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AN EXTRAGRADIENT-LIKE METHOD FOR GENERALIZED
MIXED EQUILIBRIUM PROBLEMS AND FIXED POINT
PROBLEMS

YAQIN WANG AND FENG GU

ABSTRACT. In this paper, we first introduce a new general iterative scheme based
on the extragradient-like method for finding a common element of the set of
solutions of a generalized mixed equilibrium problem, the set of solutions of a
variational inequality and the set of common fixed points for a finite family of
nonexpansive mappings in the framework of a Hilbert space. Then we show that
the proposed iterative sequence converges strongly to a common element. The
results obtained in this paper generalize and improve the recent ones announced
by many others.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || -||. Let C be a
nonempty closed convex subset of H. Let Po be the metric projection of H onto C.
A mapping T of H into itself is called nonexpansive if [|Tz —Ty| < ||z —y/|, for all
x,y € H. We denote by F(T') the set of fixed points of T'(i.e. F(T)={zx€ H :Tx =
z}). Let {T;}}Y, be a finite family of nonexpansive mappings with N, F(T;) # 0.
Let ¢ : C — RU {400} be a proper extended real-valued function and © be a
bifunction from C x C' to R, where R is the set of all real numbers.

Recently, Peng and Yao [8] introduced the following generalized mixed equilib-
rium problem of finding z € C such that

(1.1) O(z,y) + p(y) — p(z) + (Fr,y —x) >0, VyeC,

where F': C' — H is a nonlinear mapping. The set of solutions of (1.1) is denoted
by GMEP. Very recently, Ceng and Yao [2] also considered this problem. Here
some special cases of problem (1.1) are stated as follows:

If F =0, then problem (1.1) reduces to the following mixed equilibrium problem
of finding x € C such that

O(z,y) +¢(y) —p(x) >0, Yyedl,

which was considered by Ceng and Yao [3] The set of solutions of this problem is
denoted by M EP.

2010 Mathematics Subject Classification. 47TH09,47TH10.

Key words and phrases. Nonexpansive mapping, fixed point, variational inequality, inverse-
strongly-monotone mapping, generalized mixed equilibrium problem.

The first author was supported by Zhejiang Provincial Natural Science Foundation of China un-
der Grant (no. LQ13A010007) and the China Postdoctoral Science Foundation Funded Project(no.
2012M511928). The second author was supported by the National Natural Science Foundation of
China (no. 11071169, no. 11271105), the Natural Science Foundation of Zhejiang Province (no.
Y6110287, no. Y12A010095).



734 Y. Q. WANG AND F. GU

If ¢ = 0, then problem (1.1) reduces to the following generalized equilibrium
problem of finding = € C' such that

O(z,y) + (Fx,y —x) >0, VyeC,

which was studied by Takahashi and Takahashi [14].
If p =0 and F = 0, then problem (1.1) reduces to the following equilibrium
problem of finding z € C such that

(1.2) O(z,y) >0, VyeC.

The set of solutions of problem (1.2) is denoted by EP.
If © =0, =0and F = A, then problem (1.1) reduces to the following classical
variational inequality problem of finding € C such that

(1.3) (Az,y —z) >0, VyeC.

The set of solutions of problem (1.3) is denoted by VI(C, A).

The problem (1.1) is very general in the sense that it includes, as special cases,
numerous problems in physics, optimization, variational inequalities, minimax prob-
lems, the Nash equilibrium problem in noncooperative games and others; see, for
instant [1-5], [7—11], [13-18].

In 1999, Atsushiba and Takahashi [1] defined the mapping W), as follows:

Uni = AT+ (1= M),
Un,2 = )\n,2T2Un,1 + (1 - )\n,2)Ia
Unz = M 3T3Un2 + (1 — A\p3)l,

UpN-1=AN-1TN-1Up N2+ (1 — Ay n-1)],

Wy =Unpn = M NTNUn -1+ (1 = Ay N) I,
where {A\, 1}, {A\n2}, ..., {A\,n} C [0,1]. This mapping is called the W —mapping
generalized by T1,75,..., Ty and A, 1,An2,..., A, n. In 2000, Takahashi and
Shimoji [15] proved that if X is a strictly convex Banach space, then F(W,) =
NN, F(T;), where 0 < A,; < 1,i =1,2,...,N.

Very recently, A. Kangtunyakarn and S. Suantai [5] defined the mapping S,, as

follows:

Uo = 1
U _ n,lT U TL,lU TL,lI
nl = oy TiUpo+ay Upo+ag™ 1,
n,2 n,2 n,2
Un72 = o TQUnJ + ay Un71 + a3 1,
n,3 n,3 n,3
Un73 = o T3Un72 + ay Umg + ag 1,
n,N—1 n,N—1 n,N—1
Uin-1 = o TN Upn—2+ ay Un,N—2+ a3 I,
n,N n,N n,N
(1.4) Sn = Un,N =y TNUn,Nfl + ay Un’Nfl + ag I,
where for each n € N, and j = 1,2,..., N, let oz§-n) = (of”, a3’ ,a5”) be such

that a?’j,ag’j,ag’j € [0,1] with off’j + a’;’j + ag’j = 1. This mapping .5, is called

the S-mapping generalized by 11,75, ..., Ty and agn), oz(zn), e ,045\7;). Furthermore,
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they showed that if X is a strictly convex Banach space, then F(S,) = N, F(T;)
if o’ € (0,1) for all j =1,2,...,N — 1,a?’N € (0,1] and ay”, a3’ € [0,1) for all
7=1,2,...,N. It is easy to see S—mapping is the generalization of W —mapping.

On the other hand, for finding a common element of F'(S) and VI(C, A) for a
monotone, Lipschitz continuous mapping, Ceng and Yao introduced an extragradient-
like approximation method and established the following strong convergence theo-
rem.

Theorem 1.1 ([4, Theorem 3.1]). Let C' be a nonempty closed convexr subset of a
real Hilbert space H. Let f : C — C' be a contractive mapping with a contractive
constant a € (0,1),A : C — H be a monotone, L— Lipschitz continuous mapping
and S : C — C be a nonexpansive mapping such that F(S)NVI(C,A) # (. Let
{zn},{yn} be the sequences generated by

ro=x€C
(15) Yn = (1 - ’Yn)xn + ’YnPC’(xn - )\nAxn)a
Tnt+l1 = (1 — Op — 6n)xn + anf(yn> + /BnSPC(xn - )\nAyn)a
where n > 0,{\,} is a sequence in (0,1) with Y > A < 00, and {an}, {Bn}, {1}
are three sequences in [0,1] satisfying the conditions:
(i) ap + Bn < 1 for all n > 0;
(i) impy oo 0 = 0,307 @t = 00;
(iii) 0 < liminf, o By < limsup,,_ o Bn < 1.
Then the sequences {xn},{yn} converge strongly to the same point q =
Prsynvic.a f(q) if and only if {Ax,} is bounded and limy, o0 (AT, y — zn) > 0
for ally € C.

Recently, for finding a common element of F(T)NVI(C, A) N EP, Plubtieng and
Punpaeng [10] introduced the following iterative scheme: z; = v € H and

1
@(un,y) + 7<y_un7un_xn> >0, Vye C,

n

Yn = Po(un — A\pAuy),

Tnt1 = e+ Bpty + T Po(Yn — MAyn), VY n >1,
under suitable conditions, some strong convergence theorems are proved which ex-
tend some recent results of Yao and Yao [16].

For finding a common element of Q, where Q = NY, F(T;) N VI(C, A)Nn MEP,

Peng and Yao [9] introduced the following iterative scheme: let v be an arbitrary
point in C' and

(xr1=x€C
1
O(un,y) + oY) — p(un) + — (Y — un, un — 5) >0,
(1.6) Vyedl,
Yn = PC(un - 'YnAun)a

Tpt1l = QpU + Brnn + (1 — Op — Bn)WnPC(un - 'YnAyn)7
Vn>1,

under suitable conditions, some strong convergence theorems are proved which ex-
tend some recent results in [7], [8], [13], [16] and [18].
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Innovated and inspired by the above work, we raise two questions: (I) for iterative
sequence generated by (1.6), can we use S, to replace the mapping W,,? Further-
more, can we consider generalized mixed equilibrium problems?(II) Can we use the
extragradient-like method in [4] and viscosity approximation method to establish
some strong convergence theorems? In this paper, we present a positive answer for
the above questions.

2. PRELIMINARIES

Let H be a real Hilbert space endowed with a norm || - || and an inner product
(-,-). Let C' be a nonempty closed convex subset of H. Let symbols — and —
denote weak and strong convergence, respectively. For every point x € H, there
exists a unique nearest point of C, denoted by Pcx, such that ||x — Poz|| < ||z —y||
for all y € C'. We know that P¢ is a firmly nonexpansive mapping of H onto C, i.e.,

<x_y,PC(L'—PCy> > HPCm_PCy”27 v T,y € H.
Moreover, Pox, is characterized by the following properties: Pox € C and
(2.1) (x — Pox,y — Pox) <0,
(22) lz = yl* > [lz — Pez||® + |ly — Poz|l?,
for all x € H, y € C. In a real Hilbert space H, it is well known that

Az + (1= Nyll? = Alz[* + (1 = N)[ly > = A1 = N[l — y|*
for all z,y € H and A € [0,1]. It is easy to see that the following is true:
ueVI(C,A) < u= Po(u— Nu), VA > 0.
It is well known that H satisfies the Opial condition, i.e., for any sequence {z,}
with z,, — x, the inequality
liminf ||z, — z|| < liminf ||z, — y||
n—oo n—oo
holds for every y € H with y # x.

A mapping A : C — H is called k—Lipschitz continuous if there exists some
constant £ > 0 such that

[Az — Ay[| < kljz —yl|, ¥V 2,y € C.

A mapping A of C is called a-inverse-strongly monotone, if there exists a positive
real number « such that

(x —y, Az — Ay) > af|Ax — Ay\|2, Va,yeC.

It is easy to see that if A is a—inverse-strongly monotone, then A is monotone and
Lipschitz continuous. The converse is not true in general, see [9].

Let A be a strongly positive bounded linear operator on H, i.e., there exists a
constant 7 > 0 such that

(Az,z) >7||? ¥V z e H.
A set-valued mapping T — 2 is called monotone if, for all z,y € H, f € T and

g € Ty imply (xz — vy, f — g) > 0. A monotone mapping T : H — 2 is maximal
if its graph G(T') is not properly contained in the graph of any other monotone
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mapping. It is known that a monotone mapping 7' is maximal if and only if , for
(z,f) € Hx H,(x—y, f—g) > 0 for every (y,g) € G(T) implies f € Tx. Let A be a
monotone, k—Lipschitz continuous mapping of C' into H and let Ngv be a normal
cone to C at v € C, i.e., Nov={we€ H : (v—u,w) >0,V u € C}. Define
Av+ Nev, veC,
Tv= { 0, wvé¢cdC.

Then T' is maximal monotone and 0 € Tv if and only if v € VI(C, A)(see [11]).

For solving the GM EP, let us give the following assumptions for the bifunction
O, ¢ and the set C:

(H1) O(z,z) =0 for all z € C;

(H2) © is monotone, i.e., O(x,y) + O(y,z) <0 for any z,y € C;

(H3) for each y € C,z — ©(z,y) is weakly upper semicontinuous;

(H4) for each xz € C,y — O(x,y) is convex and lower semicontinuous;

(A1) for each x € H and r > 0, there exist a bounded subset D, C C and y, € C
such that for any z € C'/D,,
1
O(2,ya) +¢(yz) = ¢(2) + Yo — 2,2 =) <05

,
(A2) C is a bounded set.

Lemma 2.1 (see [3]). Let C' be a nonempty closed conver subset of H. Let © :
C x C — R be a bifunction satisfying conditions (H1)-(Hj) and let ¢ : C' — R be a
lower semicontinuous and convex function. Forr > 0 and x € H, define a mapping

T,n(e’v) : H — C as follows:
1
1199 (@) = {2 € C: 0(z,9) + oly) — 0lz) + {y— 2,2~ 2) > 0,¥ y € C}

for all x € H. Assume that either (A1) or (A2) holds. Then the following results
hold:
(i) T6%) (x) # 0 for each x € H and T, is single-valued;

(ii) TT(@’SD) s firmly nonexpansive, i.e., for any x,y € H,
TP~ TOAY|P < (TP ~ Ty, 2 —y);

(iii) F(T'©)) = MEP;
(iv) MEP is closed and convex.

We also need the following lemmas.

Lemma 2.2 (see [17], Lemma 2.5). Assume that {a,} is a sequence of nonnegative
real numbers such that

Qnt1 < (1 - 5n)an + 0psp + vy,

where {0p}, {sn} and {v,} satisfy the conditions:
(1){671} - [07 1]7 Zzozl 5” =%
(ii) limsup,,_, o Sn < 0;
(iii)vn, > 0(n > 0),> 7 vy < 00.

Then lim,,_yso oy, = 0.
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Lemma 2.3. In a real Hilbert space H, there holds the following inequality
2+ ylI* < ||zl + 2(y, x +y), for allz,y € H.

Lemma 2.4 ([6]). Assume that B is a strongly positive linear operator on a Hilbert
space H with coefficient 5 > 0 and 0 < p < ||B||7Y. Then |[I — pB| < 1 — p¥.

Lemma 2.5 ([12]). Let {z,} and {y,} be bounded sequences in a Banach space X
and {Bn} be a sequence in [0,1] with
0< l1m mf Brn < limsup G, < 1.
n—oo
Suppose that
Tn4+1 = (1 - /Bn)yn + ﬁnl‘n
for all integer n > 0 and
lim sup(||yn+1 — ynll — Hxn+1 - an) <0

n—oo

Then, lim,, 0 ||yn, — 2n|| = 0.

3. STRONG CONVERGENCE THEOREMS

Theorem 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let F : C — H be an a—inverse-strongly monotone mapping, and f : C' — C
be a contractive mapping with a contractive constant 0 € (0,1). Let © : C x C — R
be a bifunction satisfying (H1)-(H4) and ¢ : C — R U {400} be a proper lower
semicontinuous and convez function with assumptions (A1) or (A2). Let A: C —
H be a monotone and k— Lipschitz continuous mapping. Let T1,Ts,...,Tx be a
family of finitely nonexpansive mapping of C into H such that Q = (NY,F(T})) N
VI(C,A)NGMEP # (). Let B be a strongly positive bounded linear operator on
H with efficient ¥ > 0. Assume that 0 < v < 7/0. For j = 1,2,...,N, let

(n) = (o/f’j oy’ o) be such that a?’],az’],ag’j e [0,1],a}7 + a7 4+ o) =
1 {al’]}j 1 C I, 6] with 0 <m <601 <1,{a}” My Ign, 1] with 0 <y < 1 and
{az’] ;V 1,{a3’j ;V 1 € 10,6s] with 0 <03 < 1. For any x1 =x € C. Let {x,},{yn}
and {uyn} be sequences defined by

1
O(un,y) + p(y) — ¢(un) + (Frn,y — up) + 7(34 — Up, Uy, — Tp) > 0,
VyedC,
Yn = (1 - gn)un + fnPC(un - ’YnAun)a (*)
Tn+1l = an’)/f(yn) + Bpy + ((1 - ﬁn)j - anB)SnPC(Un - ’YnAyn)a
Vn>1,

where {Sy, : C — C} is the sequence defined by (1.4), {an}, {Bn}.{&n} and {vn} are
four sequences in [0,1], {r,} is a sequence such that {r,} C (0,2a). If the following
conditions are satisfied:

(C1) limp—yo0 @y = 0 and 22, = 00;

(C2) 0 < liminf,, o Bn < limsup,, o OBn < 1;

( ) n 1Tn < 007

(C4) 0 < lim 1nfn_>C>Q Ty < limsup,,_o n < 2 and limy, o0 |71 — 70| =

(C5) |a”+1’j oy ”H’j ’]| — 0(n — ), forallj € {1,2,. N}.
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Then {zn}, {yn} and {u,} converge strongly to z € Q if and only if {Au,} is
bounded and liminf,, o (Aup,y — uy) > 0 for all y € C, where z is the unique
solution of variational inequality

(vf = B)z,w—2) <0, VweQ,
that is z = Po(((I — B) +~vf)z).

Proof. (=). Suppose that {z,},{yn} and {u,} converge strongly to z € Q. Then
from the Lipschitz continuity of A it follows that {Au,} is bounded. Further,

[(Atn,y — un) — (Az,y — 2)|

(A, y — un) — (Aup,y — 2)| + [(Aun, y — 2) — (Az,y — 2)|
[Aunll|un — 2]l + [[Aupn — Azl|[ly — 2]

[Aunlf|un = 2]l + Ellun — 2||[ly — z[] = 0(n — o0),

IAIN TN

which implies that
lim (Aup,y —un) = (Az,y —2) >0,V yeC

n—oo
due to z € VI(C, A).
(«<=). Note that u, can be rewritten as w, = Tr(f?"p) (xp, — rnFxy,) for every

n=12.... Put t, = Po(up — mAyn), Yn=1,2,.... By (Cl) and (C2), we may
assume, with no loss of generality, that a,, < (1—$,)||B|~! and 1 —a, (¥ —6v) > 0
for all n. From Lemma 2.4, we have ||[(1 — 5,)] — apB| < 1— 6, — an7.

Next we divide the proof in five steps.
Step 1. First we show that the sequence {z,} is bounded.

Let p € Q, then p = Po(p — y,Ap) = Tﬁ?’@) (p — rnFp). From u,, = T;?’go) (zp, —
rnFx,) and F is a—inverse-strongly monotone and {r,} C (0,2«), we know that
for any n > 1

lun — 2l T30 (@0 — raFzn) = T (p — P )|

< Har:n—p—rn(F:En—Fp)H2
= |lzn — plI* = 2r(Fayn — Fp, 20 — p) + 72| F2n — Fp|?
< lan = plI* = ra(2a — )| Fan — Fpl?

(3.1) < lon —pl

From (2.2), the monotonicity of A, and p € VI(C, A), we have

1t — pI?
< lun =AY = Pl = llun — v Ayn — tal®
[[un — p”2 — flun — th2 + 290 (AYn, p — tn)
= lun = pl1* = llun = tall* = 290 ((Ayn — Ap, yn — p)
+(Ap, Yn — p) + (AYn, tn — Yn))
< lun — pH2 — Jun — th2 + 29 (AYn, Yn — tn)
lun =2l = llun = yall? = llyn — tll?
—2(Un — Yns Yn — tn) + 290 (AYn, Yn — tn)
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= Nun = pl* = lltn = ynll® = [lyn — tall® + 2(un — Y AYn = Yns tn — yn)-
(3.2)

Since y, = (1 — &,)up + & Po(un — v Auy,) and A is k—Lipschitz continuous, we
have

2<un - ’YnAyn - ymtn - yn)

< 2fun — Y AYn — Ynlllltn — yall
< Hun_’YnAyn—ynH2+ th_ynH2
= |lun — yn||2 + [t — yn||2 + 290 (AYn, Yn — un) + '72"Ayn||2
= Hun_ynH2+ th_yn”Z
+291n(AYn, Po(un — ynAun) — Po(un)) + ’YEL”A:UTL’P
< lun = yall® + 1t = ynll* + 29580l Aynll| Aun |l + 72 [l Aya®
(3:3) < lun = yall® + lltn = ynll* + 2 (1 Aun]| + | Ayal)?.

Since {Auy} is bounded, A is k—Lipschitz continuous and {v,} C [0, 1], we have
[AYn — Aun|| < Ellyn — unll < k&nl[Po(un — ynAun) — Po(un)|| < || Aunl,
which implies that {Ay,} is bounded. Put M; = sup{||Au,| + ||Ayn|| : n > 1}.

Then it follows from (3.3) that
2<Un — YnAYn = Yny tn — yn> < Hun - ynH2 + th - ynH2 + 72M12
This together with (3.2) implies that

I?

ltn =l < llun = pI* = llun = yall* = lyn = tall + llun — yall?

+”tn - yn”2 + '7721M12

(3-4) = |lun —p|* + 72 M7,
which implies that
(3:5) [tn = pll < [lun — pll + M.

From (%), p € VI(C, A) and the monotonicity of A, we get

H(l — &)U + £ Po(un — YnAuy) — p”

< (1 =&)lun —pll + &ull Po(un — ynAun) — Po(p — v Ap)||
< (I =&)llun = pll + &nllun — p — W (Aun — Ap)|

< lun = pll + &nvnll Aun — Apl|
<
b

lyn — pll

(3.6) [un — pll + (M1 + || Apl]).
By (%), (3.1), (3.5) and (3.6), and by induction, we have
[Znt1 — ol < anllvf(yn) — B0 + Ballzn — pll
+[((1 = Bu)I — anB)(Sntn — p)l|
< anl[f(yn) = FWI + anllvf(p) = B)| + Bullzn — 1l
+((1 = Bn) — an¥)||Sntn — Supl|
< an0|lyn — pll + anllvf(p) — Bp)|

+Bonn —pll + ((1 — Bn) — anV)th _pH
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< anyl|lzy — pll + a0y (M1 + || Apl|)

+anl[vf(p) — Bp)|| + Ballzn — pl|

+((1 = Bn) — an¥) (7 — pll + (M1 + [|Apl)))
< (A =an(¥=9))zn — pll + anllvf(p) = Bl + v (M1 + [|Ap|)
< (I-an(¥— 79))Hwn pll

+an (¥ - 79)(7 )Ilvf() B(p)|l + vn (M1 + || Apl))

< max{fln —pll = )Hm p) = BOI}+ Y (M + | 4p]).
j=1
Thus by (C3), we know that {x,} is bounded. From (3.1), (3.5), (3.6) and the as-

sumptions, we have {u, }, {tn} {vn}, {F(2n)}, {f(zn)} and {S,(z,)} are all bounded.
Step 2. We shall prove that lim, o ||[Zp+1 — zp| = 0.

[tnt1 —tull = [[Po(unt1 — Yn+1AYn+1) — Po(un — v Ayn)||
< Hun—H — Up — Y41 AYnt1 + 'YnAyn”
< Nunsr = unll + Vo1 | AYnt1l] + Yol Ayn |
(3.7) < unsr = unll + (g1 + va) M.

. (€] 0,0
Since u, = TT( ’v)(xn —rpFxy,) and up4 = T,Sn+1)(xn+1 — rpy1Fxpt1), put ky, =

Ty — TnFx,,we have u,, = T,n( ’w)kz and up41 = Tr(n_;f)kn+]_. So by (x) for Vy e C
we have

1
(3.9) O(unt1,y) + @(y) — p(unt1) + (Y — Uny1,Ung1 — kny1) > 0.

T'n+1

Take y = up41 in (3.8) and y = uy,, in (3.9), then add two inequalities. By using
Condition (H2), we have

>0

Up — knp Unp41 — kn+l
<un+1 — Unp, -
Tn Tn+1

and hence
Tn

<un+1 — Up, Uy — Upt1 + Upp1 — kp — (Un—i—l - kn+1)> > 0.

T'n+1

From (C4), we assume that there exists a real number a such that r,, > a > 0 for
all n € Ny. Thus,

r
||un+1 - unH2 < <un+1 — Unp, Un4+1 — kn — = (un—i-l - kn+1)>
T'n+1

IN

1
ot = | {1 = Fall + I = Pots| = 1 = Kt -

And further,

1
(3.10) tun+1 = unll < |knt1 — knll + |rn — Tn—i—l‘aHun—&-l — knta])-
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Since F' is a—inverse-strongly monotone, similarly to the proof of (3.1), we get

(I = 1 F)angr = (I = rpr F)an || < flanga — 2all.

It follows the above inequality and (3.10) that

Jnst =l < (0 = FasrF)pis — (I = s F)a|

(3.11)

1
Hrn = raa[[1F (@) || + |7 — TnJrl‘E”u?Hl — Knyal

IN

|Znt1 — @l + |10 — Taga ||| F(20)]]
1
+rn — 7°n+1|aHUn+1 — knt1|

< Hanrl - $n” + |Tn - TnJrl‘M?v

1
where My = sup,5, {||F(xn)|| + ~flunsr - kn+1||}. From (3.7) and (3.11), we have

(3.12)

[tn1 — tall < lTnt1 — zall + |70 — rog1 | M2 + (Yna1 + vn) M.

Let M3 = sup,>{[lf(zn), |Sn(tn)|l}, and zp1 = Bpxn + (1 — Bn)zp,V n > 1.
Then, we have

(3.13)

Tn4+2 — ﬁn—&-lxn—i-l Tl — Brnn

AR By A 1~ Bn

a1V Wnt1) + [ = Boy1)] — ant1B]Sny1tnta
- - Bn-&-l

_an'Yf(yn) +[(1 = Bn)I — an B]Sity

1— By
= (a"?j];iyjjl) - Oé;ﬂ_f(ﬁ?in)) + (Sn+1tnt1 — Sntn)
(_ Oén+1BSn+1tn+1 i OénBSntn).
1- ﬁnJrl 1- ﬂn

Next we estimate ||Spt+1tn+1 — Sntnll- Since S, is nonexpansive and from the defi-
nition of S, for any k € {2,3,..., N} we get

IN

IN

IN

1 Unt1,5tn — Upitn |

|]a?+1’kaUn+Lk_1tn + agﬂ’k nt1,k—1tn +
— (P T U peo1tn + @ U j1tn + 0" t,)]|
T U1 et — TeUngimatnl| + |of ™ = @) | TeU ot
b TR U1 1 tn — Uneital

+Hoag ™ — ap M| Un crtall + lo5 T — g [t

U1 k—1tn — Unotl + lof " = PP | DU 1|
oy T U1 1t — Ungortnll + o + ad® — o PHF — gtk

k k
| Un o 1tnll + oy T — a4 |

k k
|Un 1 h-1tn = Upetall + o] = ¥

n+1,k
3 tn
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X (1T Une—1tall + | Unmrtnll) + e ™" — o * ([[tn]] + 1Unp—1tnl])-

Hence by induction we have
||Sn+1tn - Snth

HUn-i-l,Ntn - n,Nth

< NUnsratn = Unatall + S50 — a3 |(1T5Un j—1tall + 1Un,j—1nl])
L
+EN | — @ | (]| + [ Ung—1tall)
< o™ = QNI Tutal| + ) + g ol T — o]

N +1,5 J
(T30l + Uyt + 5ol ™ = a5 (ltall + Uit
< My(la ™ = o + 2Nl — ol 4 22 o af T — ),
where

My = max{sup{ | Titnl| + a1}, 0D T3 Un st + WU st = 1,2, N}
n> n=z

This together with (C5), we obtain

(3.14) lim [|Sp41tn — Sntal| = 0.
n—oo

It follows from (3.12) that

St 1tnt1 — Sntnll [Snt1tnt1 — Snaitnll + [[Sntatn — Sntnl
||tn+l - tn” + ”Sn-&-ltn - Sntn”

|Zn41 — znll + |rn — o[ Mo

(3.15) +(Ynt1 + o) M1 + [|Sns1tn — Sntnl|.

By (3.13) and (3.15), we have

IN AN A

|2n+1 — 2nll
< o O @)+ 1Bl St
T O+ IBUIStall) + [ Snsstus = Sota
< T @) 1B Swiataral)
AT @+ 1Bl + s = all + I = gl M

+(7n+1 + ’Yn)Ml + HSnJrltn - Sntn”-
This together with (C1)-(C4) and (3.14), we get
limsup(||znt1 — 2nll = |Tn41 — zal]) < 0.
n—oo
Hence by Lemma 2.5, we have lim,,_, ||z, — || = 0. Consequently
(3.16) nlggo [#n41 — an|| = nlgrolo(l = Bn)llzn — anl| = 0.

Step 3. Next we prove that lim, o ||Snyn — yn|l = 0.
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(a) First, we prove that lim,,_, ||z, — Sptn|| = 0. Indeed, observe that

[zn — Sntnll < [l#n — Zptall + [[2ng1 — St
< lzn = pga |l + lenyf (Yn) + Ban — BnSntn — anBSpty||
< lon = Znga |l + a1 f (yn) | + Bullzn — Sntnll + ol Bl[[| Snita|l
and hence
Jon = Sutall < g lon = T
(3.17) +1 fnﬁn VL @) I+ 1Bl Sntnll) = 0(n — o0).

(b) Then we prove that ||u, —yn|| = 0, [[tn —yn|| = 0 and ||u, —t,|| = 0(n — o0).
In fact, notice that || - ||? is convex, for p € Q, it follows from (3.4) and Lemma 2.3

that
[zt — p||2 = |[Bn(zn —p) + (1 = Bn)(Sntn — p) + an(vf(yn) — BSntn)”2
< |Bu(@n —p) + (1 = Bn)(Sntn _p)H2
+20n(vf(yn) — BSntn, Tnt1 — D)
< Ballen =l + (1 = Ba)l1Satn — plI?
200 ||7f (yn) — BSntalll|l i1 — pl|
< Ballws _pH2 + (1= Bn)ltn _pH2

+2an|[7f (yn) — BSntallllzni1 —
< Ballen =l + (1= Ba)llun — plI* + 72 M

(3.18) 20 (VS () | + (| BSntn ) lzn1 — pll-
This together with (3.1), we can conclude that
lznt1 = p1? < Ballzw —plI* + (1= Ba)llzn — I + (1 = Ba) (17 — 20r)

x| Fan — Fpl|* + 72 M + 200 |7 (L () | + 1 BSutal) [ 2nr1 — pll-
This implies that
(1= Ba)ra(2a = ro)l|[Fan — Fp|? <[z = pl® = 21 — pl + 72 M7

+ 20 (VI f (yn) | + 1 BSntnl)|Zn41 — pll
<ll#n = zps1 | (e = pll + |21 = pl) + 77 M7
+ 20 (YIf ()| + I BSntnl)|2ns1 — pl|-
Therefore, by the assumptions and (3.16), we deduce
(3.19) lim ||[Fx, — Fp| = 0.
n—oo
It follows from Lemma 2.1 and (3.1) that
lun = 2> = T (@0 — rnFan) — TP (p = raFp)||?
< (zn —rnFxn — (p— 10 Fp), un — p)
1
= 5{”3371 —p—rn(Fxy — Fp)HZ + |lun _pH2
—[@n = un = (Fay — Fp)HQ}
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IN

1
i{Hxn _pH2 + [Jun _pH2 — |7y — unH2
+2rn (Fay, — Fp, 2y — un) — || Fn — Fp|*},
This implies that
[un = plI> < g = plI* = |20 — unl?
(3.20) +2rp||Fay — Fplll|lzn — unll — r3|| Fay — Fpl*.
Combining (3.20) and (3.18), we obtain
[Zni1 —pI* < llzn —pl* = (1= Ba) |20 — unl®
+27r0 (1 = Bp) | Fzn, — Fpll||n — un ||
9 MT + 200 (V|| f ()| + | BSntnl) lzn+1 — pll,
and thus
(1= Bn)llzn — unH2 <||zp — pH2 — |41 _pH2 +2ru (1 = Bp) | Fen — Fpll||7n — uy|
+ M7 + 20 (1| f () | + | BSntnl) | 2ns1 — pll
<(llzn—pll+llzns1 — pID7n— Znsa |+ 2ra (1 = B) | F2yn — Fpl|
X ||2n — un| + 71%M12 + 20, (Y[ f (yn)I| + |1 BSntnl))l|2ns1 — pl,
which implies that ||z, — u,|| = 0(n — o0). Since u,, € C, we have u,, = Pou,,, and
by (C3)
lyn —tall = [[(1 = &) (Poun — Po(un — v Ayn))
+€n(PC(un - 'YnAun) - PC(un - ’VnAyn))H

< (1= &)l Poun — Po(un — v Ayn)||
+&nll Po(tun — ynAun) — Po(un — Y Ayn)||
(3:21) < (= &)l Aynll + &l Aun — Aynll = 0(n — o0),
lun —ynll = &nllun — Po(un — ynAun)|| = &allPo(un) — Po(un — ynAun)||
(3.22) < &mllAug| — 0(n — 00).
Since
[1Snyn — yall [Snyn = Sutnll + [|Sntn = @nll + llzn — unll + [lun — yall

<
< yn = tall + [1Sntn — @nll + 20 — unll + [lun = yall;
then it follows from (3.17), (3.21), (3.22) and lim, 0 ||2n — up|| = 0 that
Jim [[Shyn —ynl = 0.
Observe that Po((I — B) + v f) is a contraction. Indeed, for any =,y € H, we have
[1Pa((I = B) +7f)(x) = Po((I = B) + /) (W)l
I((I = B) +7f)(x) = (I = B) + /)W)
1= Bllllz =yl +vf (=) = FW)
(L =Dllz =yl +0llz -yl = 0 = F =20z -yl

)
Banach’s contraction mapping principle guarantees that Po((I — B) + vf) has a
unique fixed point, say z € H. That is, z = Po((I — B) +vf)(2).

IAIA A
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Step 4. Next we show that limsup,, . (vf(z) — Bz, 2, — z) <0, where z = Pq((I —
B) 4+ vf)(2). Indeed, we pick a subsequence {z,,} of {z,} so that

lim (yf(2) — Bz, xn, — 2) = limsup(yf(z) — Bz, z, — 2).
100 n—00

Since {xy,} is bounded, there exists a subsequence {xnlj} of {z,} which converges
weakly to w. Without loss of generality, we can assume that z,,, = w. From ||z,, —
un|| = 0, we have u,, = w. From ||u, — t,| — 0, ||un — yn|| — 0, we also have
tn, = W, Yn, — w. Since {u,, } C C and C is closed and convex, we obtain w € C.
Next we show that w € 2.
(a) We first show that w € GMEP. By u,, = Tr(,(?’so) (xp, — rnF'xy,), we know that

1
O(un,y) + @(y) — o(un) + 7<y = Un, Un — (T — T Fwy)) >0,V y € C.

n

From (H2),

1
oY) — o(un) + —(y — Un, Un — (T — 10 Fxy)) > O(y,un),V y € C.

Tn

Hence for any y € C,

1
(3'23) (P(y) - So(um) + 7<y — Up;s Un,; — (xm - rnzFxn'L)> > ®(y7um)'

g

Put z; =ty + (1 — t)w for all t € (0,1] and y € C. Then we have z; € C. Taking
y =z in (3.23), we have

(Zt - Uniant> > <Zt — Un,;, FZt) - 90(275) + So(um)
_<F(xm)azt - uni> - <Zt — Un,;, %> + G(Zt7uTZi)
= (2t — un;, Fag — Fup,)) + (2t — un;, Fun,) — F(2n,)) — 0(2t)

(3'24) _Hp(um) - <Zt = Uny, @> + @(Zta Um)

ng

Up, — T,

Since ||up;, — T, || = 0, we have ||F'(upn,) — F(zn,)| — 0. Further, from the mono-
tonicity of F', we have
(zt — Un,;, Fzt — F(up,)) > 0.

Up,; — T,

So from (3.24), (H4), the weakly lower semicontinuity of ¢, — 0 and
Up; — W, as ¢ — 00, we have
(2t —w, Fzt) > —p(2t) + o(w) + O(2¢, w).

From the above inequality and (H1), (H4), we obtain

0 = O(z,2) + w(z) — @(zt)
< t0(2,y) + (1 =)0 (2, w) + tp(y) + (1 — t)p(w) — (2t)
= Oz, y) + o(y) — (2t) + (1 = 1)(O(z1, w) + p(w) — ¢(21))
< HO(2t,y) + o(y) — p(z) + (1 — 1) {2t — w, Fz)
+(

Oz, y) +0(y) — w(z)) + (1 = )ty — w, Fz)
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and hence
0 <O(zt,9) + ¢(y) — ¢ze) + (1 = t){y —w, Fzy).
Let t — 0, for each y € C, from the above inequality and (H3) we have

p(w) < O(w,y) + oY) + (y —w, Fw).
That is
O(w,y) +¢(y) — p(w) + (y — w, Fw) > 0.
This implies that w € GMEP.
(b) We prove that w € VI(C,A). For this purpose, we define a set-valued
mapping T : H — 21 by
Awy + Nowy, wy €C
T — ) )
Wi { @, w1 QE C.
where Nowy is the normal cone to C' at wy € C. Then T is maximal monotone and
0 € Tw; if and only if w; € VI(C, A). Let (w1, g9) € G(T'). Then Tw; = Awi+Now;

and hence g— Aw; € Now;. So, we have (w1 —t,g—Aw;) > 0 for all t € C. Therefore,
from lim inf, oo (Aupn, y — uy) > 0, we obtain

<w1 - w,g) = hm inf<w1 - unz’g>
11— 00
> liminf(w; — up,, Aw;)
1—00
= liminf[(w) — up,;, Awr — Aup,) + (w1 — Up,, Aty,)]
1—00
> liminf(w; — uy,, Auy,) > 0.

1—+00
Hence we have (w; — w, g) > 0. Since T' is maximal monotone, we have w € T~10
and hence w € VI(C, A).
(c) We next show that w € F(S,,) = NI, F(T;). Suppose the contrary, w ¢ F(S,,).

From the Opial condition and step 3, we have

liminf ||y, —w| < lminf |y,, — Syw||
1— 00 11— 00

IN

lim inf Hynz — Sn¥n; | + lim inf ”Snyni — Spw||
1— 00 11— 00

IN

lim inf ||.S,yn, — Spw|
1—00

IN

lim inf Hyni - 'UJH,
1—00

which is a contraction. So we get w € F(S,). This implies w € €. Therefore, by
z = Po(yf(2) + (I — B)z) and (2.1), we have

liisolip(’yf(z) — Bz,x, —2) = Z11}1{&(’)/]"’(2) — Bz, xp, — 2)
< (0f(z) =Bz w—2)
(3.25) = (vf(z) +(I-B)z—z,w—2z) <0.

Step 5. Finally we show that x, — z, u, — 2,y — z and t, — 2z, where z =
Po(vf(2) + (I — B)z). Indeed, by Lemma 2.3, (3.1), (3.4) and (3.6), we have
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[t
lanyf(yn) + Brn + (1 = Bu)I — anB)Sntn — Z||2
[((1 = Bn)I — anB)(Sntn — 2) + Bu(Tn — Z)HQ
+2<an'7f(yn) — ap Bz, Tn+1 — Z>
1_n 1_nI_ nB Snn_
— H( /B )(( ﬁ(l)_ Bnc; )( t Z) +,3n(xn _ Z>H2
+20,Y(f(Yn) — f(2); Tny1 — 2) + 200 (v f(2) — B2, Tnt1 — 2)
(1= BT = 0 B)(Sutn — )
(16l Toed
+2an70||yn — zl[|lZnt1 — 2l + 200 (1f (2) — Bz, @pp1 — 2)
oy = Bn = an) [t — 2|
2 2
ol 2L et 22 5 ()~ Ben - 2
(1= 80)* = 20,7(1 = Bn) + a3 7°) (0 — 2|I* + 72 M?)
(1 - 5n)
lzn = 2l + 3 (M + [[A2DP + 2041 — 2]
2

IN A

IN

I” + Bullon — 2|

IN

]2 + BallTn — ZH2

+2«x

IN

+ Bullzn — Z||2

+2a,v6

+2an(vf(2) = Bz, 2n41 — 2)
(1= Bn)® = 2007(1 = Bn) + 037 (lwn — 2]|* + 92 M7)
(1 - /Bn)
i = 21+ 290(Ma + [ Az]) [ — 2] + 220y + [[A2])?
2
+anyl||zni1 — ZH2 + 20, (7f(2) — Bz, Tny1 — 2)

IN

+ Bullwn — 2|

+2a,70

22
apy

1_/871

IN

(1= an(27 = 99))llzn — 2lI* + anyOllzns — 2* + lzn — 2|

(1427 +72)y2 M3
(1 - 6n)
Fom Y027 (M1 + || Az||) ||z — 2] + vA (M1 + || Az])?],

+2an(vf(2) — Bz, xp41 — 2) +

which implies that

2a,
[ — z||* + m(’ﬁ(z) — Bz,xn41 — 2)

(1 —an(2y —190))
1— a,y0
(1427 +7)mME axy’
(1= Bn)(1 — anyt) (1= Ba)(1 —any0)
oy 2 2
——— 27y, (M- A " — M A
+1—an70[ Yo (My + || Az|))[|25 — 2] + vp (M7 + [[Az])7]

1- 200 (7 —10)
1 — ay~0

IN

w1 — 21

ln — 2]

IN

Man — 2|2
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2(7 —79)an
(7 —=70)(1 = an0) (vf(2) = Bz, &n41 — 2)

(1429 + 72) M} 2(y — ~0)a27?

_ _ ~ _ — — |zn — z”2
(1 =Ba)(1—ap0)  2(7 —70)(1 — Bn)(1 — anrt)
0 _ 2
20+ A = 2]+ (s + Az
= (1=0p)||zn — 2||* + 6nsn + vn,

where B
" 1—apy0

1 anﬁ2 9
Sp = — z) — Bz, Tp+1 — 2) + —— T — 2|7,

1+ 25 +75°) Mj 70 9

n = 2(M A n— M A -

= { oM )+ T ag 2V 14z e — 2l + (M 421

Since 0, > 20, (7 — v0), we have ¥2° 0, = oco. By Lemma 2.2, (C1)-(C3) and
(3.25), we have x,, — z. And it follows from (3.1) that uw,, — z. Therefore, from
(3.5), (3.6) and (C3), we obtain y, — z and ¢, — z. O

By Theorem 3.1, we can obtain some new and interesting strong convergence
theorems. Now give some examples as follows:
Let T; =1 for i =1,2,..., N, by Theorem 3.1 we have the following result.

Corollary 3.2. Let C' be a nonempty closed convexr subset of a real Hilbert space
H. Let F : C — H be an a—inverse-strongly monotone mapping, and f : C — C
be a contractive mapping with a contractive constant 6 € (0,1). Let® : C xC — R
be a bifunction satisfying (H1)-(H4) and ¢ : C — R U {400} be a proper lower
semicontinuous and convez function with assumptions (A1) or (A2). Let A: C — H
be a monotone and k— Lipschitz continuous mapping such that Q@ = VI(C,A) N
GMEP # (. Let B be a strongly positive bounded linear operator on H with efficient
5 > 0. Assume that 0 <y <7/60. For any x1 = x € C. Let {xn},{yn} and {u,} be
sequences defined by

1
@(un,y) + 90(3/) - @(Un) + <F$nay - un> + 7<y — Un, Up — $n> >0,

Vyedl, "

Yn = (1 = &n)un + EnPo(un — mAuy),

Lnt1 = aan(yn) + BnTn + ((1 — Bu)I — anB)PC(Un = YnAyn),
where n > 1,{an},{Bn},{n} and {v.} are four sequences in [0,1] and {r,} is a
sequence such that {r,} C (0,2a) satisfying the conditions (C1)-(C4) in Theorem
3.1. Then {xn},{yn} and {u,} converge strongly to z € Q if and only if {Au,}
is bounded and liminf, o (Auy,y — u,) > 0 for all y € C, where z is the unique
solution of variational inequality

(vf = B)z,w—2) <0, VweQ,
that is z = Po(((I — B) +~vf)z).
Let A =0, by Theorem 3.1, we obtain the following result.
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Corollary 3.3. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let F : C — H be an a—inverse-strongly monotone mapping, and f : C — C
be a contractive mapping with a contractive constant 6 € (0,1). Let © : C X
C — R be a bifunction satisfying (H1)-(H4) and ¢ : C — R U {+oc} be a proper
lower semicontinuous and convex function with assumptions (A1) or (A2). Let
T1,T5,..., TN be a family of finitely nonexpansive mapping of C' into H such that
Q= (N_F(T;))NGMEP # 0. Let B be a strongly positive bounded linear operator

on H wzth efficient ¥ > 0. Assume that 0 < v < 7/0. For j = 1,2,...,N, let

g ) = (al’J 042’3 ay” ') be such that oy md 042’],043’] € [0, 1],041’3 + 042’7 + ag’j =
1 {al’J}j . C [771,91] with 0 < m < 61 < 1,{a} Ny < g, 1) with 0 < ny < 1 and
{al? ;V 1 {ag? ] 1 € [0,03] with 0 < 03 < 1. For any x1 = x € C. Let {x,} and

{un} be sequences defined by

1
O (un,y) +o(y) — ¢(un) + (Frn,y — un) + 7<y — Up, Up — Tp) > 0,
Vyedl,
Tny1 = oY f(un) + Bnrn + (1 = Bu)l — anB)Spun, VYV n>1,

where {S, : C — C} is the sequence defined by (1.4), {an} and {B,} are two
sequences in [0,1], {rn} is a sequence such that {r,} C (0,2«) satisfying the con-
ditions (C1)-(C2) and (C4)-(C5) in Theorem 3.1. Then {z,} and {u,} converge
strongly to z € §2, where z is the unique solution of variational inequality

(vf = B)z,w—2) <0, VweQ,
that is z = Po(((I — B) +~vf)z).

Let ¢ = 0,F = 0 and O(z,y) = 0 for all z,y € C in Theorem 3.1, then u, =
Poxy = x,. By Theorem 3.1, we obtain the following result.

Corollary 3.4. Let C' be a nonempty closed convexr subset of a real Hilbert space
H. Let f : C — C be a contractive mapping with a contractive constant 0 €
(0,1). Let A: C — H be a monotone and k— Lipschitz continuous mapping. Let
11,15, ..., TN be a family of finitely nonexpansive mapping of C' into H such that
Q = (NN F(T)) N VI(C,A) # (0. Let B be a strongly positive bounded linear
opemtor on H with eﬁﬁczent 5 > 0. Assume that 0 <~y <7/0. Forj=1,2,...,N,
() — (a?’ﬂ ay? a7 be such that o/ a2’J,ag’J € [0,1], a1 + ay? 4+ a5’ =
1 {al’J}j 1 Cm.01) with0<n <601 <1,{a}) My Inn, 1] with 0 <y < 1 and
{al? év 1,{043’] ;V 1 € [0,03] with 0 < 03 < 1. For any x1 = x € C. Let {x,} and
{yn} be sequences defined by

{ Yn = (1 = &n)Tn + EnPo(Tn — nATy),
Tn4+1 = Oén’)/f(yn) + Bnmn + ((1 - /BR)I - O‘nB)SnPC(fEn - 'YnAyn)a

where n > 1,{S,, : C — C} is the sequence defined by (1.4), {an},{Bn}.{n} and
{1} are four sequences in [0,1] satisfying the conditions (C1)-(C3) and (C5) in
Theorem 3.1. Then {x,} and {yn} converge strongly to z € Q if and only if {Azx,}
is bounded and liminf, o (Az,,y — x,) > 0 for all y € C, where z is the unique

let o
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solution of variational inequality
(vf = B)z,w—2) <0, YVw e Q,
that is z = Po(((I — B) +~vf)z).

Remark 3.1 Theorem 3.1 generalizes, extends and improves Theorem 3.1 of Ceng
and Yao [4] in the following aspects:

(i) One nonexpansive mapping is replaced by S—mapping;

(ii) Our iterative process (%) is more general than (1.5) because it can be applied
to solve the problem of finding a common element of the set of GM EP, the set of
fixed point problems and the set of solutions of variational inequality problems.
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