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Combettes and Hirstoaga [5] and Moudafi [17].) The system of equilibrium problems
is to find x̂ ∈ C such that

(1.2) x̂ ∈ C such that fλ(x̂, y) ≥ 0, ∀y ∈ C and ∀λ ∈ Λ.

If Λ is a singleton, then the problem (1.2) reduces to the problem (1.1).
In 2008, Takahashi and Zembayashi [21] considered the equilibrium problem with

a bifunction defined on the dual space of a Banach space as follows: Let E be a
smooth Banach space with its dual E∗. Let C be a nonempty and closed subset of
E such that JC is a closed and convex subset of E∗, where J is the duality mapping
on E. Let f be a bifunction from JC × JC to R. Then the equilibrium problem is
to find

x̂ ∈ C such that f(Jx̂, Jy) ≥ 0, ∀y ∈ C.

Consequently, the authors obtained a strong convergence theorem for finding a
solution of the equilibrium problem. Since then, the problem has been studied by the
others such as [6, 9, 22]. Recently, Takahashi and Yao [20] proved strong convergence
theorems for nonlinear operators with this equilibrium problem in Banach spaces.

In this paper, motivated by [14] and [20], we prove strong convergence theorems
for generalized nonexpansive mappings with the system of equilibrium problems
with bifunctions defined on the dual of a Banach space.

2. Preliminaries

Let E be a real Banach space with its dual E∗. The modulus δ of convexity of
E is defined by

δ(ϵ) = inf
{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. Let B = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be
Gâteuax differentiable if for each x, y ∈ B, the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In this case, E is called smooth. The norm of E is said to be uniformly
Gâteuax differentiable if for each y ∈ B, the limit (2.1) is attained uniformly for all
x ∈ B. It is also said to be Fréchet differentiable if for each x ∈ B, the limit (2.1) is
attained uniformly for all y ∈ B. We denote the value of x∗ at x by ⟨x, x∗⟩. Then
the duality mapping J on E defined by

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. It is known that if the norm of E is uniformly Gâteuax differen-
tiable, then the duality mapping J is single valued and uniformly norm to weak∗

continuous on each bounded subset of E. If the norm of E is Fréchet differentiable,
then J is norm-to-norm continuous. Furthermore, if E is smooth, strictly convex
and reflexive, then the duality mapping J is single-valued, one-to-one and onto; see
[4, 18] for more details.
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Let E be a smooth Banach space and consider the following function studied
by Alber [1] and Kamimura and Takahashi [13]. Let ϕ : E × E → [0,∞) be the
mapping defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for all (x, y) ∈ E × E. We know that

(2.2) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩
for each x, y, z ∈ E. By the fact that (∥x∥−∥y∥)2 ≤ ϕ(x, y) for all x, y ∈ E, we can
see that ϕ(x, y) ≥ 0, for all x, y ∈ E. Let ϕ∗ : E∗ × E∗ → [0,∞) be the mapping
defined by

ϕ∗(x
∗, y∗) = ∥x∗∥2 − 2⟨J−1y∗, x∗⟩+ ∥y∗∥2

for all (x∗, y∗) ∈ E∗ ×E∗. It is easy to see that

ϕ(x, y) = ϕ∗(Jy, Jx)

for all x, y ∈ E. If E is additionally assumed to be strictly convex, then

ϕ(x, y) = 0 ⇔ x = y.

As is well known, the authors [13] proved the following theroem.

Theorem 2.1 ([13]). Let E be a smooth and uniformly convex Banach space and
let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn→∞ ϕ(xn, yn) = 0, then limn→∞ ∥xn − yn∥ = 0.

If {Cn} is a sequence of nonempty, closed and convex subsets of a reflexive Banach
space E, the set s− LinCn is called the set of limit points of {Cn} and w − LsnCn

is called the set of weak cluster points of {Cn}.That is, x ∈ s − LinCn if and only
if there exists {xn} ⊂ E such that xn ∈ Cn for each n ∈ N and xn → x as n → ∞;
and y ∈ w − LsnCn if and only if there exists {yni} ⊂ E such that yni ∈ Cni for
each i ∈ N and yni ⇀ y as i → ∞. If C0 satisfies that

s− LinCn = C0 = w − LsnCn,

then we say that {Cn} converges to C0 in the sense of Mosco [16] and we denote by
C0 = M − lim

n→∞
Cn. If {Cn} is nonincreasing with respect to inclusion, then {Cn}

converges to

∞∩
n=1

Cn in the sense of Mosco; see [16] for more details.

In 2003, the following was proved by Ibaraki, Kimura, and Takahashi [7].

Theorem 2.2 ([7]). Let E be a smooth Banach space such that E∗ has a Fréchet
differentiable norm. Let {Cn} be a sequence of nonempty, closed and convex subsets
of E. If C0 = M − lim

n→∞
Cn exists and nonempty, then for each x ∈ E, ΠCnx

converges strongly to ΠC0x, where ΠCn and ΠC0 are the generalized projections of
E onto Cn and C0, respectively.

Let C be a nonempty, closed and convex subset of a smooth Banach space E. A
mapping T : C → C is a generalized nonexpansive type if

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(x, Ty) + ϕ(y, Tx)
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for all x, y ∈ C.
A mapping T : C → E is called generalized nonexpansive [8] if F (T ) ̸= ∅ and

ϕ(Tx, y) ≤ ϕ(x, y), ∀x ∈ C , ∀y ∈ F (T ),

where F (T ) is the set of fixed points of T . A point p ∈ C is said to be a generalized
asymptotic fixed point of T if there exists a sequence {xn} in C such that Jxn ⇀
Jp and limn→∞ ∥xn − Txn∥ = 0; see [10]. We denote the set of all generalized
asymptotic fixed points of T by F̌ (T ).

Recently, Takahashi and Yao [20] proved the following:

Theorem 2.3 ([20]). Let E be a smooth and reflexive Banach space such that E∗

has a uniformly Gâteaux differentiable norm. Let C be a closed subset of E such
that JC is closed and convex and let T : C → C be a generalized nonexpansive type
mapping. Then, the followings hold:

(1) F̌ (T ) = F (T );
(2) JF (T ) is closed and convex;
(3) F (T ) is closed.

A nonempty and closed subset C of a smooth Banach space E is said to be
a sunny generalized nonexpansive retract of E if there exists a sunny generalized
nonexpansive retraction R from E onto C. We know the following lemmas from
Ibaraki and Takahashi [8]:

Lemma 2.4 ([8]). Let C be a nonempty, closed and convex subset of a smooth and
strictly convex Banach space E. Then the sunny generalized nonexpansive retraction
from E to C is uniquely determined.

Lemma 2.5 ([8]). Let C be a nonempty, closed and convex subset of a smooth
and strictly convex Banach space E such that there exists a sunny generalized non-
expansive retraction from E onto C and let (x, z) ∈ E × C. Then the followings
hold:

(1) z = Rx if and only if ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ C;
(2) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

In 2007, Kohsaka and Takahashi [15] proved the following results:

Theorem 2.6 ([15]). Let E be a smooth, strictly convex and reflexive Banach space
and let C∗ be a nonempty, closed and convex subset of E∗. Suppose that ΠC∗ is the
generalized projection of E∗ onto C∗. Then R defined by R = J−1ΠC∗J is a sunny
generalized nonexpansive retraction of E onto J−1C∗.

Theorem 2.7 ([15]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty and closed subset of E. Then the followings are equivalent:

(1) C is a sunny generalized nonexpansive retract of E;
(2) C is a generalized nonexpansive retract of E;
(3) JC is closed and convex.

Lemma 2.8 ([15]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty and closed sunny generalized nonexpansive retract of E.
Let R be the sunny generalized nonexpansive retraction from E onto C and let
(x, z) ∈ E × C. Then the followings are equivalent:
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(1) z = Rx ;
(2) ϕ(x, z) = miny∈Cϕ(x, y).

We know some structures of the set of fixed points of a generalized nonexpansive
mapping from the following results:

Theorem 2.9 ([10, 12]). Let E be a smooth, strictly convex and reflexive Banach
space and let C be a closed subset of E such that JC is closed and convex. If
T : C → C is a generalized nonexpansive mapping such that F (T ) ̸= ∅, then F (T )
is closed and JF (T ) is closed and convex.

Theorem 2.10 ([10, 12]). Let E be a smooth, strictly convex and reflexive Banach
space and C be a closed subset of E such that JC is closed and convex. If T : C → C
is a generalized nonexpansive mapping such that F (T ) ̸= ∅, then F (T ) is a sunny
generalized nonexpansive retract of E.

Let C be a nonempty and closed subset of a smooth, strictly convex and reflexive
Banach space E such that JC is closed and convex. For solving the equilibrium
problem, let us assume that a bifunction f from JC × JC to R satisfying the
following conditions:
(A1) f(x∗, x∗) = 0 for all x∗ ∈ JC;
(A2) f is monotone, i.e. f(x∗, y∗) + f(y∗, x∗) ≤ 0 for all x∗, y∗ ∈ JC;
(A3) for all x∗, y∗, z∗ ∈ JC,

lim sup
t↓0

f(tz∗ + (1− t)x∗, y∗) ≤ f(x∗, y∗);

(A4) for all x∗ ∈ JC, f(x∗, ·) is convex and lower semicontinuous.
The followings are some results on such a bifunction :

Lemma 2.11 ([2, 3]). Let C be a closed subset of a smooth, strictly convex and
reflexive Banach space E such that JC is closed and convex, let f be a bifunction
from JC × JC to R satisfying (A1) − (A4), let r > 0 and let x ∈ E. Then, there
exists z ∈ C such that

f(Jz, Jy) +
1

r
⟨z − x, Jy − Jz⟩ ≥ 0 for all y ∈ C.

Lemma 2.12 ([21]). Let C be a closed subset of a uniformly smooth and strictly
convex Banach space E such that JC is closed and convex, and let f be a bifunction
from JC×JC to R satisfying (A1)− (A4). For r > 0 and x ∈ E, define a mapping
Tr : E → C as follows :

Tr(x) =
{
z ∈ C : f(Jz, Jy) +

1

r
⟨z − x, Jy − Jz⟩ ≥ 0 for all y ∈ C

}
for all x ∈ E. Then, the followings hold:

(1) Tr is single-valued;
(2) for all x, y ∈ E,

⟨Trx− Try, JTrx− JTry⟩ ≤ ⟨x− y, JTrx− JTry⟩;

(3) F (Tr) = EP (f);
(4) JEP (f) is closed and convex.
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Lemma 2.13 ([21]). Let C be a closed subset of a smooth, strictly convex, and
reflexive Banach space E such that JC is closed and convex, let f be a bifunction
from JC × JC to R satisfying (A1) − (A4), and let r > 0. Then, for x ∈ E and
q ∈ F (Tr),

ϕ(x, Trx) + ϕ(Trx, q) ≤ ϕ(x, q).

3. Strong convergence theorems with a system of equilibrium
problems

Motivated by [20] and [14], we obtain the following theorem.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty and closed subset of E such that JC is closed and convex.
Let {fλ : λ ∈ Λ} be a family of bifunctions from JC×JC to R satisfying (A1)−(A4).
Let T : C → C be a generalized nonexpansive mapping such that F̌ (T ) = F (T ) and
F (T ) ∩ F ∗ ̸= ∅, where F ∗ =

∩
λ∈Λ

EP (fλ). Let C1 = C and {xn} be a sequence

generated by x1 = x ∈ C and



zn,λ ∈ C such that fλ(Jzn,λ, Jy) +
1
rλ
⟨zn,λ − xn, Jy − Jzn,λ⟩ ≥ 0,

∀y ∈ C and ∀λ ∈ Λ,
yn,λ = αnxn + (1− αn)Tzn,λ, ∀λ ∈ Λ,
Cn+1 = {z ∈ Cn : sup

λ∈Λ
ϕ(yn,λ, z) ≤ ϕ(xn, z)},

xn+1 = RCn+1x

for every n ∈ N, where J is the duality mapping on E, {αn} ⊂ [0, 1] such that
0 ≤ αn ≤ a < 1 and {rλ} ⊂ [0,∞) such that 0 < b ≤ rλ for some a, b ∈ R. Then
{xn} converges strongly to RF (T )∩F ∗x, where RF (T )∩F ∗ is the sunny generalized
nonexpansive retraction from E onto F (T ) ∩ F ∗.

Proof. We first show that {xn} is well-defined. For each n ∈ N, put zn,λ = Trλxn
and let z ∈ F (T ) ∩ F ∗. From zn,λ = Trλxn and Lemma 2.13, we have that for any
n ∈ N

ϕ(zn,λ, z) = ϕ(Trλxn, z) ≤ ϕ(xn, z).

From the assumption, we have F (T )∩F ∗ ⊂ C = C1. Suppose that F (T )∩F ∗ ⊂ Ck,
hence z ∈ Ck. From the definition of T , we have that for all λ ∈ Λ

ϕ(yn,λ, z) = ϕ(αnxn + (1− αn)Tzn,λ, z)

≤ αnϕ(xn, z) + (1− αn)ϕ(Tzn,λ, z)

≤ αnϕ(xn, z) + (1− αn)ϕ(zn,λ, z)

≤ αnϕ(xn, z) + (1− αn)ϕ(xn, z)

= ϕ(xn, z).

Thus, sup
λ∈Λ

ϕ(yn,λ, z) ≤ ϕ(xn, z). This implies that z ∈ Ck+1 and hence Cn is

nonempty for all n ∈ N. By the definition of ϕ, we obtain that

Cn+1 = {z ∈ Cn : sup
λ∈Λ

ϕ(yn,λ, z) ≤ ϕ(xn, z)}
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=
∩
λ∈Λ

{z ∈ Cn : ϕ(yn,λ, z) ≤ ϕ(xn, z)}

=
∩
λ∈Λ

{z ∈ C : 2⟨xn − yn,λ, Jz⟩+ ∥yn,λ∥2 − ∥xn∥2 ≤ 0} ∩ Cn,

which implies that Cn is closed for all n ∈ N. Since J is injective, we get that

JCn+1 = J

(∩
λ∈Λ

{z ∈ C : 2⟨xn − yn,λ, Jz⟩+ ∥yn,λ∥2 − ∥xn∥2 ≤ 0} ∩ Cn

)
=

∩
λ∈Λ

{z∗ ∈ JC : 2⟨xn − yn,λ, z
∗⟩+ ∥yn,λ∥2 − ∥xn∥2 ≤ 0} ∩ JCn,

and thus JCn is closed and convex for all n ∈ N. By Theorem 2.7 and Lemma 2.4,
there exists a unique sunny generalized retraction RCn of E onto Cn. In addition,
from Theorem 2.6, we know that RCn is denoted by J−1ΠJCnJ , where ΠJCn is the
generalized projection of E∗ onto JCn. Thus {xn} is well-defined.

Since {JCn} is a nonincreasing sequence of nonempty, closed and convex subsets
of E∗ with respect to inclusion, it follows that

(3.1) M − lim
n→∞

JCn =

∞∩
n=1

JCn.

Thus, ∅ ̸= JF (T ) ∩ JF ∗ ⊂
∞∩
n=1

JCn. Put C∗
0 =

∞∩
n=1

JCn. From Theorem 2.2, we

have that {ΠJCnJx} converges strongly to x∗0 = ΠC∗
0
Jx. Since E∗ has a Fréchet

differentiable norm, J−1 is continuous. Then, we have

J−1ΠJCnJx → J−1x∗0.

Since xn = RCnx = J−1ΠJCnJx, we can conclude that {xn} converges strongly to
J−1x∗0. We shall show that J−1x∗0 = RF (T )∩F ∗x.

Since xn = RCnx and xn+1 = RCn+1x ⊂ Cn+1 ⊂ Cn, we have from Lemma 2.5
and (2.2) that

0 ≤ 2⟨x− xn, Jxn − Jxn+1⟩
= ϕ(x, xn+1)− ϕ(x, xn)− ϕ(xn, xn+1)

≤ −ϕ(x, xn) + ϕ(x, xn+1)

which implies ϕ(x, xn) ≤ ϕ(x, xn+1) for all n ∈ N. Further, since xn = RCnx and
z ∈ F (T ) ∩ F ∗, we have from Lemma 2.8 that

ϕ(x, xn) ≤ ϕ(x, z).

Thus, {ϕ(x, xn)} is nondecreasing and bounded which imply that lim
n→∞

ϕ(x, xn) ex-

ists and hence {xn} is bounded. Therefore, {yn,λ}, {zn,λ} and {Tzn,λ} are also
bounded for all λ ∈ Λ. From Lemma 2.5, we have

ϕ(xn, xn+1) = ϕ(RCnx, xn+1)

≤ ϕ(x, xn+1)− ϕ(x,RCnx)



760 WARUNUN INTHAKON

= ϕ(x, xn+1)− ϕ(x, xn) → 0.

Then, we have

(3.2) lim
n→∞

ϕ(xn, xn+1) = 0.

Since xn+1 ∈ Cn+1, sup
λ∈Λ

ϕ(yn,λ, xn+1) ≤ ϕ(xn, xn+1).

Therefore, lim
n→∞

ϕ(yn,λ, xn+1) = 0 for all λ ∈ Λ.

By using Theorem 2.1, we have

(3.3) lim
n→∞

∥yn,λ − xn+1∥ = lim
n→∞

∥xn − xn+1∥ = 0.

Then for all λ ∈ Λ, we have

∥yn,λ − xn∥ ≤ ∥yn,λ − xn+1∥+ ∥xn+1 − xn∥
→ 0.

Since ∥xn − yn,λ∥ = ∥xn − (αnxn + (1 − αn)Tzn,λ)∥ = (1 − αn)∥xn − Tzn,λ∥ and
0 ≤ αn ≤ a < 1, we have that for all λ ∈ Λ

(3.4) lim
n→∞

∥xn − Tzn,λ∥ = 0.

Let z ∈ F (T ) ∩ F ∗. Using zn,λ = Trλxn and Lemma 2.13, we have that for each
n ∈ N and λ ∈ Λ,

ϕ(xn, z) ≥ ϕ(xn, Trλxn) + ϕ(Trλxn, z)

= ϕ(xn, zn,λ) + ϕ(zn,λ, z),

and hence ϕ(xn, zn,λ) ≤ ϕ(xn, z)−ϕ(zn,λ, z). Using the definition of ϕ again, we get
that

ϕ(yn,λ, z) = ϕ((αnxn + (1− αn)Tzn,λ), z)

≤ αnϕ(xn, z) + (1− αn)ϕ(zn,λ, z).

Thus,

ϕ(zn,λ, z) ≥
ϕ(yn,λ, z)− αnϕ(xn, z)

1− αn

which implies that

ϕ(xn, zn,λ) ≤ ϕ(xn, z)−
ϕ(yn,λ, z)− αnϕ(xn, z)

1− αn

=
ϕ(xn, z)− ϕ(yn,λ, z)

1− αn
.

Consider

ϕ(xn, z)− ϕ(yn,λ, z) = ∥xn∥2 − 2⟨xn, Jz⟩+ ∥z∥2 − ∥yn,λ∥2 + 2⟨yn,λ, Jz⟩ − ∥z∥2

= ∥xn∥2 − ∥yn,λ∥2 − 2⟨xn − yn,λ, Jz⟩
≤

∣∣∥xn∥2 − ∥yn,λ∥2
∣∣+ 2 |⟨xn − yn,λ, Jz⟩|

≤ (∥xn∥+ ∥yn,λ∥)∥xn − yn,λ∥+ 2∥xn − yn,λ∥∥Jz∥.
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Since lim
n→∞

∥xn − yn,λ∥ = 0, lim
n→∞

(ϕ(xn, z)− ϕ(yn,λ, z)) = 0 for all λ ∈ Λ.

Since 0 ≤ αn ≤ a < 1, we have lim
n→∞

ϕ(xn, zn,λ) = 0 for all λ ∈ Λ. From Theorem

2.1 again, we get that

(3.5) lim
n→∞

∥xn − zn,λ∥ = 0.

Since ∥zn,λ−Tzn,λ∥ ≤ ∥zn,λ−xn∥+∥xn−Tzn,λ∥ and from (3.4) and (3.5), we have

(3.6) lim
n→∞

∥zn,λ − Tzn,λ∥ = 0

for all λ ∈ Λ. Since Jxn =
∏

JCn
Jx → x∗0 = JJ−1x∗0, we have Jzn,λ → x∗0. Thus,

from (3.6) and F̌ (T ) = F (T ), we can conclude that J−1x∗0 ∈ F (T ).
Next, we show that J−1x∗0 ∈ F ∗. From xn → J−1x∗0 and (3.5), we have zn,λ →

J−1x∗0 for all λ ∈ Λ. By the definition of zn,λ, we have that for all y ∈ C and for all
λ ∈ Λ,

fλ(Jzn,λ, Jy) +
1

rλ
⟨Jy − Jzn,λ, zn,λ − xn⟩ ≥ 0.

From (A2), we have that for all λ ∈ Λ

1

rλ
⟨Jy − Jzn,λ, zn,λ − xn⟩ ≥ fλ(Jy, Jzn,λ).

From 0 < b ≤ rλ and (3.5), we get

lim
n→∞

zn,λ − xn
rλ

= 0.

Therefore,

(3.7) 0 ≥ fλ(Jy, x
∗
0).

For all t ∈ (0, 1] and y ∈ C, put z∗t = tJy+(1− t)x∗0. Since JC is convex, z∗t ∈ JC.
By using (A1), (A4) and (3.7), we have that for all λ ∈ Λ

0 = fλ(Jz
∗
t , Jz

∗
t )

≤ tfλ(z
∗
t , Jy) + (1− t)fλ(z

∗
t , x

∗
0)

≤ tfλ(z
∗
t , Jy).

Dividing by t, we have fλ(z
∗
t , Jy) ≥ 0 for all y ∈ C. Letting t → 0, we have from

(A3) that

fλ(x
∗
0, Jy) ≥ 0

for all y ∈ C. Therefore, we have J−1x∗0 ∈ EP (fλ) for all λ ∈ Λ and hence
J−1x∗0 ∈ F ∗. This implies that J−1x∗0 ∈ F (T ) ∩ F ∗.

Finally, we show that J−1x∗0 = RF (T )∩F ∗x. From Theorem 2.9, we have that
F (T ) is closed and JF (T ) is closed and convex. Moreover, we have from Lemma
2.12 that EP (fλ) is closed and JEP (fλ) is closed and convex for each λ ∈ Λ. Since

F ∗ =
∩
λ∈Λ

EP (fλ) and J is injective, J(F (T )∩F ∗) is also closed and convex. Then,

we have from Theorem 2.7 that F (T ) ∩ F ∗ is a sunny generalized nonexpansive
retract of E. Let z0 = RF (T )∩F ∗x. Then z0 ∈ Cn+1. Since xn+1 = RCn+1x, we have

ϕ(x, xn+1) ≤ ϕ(x, z0).
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Therefore,

ϕ(x, J−1x∗0) = lim
n→∞

ϕ(x, xn) ≤ ϕ(x, z0).

Thus, z0 = J−1x∗0 and hence we can complete the proof.
�

By Theorem 3.1, we have the following result.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty and closed subset of E such that JC is closed and convex.
Let {fλ : λ ∈ Λ} be a family of bifunctions from JC×JC to R satisfying (A1)−(A4).
Let T : C → C be a generalized nonexpansive type mapping and F (T ) ∩ F ∗ ̸= ∅,
where F ∗ =

∩
λ∈Λ

EP (fλ). Let C1 = C and {xn} be a sequence generated by x1 =

x ∈ C and



zn,λ ∈ C such that fλ(Jzn,λ, Jy) +
1
rλ
⟨zn,λ − xn, Jy − Jzn,λ⟩ ≥ 0,

∀y ∈ C and ∀λ ∈ Λ,
yn,λ = αnxn + (1− αn)Tzn,λ, ∀λ ∈ Λ,
Cn+1 = {z ∈ Cn : sup

λ∈Λ
ϕ(yn,λ, z) ≤ ϕ(xn, z)},

xn+1 = RCn+1x

for every n ∈ N, where J is the duality mapping on E, {αn} ⊂ [0, 1] such that
0 ≤ αn ≤ a < 1 and {rλ} ⊂ [0,∞) such that 0 < b ≤ rλ for some a, b ∈ R. Then
{xn} converges strongly to RF (T )∩F ∗x, where RF (T )∩F ∗ is the sunny generalized
nonexpansive retraction from E onto F (T ) ∩ F ∗.

Proof. By the assumption, we have F (T ) ̸= ∅ and hence T is a generalized non-
expansive mapping. From Theorem 2.3, we can use Theorem 3.1 to complete the
proof. �
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