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is well-known in a great variety of optimal decision making situations. Recently,
optimality conditions and various duality results have been obtained for minimax
fractional programming problems involving the optimization of several ratios in
the objective function. In 1977, Schmitendorf [17] first established the necessary
and sufficient conditions for minimax programming problem. Later many authors
proved duality theorems involving in convexity, generalized convexity (cf. [1], [4],
[5], [8], [11], [12], [13], [16], [17], [18]) invexity, and generalized invexity (cf. [3], [2],
[7], [9], [10], [14], [15]) for mathematical programming problem.

Recently, Lai and Liu [13] considered nonsmooth minimax fractional program-
ming problem. They reduced minimax fractional programming problem to an equiv-
alent nonfractional parametric problem under continuous functions without convex-
ity. They established necessary and sufficient optimality conditions for nonsmooth
minimax fractional programming problem and proved duality theorems for paramet-
ric duality. Ho and Lai [7] introduced exponential (Exp for brevity) (p, r)-invexity
for Lipschiz function as well as the definition of differentiable (p, r)-invex function
given by Antczak [3]. They established necessary optimality conditions and suffi-
cient optimality conditions involving in Exp (p, r)-invexity. Furthermore, Ho and
Lai [7] proved duality theorems of parametric duality for nonsmooth minimax frac-
tional programming problem with Exp (p, r)-invexity.

In this paper, we deal with minimax fractional programming problem involving
Exp (p, r)-invex function. We apply the optimality conditions to perform parameter-
free duality models for the minimax fractional programming problem (P ). For
convenience, we recall the Exp (p, r)-invex function in section 2 and optimality
conditions in section 3. Furthermore, we treat with duality theorems for Mond-
Weir type and Wolfe type duality models which the functions occurring belong to
Exp (p, r)-invexity.

2. Exponential (p, r)-invex function

Throughout the paper, Rn is the n-dimensional Euclidean space and Rn
+ is its

nonnegative orthant. Let S be an open subset of Rn.
A function f : S −→ R is said to be locally Lipschitz at x ∈ S if there exist a

positive constant K ∈ R and a neighborhood Γ of x ∈ S such that

|f(y)− f(z)| 5 K∥y − z∥ for all z, y ∈ Γ.

where ∥ · ∥ stands for any norm of Rn.
For any vector ν in Rn, the generalized directional derivative of f at x in

the direction ν ∈ Rn in Clarke sense (see [6]) is given by

f◦(x; ν) = lim sup
y−→x
λ−→0+

f(y + λν)− f(y)

λ
.

The generalized subdifferential of f at x ∈ S is defined by the set

∂cf(x) = {ξ ∈ Rn : f◦(x; ν) ≥ ⟨ξ, ν⟩ for all ν ∈ Rn}

where ⟨ξ; ν⟩ denotes the inner product in Rn.
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In order to establish the nonparametric sufficient conditions that the duality
theorems hold for parameter-free type duality models, we will use the following
definition in our paper.

Definition 2.1 (cf. [7]). Let p, r be arbitrary real numbers. A locally Lipschitz
function f : S ⊆ Rn → R is said to be exponential (p, r)-invexity (strictly) at
u ∈ S if there exists a function η : S × S −→ Rn with property η(x, u) = 0 only if
u = x in S such that for each x ∈ S, the following inequality holds for ξ ∈ ∂cf(u)

(2.1)
1

r
erf(x) ≥ 1

r
erf(u)

[
1 +

r

p

⟨
ξ , (epη(x,u) − 1)

⟩]
(> if x ̸= u) for p ̸= 0, r ̸= 0.

If p or r is zero, then (2.1) can give some modification by using the limit of p → 0
or r → 0.

(i) If r ̸= 0, p → 0 in (2.1), then

erf(x) − erf(u) ≥ rerf(u) ⟨ξ , η(x, u)⟩ (> if x ̸= u) for r ̸= 0, p = 0,

(ii) If p ̸= 0, r → 0, then (2.1) becomes

(2.2) f(x)− f(u) ≥ 1

p

⟨
ξ , (epη(x,u) − 1)

⟩
(> if x ̸= u) for p ̸= 0, r = 0,

(iii) If r = 0, p → 0, then (2.2) becomes

f(x)− f(u) ≥ ⟨ξ , η(x, u)⟩ (> if x ̸= u) for p = 0, r = 0,

where 1 = (1, 1, . . . , 1) ∈ Rn, (epη(x,u) − 1) stands for the n-vector (epη1(x,u) −
1, epη2(x,u) − 1, . . . , epηn(x,u) − 1), and ⟨· , ·⟩ stands for the inner product in Rn

throughout this paper.

Remark 2.2. All theorems in our work will be described only in the case of p ̸= 0
and r ̸= 0. We omit the proof of other cases like in (i), (ii), and (iii).

Now, we say that a constraint qualification holds at x∗ ∈ X if there exists an
x ∈ X such that hj(x) < 0 for j ∈ J(x∗).

Next section, we state the necessary optimality conditions and sufficient optimal-
ity conditions.

3. Optimality conditions

In [7], Ho and Lai derived the following necessary optimality conditions and
sufficient optimality conditions for problem (P ).

Theorem 3.1 (Necessary Optimality Conditions (cf. [7, Theorem 3.1])). Let x∗ be
a (P )-optimal solution and the constraint qualification hold at x∗. Then there exist
(s∗, t∗, y∗) ∈ K(x∗), λ∗ ∈ R+, and a p-vector Lagrange multiplier µ∗ ∈ Rp

+ such that

(3.1) 0 ∈
s∗∑
i=1

t∗i {∂cf(x∗, y∗i ) + λ∗∂c(−g(x∗, y∗i ))}+ ⟨µ∗ , ∂ch(x∗)⟩p,

(3.2) f(x∗, y∗i )− λ∗g(x∗, y∗i ) = 0, i = 1, 2, . . . , s∗,

(3.3) µ∗
jhj(x

∗) = 0, j = 1, 2, . . . , p,
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(3.4) µ∗ ∈ Rp
+, t

∗ ∈ I, y∗i ∈ Y (x∗), i = 1, 2, . . . , s∗,

where I = {t∗ ∈ Rs∗
+ : t∗ = (t∗1, t

∗
2, . . . , t

∗
s∗) with

s∗∑
i=1

t∗i = 1} and ⟨µ∗ , ∂ch(x∗)⟩p ≡

p∑
j=1

µ∗
j∂

chj(x
∗).

We state the sufficient optimality by using the converse of the necessary opti-
mality condition with extra assumptions for Exp (p, r)-invexities to establish the
following theorem.

Theorem 3.2 (Sufficient Optimality Conditions (cf. [7, Theorem 4.1]). Let x̃ be
a feasible solution of (P ) satisfying the necessity conditions (3.1) ∼ (3.4). Suppose
further that any one of the following (a) or (b) holds

(a) A1(·) =
s̃∑

i=1

t̃i(f(·, ỹi) − λ̃g(·, ỹi)) and A2(·) =

p∑
j=1

µ̃jhj(·) are Exp (p, r)-

invexities with respect to (w.r.t., for brevity) the same function η at x̃ in
X,

(b) A3(·) =
s̃∑

i=1

t̃i(f(·, ỹi)− λ̃g(·, ỹi))+
p∑

j=1

µ̃jhj(·) is an Exp (p, r)-invexity w.r.t.

η at x̃ in X.

Then x̃ is an optimal solution of (P ).

In order to discuss Mond-Weir type dual model for the considered generalized
fractional minimax programming problem (P ), we restate Theorem 3.1 by using

the parameter λ∗ instead of
f(x∗, y∗i )

g(x∗, y∗i )
in (3.1) and rewriting the multiplier functions

associated with constraints as the following (cf. [4], [18]).

Theorem 3.3 (Nonparametric Necessary Optimality Conditions). Let x∗ be a
(P )-optimal solution and the constraint qualification hold at x∗. Then there ex-
ist (s∗, t∗, y∗) ∈ K(x∗), and a p-vector Lagrange multiplier µ∗ ∈ Rp

+ such that

(3.5) 0 ∈
s∗∑
i=1

t∗i {g(x∗, y∗i )∂cf(x∗, y∗i ) + f(x∗, y∗i )∂
c(−g(x∗, y∗i ))}+ ⟨µ∗ , ∂ch(x∗)⟩p,

(3.6) µ∗
jhj(x

∗) = 0, j = 1, 2, . . . , p,

(3.7) µ∗ ∈ Rp
+, t

∗ ∈ I, y∗i ∈ Y (x∗), i = 1, 2, . . . , s∗,

Actually the expression (3.5) is the same as

(3.8)

0 ∈
s∗∑
i=1

t∗i g(x
∗, y∗i )

[
s∗∑
i=1

t∗i ∂
cf(x∗, y∗i ) + ⟨µ∗ , ∂ch(x∗)⟩p

]

+

[
s∗∑
i=1

t∗i f(x
∗, y∗i ) + ⟨µ∗ , h(x∗)⟩p

]
s∗∑
i=1

t∗i ∂
c(−g(x∗, y∗i )),
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The nonparametric sufficient optimality conditions follow from the inverse of
nonparametric necessary optimality conditions with extra assumptions. Thus the
sufficient optimality theorem varies depending on the extra assumptions and the
duality model is various. Now, we employ the necessary optimality conditions and
Exp (p, r)-invexity to establish sufficient optimality conditions.

Theorem 3.4 (Sufficient Optimality Conditions). If x̃ is a feasible solution of (P )
and the necessity conditions (3.5) ∼ (3.7) hold. Denote a function A4 : X → R by

A4(·) =
s∑

i=1

ti {g(x̃, yi)f(·, yi)− f(x̃, yi)g(·, yi)}+ ⟨µ , h(·)⟩p

with A4(x̃) = 0. Assume that A4 is an Exp (p, r)-invexity w.r.t. η at x̃ in X. Then
x̃ is an optimal solution of (P ).

Proof. Suppose that x̃ is not an optimal solution of (P ). Then there exists a (P )-
feasible solution x, such that

f(x̃, yi)

g(x̃, yi)
> max

y∈Y

f(x, y)

g(x, y)
for all i = 1, 2, . . . , s.

For all i = 1, 2, . . . , s, the above inequality reduces

(3.9) f(x, y)g(x̃, yi)− g(x, y)f(x̃, yi) < 0 for all y ∈ Y.

By relations (3.7) and (3.9), we have

(3.10)

s∑
i=1

ti(f(x, yi)g(x̃, yi)− g(x, yi)f(x̃, yi)) < 0.

On the other hand, from hj(x) ≤ 0, j ∈ J and µ ∈ Rp
+, we obtain

(3.11) ⟨µ , h(x)⟩p ≤ 0,

thus from the inequalities (3.10) and (3.11), it yields

(3.12)
A4(x) =

s∑
i=1

ti(f(x, yi)g(x̃, yi)− g(x, yi)f(x̃, yi)) + ⟨µ , h(x)⟩p

< 0 = A4(x̃).

By the relation (3.5), there exist ξi ∈ ∂cf(x̃, yi), ςi ∈ ∂c(−g(x̃, yi)) for all i =
1, 2, . . . , s, and ρj ∈ ∂chj(x̃) for all j ∈ J , such that

⟨ a4 ⟩ ≡
s∑

i=1

ti {g(x̃, yi)ξi + f(x̃, yi)ςi}+ ⟨µ , ρ⟩p = 0,

that is, ⟨ a4 ⟩ is a zero vector, where ⟨µ , ρ⟩p =
p∑

j=1

µjρj and ρ = (ρ1, ρ2, . . . , ρp).

It follows the inner product

(3.13)
1

p

⟨
⟨ a4 ⟩ , (epη(x,x̃) − 1)

⟩
= 0.
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Since A4 is an Exp (p, r)-invex function w.r.t. η at x̃ in X, we have

1

r
erA4(x) ≥ 1

r
erA4(x̃)

[
1 +

r

p

⟨
⟨ a4 ⟩ , (epη(x,x̃) − 1)

⟩]
.

This inequality together with equality (3.13) yields

(3.14)
1

r
erA4(x) ≥ 1

r
erA4(x̃).

Using fundamental property of the exponential function and inequality (3.14), we
get

A4(x) ≥ A4(x̃)

which contradicts the inequality (3.12). Hence, the proof is complete. �
Similar to the proof of Theorem 3.4, we establish Theorem 3.5 which is simply

stated.

Theorem 3.5 (Sufficient Optimality Conditions). If x̃ is a feasible solution of (P )
and the necessary conditions (3.6) ∼ (3.8) hold. Denote a function A5 : X → R by

A5(·) =
s∑

i=1

tig(x̃, yi)

[
s∑

i=1

tif(·, yi) + ⟨µ , h(·)⟩p

]

+

[
s∑

i=1

tif(x̃, yi) + ⟨µ , h(x̃)⟩p

]
s∑

i=1

ti(−g(·, yi))

with A5(x̃) = 0. Assume that A5 is an Exp (p, r)-invexity w.r.t. η at x̃ in X. Then
x̃ is an optimal solution of (P ).

4. Mond-Weir type duality model

The Mond-Weir type duality contains no constraint of problem (P) in the objec-
tive fractional functional of (MWD), as the following form

(MWD) max
u

max
(µ,s,t,y)∈K1(u)

f(u, y)

g(u, y)

subject to

(4.1) 0 ∈
s∑

i=1

ti {g(u, yi)∂cf(u, yi) + f(u, yi)∂
c(−g(u, yi))}+ ⟨µ , ∂ch(u)⟩p,

(4.2)
∑
j∈J

µjhj(u) = 0,

(4.3) µ ∈ Rp
+, t ∈ I, yi ∈ Y (u) for i = 1, 2, . . . , s,

where u ∈ X is the (P )-feasible solution and the K1(u) stand in (MWD) is repre-
sented by the set

K1(u) =

{
(µ, s, t, y) ∈ Rp

+ ×N× Rs
+ × Rms

∣∣∣∣ t ∈ I , y = (y1, y2, . . . , ys) ,
yi ∈ Y (u) , i = 1, 2, . . . , s

}
,
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which means that elements in K1(u) satisfy the expressions (3.5) and (3.6) in the
necessary optimality conditions of (P ) in Theorem 3.3.

In order to establish (MWD) is the dual problem w.r.t. the primal problem
(P ), we denote Γ1 the constraint set of (MWD). Moreover, denote by the elements
satisfying the necessary optimality conditions of (P ) which is defined by a projective-
like set as the feasible solutions of problem (P ) to be

prXΓ1 = {u ∈ X ⊆ Rn| (u;µ, s, t, y) ∈ Γ1}.

At first, we show the weak duality theorem related to problems (P ) and (MWD),
as following.

Theorem 4.1 (Weak Duality). Let x and (u;µ, s, t, y) be (P )-feasible and (MWD)-
feasible, respectively. Denote a function A6 : X → R by

A6(·) =
s∑

i=1

ti {g(u, yi)f(·, yi)− f(u, yi)g(·, yi)}+ ⟨µ , h(·)⟩p

with A6(u) = 0 if u ∈ Γ1. Suppose that A6(·) is an Exp (p, r)-invex function w.r.t.
η at u ∈ prXΓ1.

Then max
y∈Y

f(x, y)

g(x, y)
≥ f(u, y)

g(u, y)

Proof. Suppose on the contrary. It would have max
y∈Y

f(x, y)

g(x, y)
<

f(u, y)

g(u, y)
and then

there is a feasible solution x ∈ X such that

(4.4) max
y∈Y

f(x, y)

g(x, y)
<

f(u, y)

g(u, y)
for any (u;µ, s, t, y) ∈ Γ1.

Thus the inequality (4.4) would reduce

f(x, y)

g(x, y)
<

f(u, y)

g(u, y)
for all y ∈ Y.

This is equivalent to

f(x, y)g(u, y)− f(u, y)g(x, y) < 0 for all y ∈ Y.

Multiplying the above expression respectively by ti ≥ 0, i = 1, 2, . . . , s and then
summing up, it would yield

(4.5)

s∑
i=1

ti(f(x, yi)g(u, yi)− f(u, yi)g(x, yi)) < 0.

On the other hand, by the feasible solution x in (P ) together with µ ∈ Rp
+, we have

(4.6) ⟨µ , h(x)⟩p ≤ 0.

Then from (4.5) and (4.6), we obtain

(4.7) A6(x) =

s∑
i=1

ti(f(x, yi)g(u, yi)− f(u, yi)g(x, yi)) + ⟨µ , h(x)⟩p < 0 = A6(u).
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By expression (4.1), there exist ξi ∈ ∂cf(u, yi), ςi ∈ ∂c(−g(u, yi)) for all i =
1, 2, . . . , s, and ρj ∈ ∂chj(x) for all j ∈ J , such that

⟨ a6 ⟩ ≡
s∑

i=1

ti {g(x, yi)ξi + f(x, yi)ςi}+ ⟨µ , ρ⟩p = 0,

that is, the vector ⟨ a6 ⟩ is a zero vector, where ⟨µ , ρ⟩p ≡
p∑

j=1

µjρj with ρ =

(ρ1, ρ2, . . . , ρp).
Then it yields the next inner product

(4.8)
1

p
erA6(u)

⟨
⟨ a6 ⟩ , (epη(x,u) − 1)

⟩
= 0.

By assumption, A6(·) is an Exp (p, r)-invex function w.r.t. η at u ∈ prXΓ1. By
Definiton 2.1 and relation (4.7), it reduces to

1

p
erA6(u)

⟨
⟨ a6 ⟩ , (epη(x,u) − 1)

⟩
< 0.

This contradicts inequality (4.8). Hence the proof is complete. �

Theorem 4.2 (Strong Duality). Let x be the efficient solution of problem (P )
satisfying the constraint qualification at x. Then there exists (µ∗, s∗, t∗, y∗) ∈ K1(x),
such that (x;µ∗, s∗, t∗, y∗) is a feasible point for (MWD). If the hypotheses of
Theorem 4.1 are fulfilled, then (x;µ∗, s∗, t∗, y∗) is an efficient solution to problem
(MWD), and the two problems (P ) and (MWD) have the same optimal values.

Proof. By assumption, x is an efficient point of (P ) and the constraint qualification
holds at x. Then, by conditions (3.5) ∼ (3.7), we conclude that (x;µ∗, s∗, t∗, y∗) is
a feasible for (MWD). Since

f(x, y∗i )

g(x, y∗i )
= max

y∈Y

f(x, y)

g(x, y)
,

then, using the weak duality theorem (Theorem 4.1), we conclude that
(x;µ∗, s∗, t∗, y∗) is an efficient solution of problem (MWD). Consequently, the two
problems (P ) and (MWD) have the same optimal values. �

Theorem 4.3 (Strict Converse Duality). Let x and (u∗;µ∗, s∗, t∗, y∗) be the effi-
cient solutions to (P ) and (MWD), respectively, and the constraint qualification be
satisfied at x. Let a function A7 : X → R be

A7(·) =
s∗∑
i=1

t∗i {g(u∗, y∗i )f(·, y∗i )− f(u∗, y∗i )g(·, y∗i )}+ ⟨µ∗ , h(·)⟩p.

Then A7(u
∗) = 0. Assume that A7(·) is a strictly Exp (p, r)-invex function w.r.t. η

at u∗ ∈ prXΓ1 for all optimal vectors x for (P ), and (u∗;µ∗, s∗, t∗, y∗) for (MWD),
respectively. Then, x = u∗, and the optimal values of problems (P ) and (MWD)
are equal.
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Proof. Suppose on the contrary that x ≠ u∗. Then by the expression (4.1), there
exist ξi ∈ ∂cf(u∗, y∗i ), ςi ∈ ∂c(−g(u∗, y∗i )) for all i = 1, 2, . . . , s∗, and ρj ∈ ∂chj(u

∗)
for all j ∈ J , such that

⟨ a7 ⟩ ≡
s∗∑
i=1

t∗i {g(u∗, y∗i )ξi + f(u∗, y∗i )ςi}+ ⟨µ∗ , ρ⟩p = 0,

that is, the vector ⟨ a7 ⟩ is a zero vector, where ⟨µ∗ , ρ⟩p ≡
∑
j∈J

µ∗
jρj , and ρ =

(ρ1, ρ2, . . . , ρp). This implies that

(4.9)
1

p
erA7(u∗)

⟨
⟨ a7 ⟩ , (epη(x,u∗) − 1)

⟩
= 0.

By assumption, A7 is a strictly Exp (p, r)-invex function w.r.t. η at u∗ ∈ prXΓ1.
Then, by the definition of strictly Exp (p, r)-invexity and equality (4.9), it follows
that

(4.10)
1

r
erA7(x) − 1

r
erA7(u∗) > 0,

and so

(4.11) A7(x) > A7(u
∗) for r ̸= 0.

Since x is an optimal solution of (P ), we have

(4.12) ⟨µ∗ , h(x)⟩p ≤ 0.

Following Theorem 4.2, we see that

max
y∈Y

f(x, y)

g(x, y)
=

f(u∗, y∗i )

g(u∗, y∗i )
,

and so

f(x, y)

g(x, y)
≤ f(u∗, y∗i )

g(u∗, y∗i )
for all y ∈ Y.

This implies that

f(x, y)g(u∗, y∗i )− g(x, y)f(u∗, y∗i ) ≤ 0 for all y ∈ Y.

As t∗ ∈ I and y∗i ∈ Y (u∗), i = 1, 2, . . . , s∗, the above expression becomes

s∗∑
i=1

t∗i (f(x, y
∗
i )g(u

∗, y∗i )− g(x, y∗i )f(u
∗, y∗i )) ≤ 0.

The above inequality together with the inequality (4.12), it would yield

A7(x) =

s∗∑
i=1

t∗i (f(x, y
∗
i )g(u

∗, y∗i )− g(x, y∗i )f(u
∗, y∗i )) + ⟨µ∗ , h(x)⟩p ≤ 0 = A7(u

∗).

This contradicts the inequality (4.11). Hence the proof is complete. �
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5. Wolfe Type duality model

The Wolfe type duality in fractional programming problem can be considered by
the objective of fractional functional of (P) by adding the constraint scalarization
with a multiplier µ into the numerator of the fractional functional in (P), precisely
the Wolfe type dual is stated as follows

(WD) max
u∈X

max
(µ,s,t,y)∈K2(u)

∑s
i=1 tif(u, yi) + ⟨µ , h(u)⟩p∑s

i=1 tig(u, yi)

subject to

(5.1)

0 ∈
s∑

i=1

tig(u, yi)

[
s∑

i=1

ti∂
cf(u, yi) + ⟨µ , ∂ch(u)⟩p

]

+

[
s∑

i=1

tif(u, yi) + ⟨µ , h(u)⟩p

]
s∑

i=1

ti∂
c(−g(u, yi)),

and

(5.2) µ ∈ Rp
+, t ∈ I, yi ∈ Y (u) for i = 1, 2, . . . , s.

Here u ∈ X is a (P )-feasible solution, and denote the set

K2(u) =

{
(µ, s, t, y) ∈ Rp

+ ×N× Rs
+ × Rms

∣∣∣∣ t ∈ I , y = (y1, y2, . . . , ys) ,
yi ∈ Y (u) , i = 1, 2, . . . , s

}
,

as elements in K2(u) satisfying the expressions (3.6) and (3.8) which is equivalent
to K1(u) for the necessary optimality conditions of (P ) in Theorem 3.3 taken as the
constraint given in the problem (MWD).

In order to show the problem (WD) being surely a dual problem w.r.t. the
primal problem (P ), we denote Γ2 as the constraint set of (WD). Actually Γ2 is
also defined by projective-like as the feasible solutions of problem (P )

prXΓ2 = {u ∈ X ⊆ Rn| (u;µ, s, t, y) ∈ Γ2}.

To the aim we proceed to show the following theorems related to problems (P )
and (WD):

Theorem 5.1 (Weak Duality). Let x and (u;µ, s, t, y) be (P )-feasible and (WD)-
feasible, respectively. Denote a function A8 : X → R by

A8(·) =
s∑

i=1

tig(u, yi)[f(·, yi) + ⟨µ, h(·)⟩p]−
s∑

i=1

tig(·, yi)[f(u, yi) + ⟨µ, h(u)⟩p]

with A8(u) = 0. Suppose that A8(·) is an Exp (p, r)-invex function w.r.t. η at
u ∈ prXΓ2. Then

max
y∈Y

f(x, y)

g(x, y)
≥

∑s
i=1 tif(u, yi) + ⟨µ , h(u)⟩p∑s

i=1 tig(u, yi)
.
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Proof. Suppose that max
y∈Y

f(x, y)

g(x, y)
≥

∑s
i=1 tif(u, yi) + ⟨µ , h(u)⟩p∑s

i=1 tig(u, yi)
were not true.

Then there is a feasible solution x ∈ X such that

max
y∈Y

f(x, y)

g(x, y)
<

∑s
i=1 tif(u, yi) + ⟨µ , h(u)⟩p∑s

i=1 tig(u, yi)

for any (u;µ, s, t, y) ∈ Γ2.
This implies that

f(x, y)

g(x, y)
<

∑s
i=1 tif(u, yi) + ⟨µ , h(u)⟩p∑s

i=1 tig(u, yi)
< 0 for all y ∈ Y,

or equivalently,

f(x, y)

s∑
i=1

tig(u, yi)− g(x, y)

s∑
i=1

tif(u, yi) + ⟨µ , h(u)⟩p < 0 for all y ∈ Y.

Furthermore, multiplying the above expression respectively by ti ≥ 0, i = 1, 2, . . . , s
and summing up, it yields

s∑
i=1

tif(x, yi)

s∑
i=1

tig(u, yi)−
s∑

i=1

tig(x, yi)[

s∑
i=1

tif(u, yi) + ⟨µ , h(u)⟩p] < 0.

It reduces to

(5.3)

s∑
i=1

tig(u, yi)
[ s∑

i=1

tif(x, yi) + ⟨µ , h(x)⟩p
]

−
s∑

i=1

tig(x, yi)
[ s∑

i=1

tif(u, yi) + ⟨µ , h(u)⟩p
]

= A8(x) <
s∑

i=1

tig(u, yi)⟨µ , h(x)⟩p.

Since the relations (5.2), gi(u, yi) > 0, i = 1, 2, . . . , s, and hj(x) ≤ 0, we get

s∑
i=1

tig(u, yi)⟨µ , h(x)⟩p ≤ 0.

Therefore, from (5.3), we obtain

(5.4) A8(x) < 0 = A8(u).

Let x and (u;µ, s, t, y) be (P )-feasible and (WD)-feasible, respectively. According
to the expression (5.1), there exist ξi ∈ ∂cf(u, yi), ζi ∈ ∂c(−g)(u, yi), i = 1, 2, . . . , s,
and ρj ∈ ∂chj(u), j ∈ J such that the vector

⟨ a8 ⟩ ≡
s∑

i=1

tig(u, yi)
[
⟨t , ξ⟩s + ⟨µ , ρ⟩p

]
+

[
s∑

i=1

tif(u, yi) + ⟨µ , h(u)⟩p

]
⟨t , ζ⟩s = 0,
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that is, the vector ⟨ a8 ⟩ is a zero vector, where

⟨t , ξ⟩s ≡
s∑

i=1

tiξi, ⟨t , ζ⟩s ≡
s∑

i=1

tiζi, ⟨µ , ρ⟩p ≡
p∑

j=1

µjρj ,

ξ = (ξ1, ξ2, . . . , ξs), ζ = (ζ1, ζ2, . . . , ζs), and ρ = (ρ1, ρ2, . . . , ρp).

This implies that

(5.5)
1

p
⟨⟨ a8 ⟩ , (epη(x,u) − 1)⟩ = 0.

If A8 is an Exp (p,r)-invexity w.r.t η at u in prXΓ2, we get

1

r
erA8(x) − 1

r
erA8(u) ≥ 1

p
erA8(u)⟨⟨ a8 ⟩ , (epη(x,u) − 1)⟩.

According to the above relation and (5.5), we have
1

r
erA8(x) − 1

r
erA8(u) ≥ 0.

By the exponential function, we obtain

A8(x) ≥ A8(u) = 0 for r ̸= 0,

which contradicts the inequality (5.4). Hence the inequality max
y∈Y

f(x, y)

g(x, y)
≥∑s

i=1 tif(u, yi) + ⟨µ , h(u)⟩p∑s
i=1 tig(u, yi)

is true, and the theorem is proved. �

Theorem 5.2 (Strong Duality). Let x be the efficient solution of problem (P )
satisfying the constraint qualification at x. Then there exists (µ∗, s∗, t∗, y∗) ∈ K2(x),
such that (x;µ∗, s∗, t∗, y∗) is feasible for (WD). If the hypotheses of Theorem 5.1
are fulfilled, then (x;µ∗, s∗, t∗, y∗) is an efficient solution to problem (WD) and the
two problems (P ) and (WD) have the same optimal values.

Proof. Let x be an efficient point of (P ) and satisfy the constraint qualification at
x. By the necessary conditions (3.6) ∼ (3.8), we conclude that (x;µ∗, s∗, t∗, y∗) is a
feasible solution of (WD). It follows that∑s∗

i=1 t
∗
i f(x, y

∗
i ) + ⟨µ∗ , h(x)⟩p∑s∗

i=1 t
∗
i g(x, y

∗
i )

= max
y∈Y

f(x, y)

g(x, y)
.

Employing the weak duality theorem (Theorem 5.1), it yields that (x;µ∗, s∗, t∗, y∗)
is the efficient point for problem (WD). Therefore, the two problems (P ) and (WD)
have the same optimal values. �
Theorem 5.3 (Strict Converse Duality). Let x and (u∗;µ∗, s∗, t∗, y∗) be the efficient
solutions to (P ) and (WD), respectively, and satisfying the constraint qualification
at x. Denote a function A9 : X → R by

A9(·) =
s∗∑
i=1

t∗i g(u
∗, y∗i )[f(·, y∗i ) + ⟨µ∗, h(·)⟩p]−

s∗∑
i=1

t∗i g(·, y∗i )[f(u∗, y∗i ) + ⟨µ, h(u∗)⟩p]

with A9(u
∗) = 0. Assume that A9(·) is a strictly Exp (p, r)-invex function w.r.t.

η at u∗ ∈ prXΓ2 for all optimal vectors x for (P ) and (u∗; s∗, t∗, y∗) for (WD),
respectively. Then x = u∗, and the efficient values of (P ) and (WD) are equal.
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Proof. We want to prove x = u∗.
Suppose on contrary that x∗ ̸= u∗. It will deduce to a contradiction. According to
relation (5.1), there exist ξi ∈ ∂cf(u∗, y∗i ), ζi ∈ ∂cg(u∗, y∗i ) for all i = 1, 2, . . . , s∗,
and ρj ∈ ∂chj(u

∗) for all j ∈ J , such that the vector

(5.6)

⟨ a9 ⟩ ≡
s∗∑
i=1

t∗i g(u
∗, y∗i ) [⟨t∗ , ξ⟩s∗ + ⟨µ∗ , ρ⟩p]

+

[
s∗∑
i=1

t∗i f(u
∗, y∗i ) + ⟨µ∗ , h(u∗)⟩p

]
⟨t∗ , ζ⟩s∗ = 0,

that is, ⟨ a9 ⟩ is a zero vector, where

⟨t∗ , ξ⟩s∗ ≡
s∗∑
i=1

t∗i ξi, ⟨t∗ , ζ⟩s∗ ≡
s∗∑
i=1

t∗i ζi, ⟨µ∗ , ρ⟩p ≡
p∑

j=1

µ∗
jρj ,

ξ = (ξ1, ξ2, . . . , ξs∗), ζ = (ζ1, ζ2, . . . , ζs∗), and ρ = (ρ1, ρ2, . . . , ρp).

This implies that

(5.7)
1

p
⟨⟨ a9 ⟩ , (epη(x,u∗) − 1)⟩ = 0.

From the strictly Exp (p, r)-invexity w.r.t. η at u∗ of A9 and equality (5.7), we get

(5.8) A9(x) > A9(u
∗).

From Theorem 5.2, we see that

max
y∈Y

f(x, y)

g(x, y)
=

∑s∗

i=1 t
∗
i f(u

∗, y∗i ) + ⟨µ∗ , h(u∗)⟩p∑s∗

i=1 t
∗
i g(u

∗, y∗i )
,

and so

f(x, y)

g(x, y)
≤

∑s∗

i=1 t
∗
i f(u

∗, y∗i ) + ⟨µ∗ , h(u∗)⟩p∑s∗

i=1 t
∗
i g(u

∗, y∗i )
for all y ∈ Y.

This implies that

f(x, y)
s∗∑
i=1

t∗i g(u
∗, y∗i )− g(x, y)

[
s∗∑
i=1

t∗i f(u
∗, y∗i ) + ⟨µ∗ , h(u∗)⟩p

]
≤ 0 for all y ∈ Y.

By t∗ ∈ I and y∗i ∈ Y (u∗), i = 1, 2, . . . , s∗, we obtain
(5.9)

s∗∑
i=1

t∗i f(x, y
∗
i )

s∗∑
i=1

t∗i g(u
∗, y∗i )−

s∗∑
i=1

t∗i g(x, y
∗
i )

[
s∗∑
i=1

t∗i f(u
∗, y∗i ) + ⟨µ∗ , h(u∗)⟩p

]
≤ 0.

This implies that

(5.10)
s∗∑
i=1

t∗i g(u
∗, y∗i )

[
s∗∑
i=1

t∗i f(x, y
∗
i ) + ⟨µ∗ , h(x)⟩p

]

−
s∗∑
i=1

t∗i g(x, y
∗
i )

[
s∗∑
i=1

t∗i f(u
∗, y∗i ) + ⟨µ∗ , h(u∗)⟩p

]
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= A9(x) ≤
s∗∑
i=1

t∗i g(u
∗, y∗i )⟨µ∗ , h(x)⟩p.

By the expression (5.2), y∗i ∈ Y (u∗) and g(u∗, y∗i ) > 0, i = 1, 2, . . . , s∗, but h(x) ∈
−Rp

+, it yields
s∗∑
i=1

t∗i g(u
∗, y∗i )⟨µ∗ , h(x)⟩p ≤ 0.

Therefore, from (5.10), we get

(5.11) A9(x) ≤ 0 = A9(u
∗).

Consequently, the expression (5.9) contradicts the inequality (5.8). Hence u∗ is an
optimal solution to (P ), and A9(x) = A9(u

∗) deduces u∗ = x. Therefore

max
y∈Y

f(u∗, y)

g(u∗, y)
=

∑s∗

i=1 t
∗
i f(u

∗, y∗i ) + ⟨µ∗ , h(u∗)⟩p∑s∗

i=1 t
∗
i g(u

∗, y∗i )
.

This proves the optimal values of the dual problem (WD) and the primal problem
(P ) are equal. �
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