two cases gives our claim.

It remains to prove that S is inner-semicontinuous at p̄. It suffices to show that,
for every the sequence {pk}∞k=1 converging to p̄ there exists a sequence {xk}∞k=1 such
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that xk ∈ S(pk) and xk → x̄ as k → ∞. Given any {pk}∞k=1 ⊂ P such that pk → p̄
as k → ∞, let

xk ∈ S(pk).
Since G is lower semicontinuous at p̄, it follows that for each k = 1, 2, . . . there exists
wk ∈ G(pk) such that limk→∞wk = x̄. Clearly,

(5.9) f(pk, xk)− f(pk, wk) ≤ 0.

We have that the set {xk}∞k=1 is bounded. Indeed, if limk→∞ ∥xk∥ = +∞, then, by
taking a subsequence if necessary, we can assume that

lim
k→∞

xk

∥xk∥
= x̂, ∥x̂∥ = 1.

It follows from the convexity of f(pk, ·) that

f
(
pk,

1

∥xk∥
xk + (1− 1

∥xk∥
)wk

)
− f(pk, wk) ≤ 1

∥xk∥
(f(pk, xk)− f(pk, wk)).

Letting k → ∞, we can assert from (5.9) that

x̂+ x̄ ∈ G(p̄) and f(p̄, x̂+ x̄)− f(p̄, x̄) ≤ 0.

This implies that x̂+ x̄ = x̄, a contradiction. Hence, {xk}∞k=1 is bounded. Without

loss of generality we can assume that limk→∞ xk = x̃ ∈ G(p̄). It follows from (5.9)
that f(p̄, x̃) − f(p̄, x̄) ≤ 0. Thus, x̃ = x̄ and S is inner-semicontinuous at p̄. The
proof is complete. �

We now consider a special case of problem (1.1) which has the form

(CSI)(c, b) : min φ(x) + cTx

s.t. φt(x) ≤ bt, t ∈ T,

where T is a compact metric space, c ∈ Rn, cT denotes the transpose of c, φ : Rn → R
and φt : Rn → R (t ∈ T ) are given convex functions such that (x, t) 7→ φt(x) is
continuous on Rn × T and b ∈ C(T,R) (the set of all continuous functions on T ).
The set of feasible points of (CSI)(c, b) is denoted by Γ(c, b). S(c, b) stands for the

set of all solutions of (CSI)(c, b). The set of active constraints at x ∈ Γ(c, b) is given

by
T(c, b)(x) := {t ∈ T |φt(x) = bt}.

The following corollary is immediate from Proposition 5.3 by taking

p := (c, b), f(p, x) = φ(x) + cTx, gt(p, x) = φt(x)− bt.

Corollary 5.4. [5, Theorem 10] For (CSI)(c, b), let c̄ ∈ Rn, b̄ ∈ C(T,R) and x̄ ∈
S(c̄, b̄). Suppose that the following conditions hold:
(i) Γ(c̄, b̄) satisfies the Slater condition;
(ii) There is no T0 ⊂ T(c̄, b̄)(x̄) with |T0| < n satisfying

−
(
c̄+ ∂φ(x̄)

)
∩ cone

( ∪
t∈T0

∂φt(x̄)
)
̸= ∅.

Then S is pseudo-Lipschitz at ((c̄, b̄), x̄).
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[6] M. J. Cánovas, A. Hantoute, M. A. López, J. Parra, Stability of indices in the KKT conditions

and metric regularity in convex semi-infinite optimization, J. Optim. Theory Appl. 139 (2008),
485–500.

[7] F. H. Clarke, Optimization and nonsmooth analysis. Second edition. Classics in Applied Math-
ematics, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.

[8] B. Cornet and G. Laroque, Lipschitz properties of solutions in mathematical programming, J.
Optim. Theory Appl. 53 (1987), 407–427.

[9] J. Diestel and J. J. Uhl, Jr., Vector measures. With a foreword by B. J. Pettis. Mathematical
Surveys, No. 15. American Mathematical Society, Providence, R.I., 1977.
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