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It is not hard to verify that (1.1) is equivalent to

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2, ∀x, y ∈ D(T )

(See Remark 2.1 in Section 2).

T is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ D(T ).

Throughout this paper, I stands for an identity mapping. The mapping T is said
to be a strict pseudo-contraction in the terminology of Browder and Petryshyn [5]
if for all x, y ∈ D(T ) there exists γ > 0 such that

(1.2) ⟨Tx− Ty, x− y⟩ ≤ ∥x− y∥2 − γ∥x− y − (Tx− Ty)∥2.

It is obvious that (1.2) is equivalent to

(1.3) ⟨x− y, (I − T )x− (I − T )y⟩ ≥ γ∥(I − T )x− (I − T )y∥2, ∀x, y ∈ D(T ).

If we set A := (I − T ) that satisfies (1.3), then A is said to be inverse strongly
monotone. For such a case, A may be called γ-inverse strongly monotone (See in
Section 4.). By setting k := 1 − 2γ, it is not hard to verify that (1.3) (and hence
(1.2)) is equivalent to

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T ) y∥2, ∀x, y ∈ D(T )

(See Remark 2.2 in Section 2).

In this case, it is easy to see that the constant k ∈ (−∞, 1). Moreover,

T is firmly nonexpansive ⇔ γ = 1

⇔ k = −1

⇔ T is (−1)−strict pseudo-contraction .

T is nonexpansive ⇔ γ =
1

2

⇔ k = 0

⇔ T is 0−strict pseudo-contraction .

We use F (T ) to denote the set of fixed points of T (i.e., F (T ) = {x ∈ D(T ) :
Tx = x}). T is said to be a k-quasi-strict pseudo-contraction in the terminology of
Browder and Petryshyn [5] if the set of fixed points F (T ) is nonempty and there
exists a constant k < 1 such that

∥Tx− p∥2 ≤ ∥x− p∥2 + k∥x− Tx∥2, ∀x ∈ D(T ) and p ∈ F (T ).

The class of strict pseudo-contractions contains the classes of nonexpansive map-
pings and firmly nonexpansive mappings. It is clear that

firmly nonexpansive ⇒ nonexpansive ⇒ strict pseudo-contraction .

However, the following examples show that the converse is not true.
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Example 1.1. Let H be a real Hilbert space and α ∈ (1,∞). Define Tα : H → H
by

Tαx = −αx, ∀x ∈ H.

Then, Tα is a strict pseudo-contraction but not a nonexpansive mapping.

Example 1.2. Take H ̸= {0} and let T = −I, it is not hard to verify that T is
nonexpansive but not firmly nonexpansive.

From a practical point of view, strict pseudo-contractions have more power-
ful applications than nonexpansive mappings do in solving inverse problems (see
Scherzer [22]). Therefore, it is important to develop theory of iterative methods
for strict pseudo-contractions. Within the past several decades, many authors have
been devoted to the studies on the existence and convergence of fixed points for
strict pseudo-contractions. In 1967, Browder and Petryshyn [5] introduced a con-
vex combination method to study strict pseudo-contractions in Hilbert spaces. On
the other hand, Marino and Xu [14] and Zhou [31] developed some iterative scheme
for finding a fixed point of a strict pseudo-contraction mapping.

In 2009, Aoyama, Kohsaka and Takahashi [1] provided the useful and interesting
lemma to confirm that the sequence generated by the shrinking projection method
is well defined even if the firmly nonexpansive mapping T has no fixed points:

Lemma 1.3 (Aoyama, Kohsaka and Takahashi [1, Lemma 4.2]). Let H be a Hilbert
space, C a nonempty closed convex subset of H, T : C → C a firmly nonexpansive
mapping and x0 ∈ H. Let {xn} be a sequence in C and {Cn} a sequence of closed
convex subsets of H generated by C1 = C and{

xn = PCn(x0),

Cn+1 = {z ∈ Cn : ⟨Txn − z, xn − Txn⟩ ≥ 0} ,

for all n ∈ N. Then Cn is nonempty for every n ∈ N, and consequently, {xn} is
well defined.

By using the lemma mentioned above, they proved the following theorem:

Theorem 1.4 (Aoyama, Kohsaka and Takahashi [1, Theorem 4.3]). Let H be a
Hilbert space, C a nonempty closed convex subset of H, T : C → C a firmly nonex-
pansive mapping and x0 ∈ H. Let {xn} be a sequence in C and {Cn} a sequence of
closed convex subsets of H generated by C1 = C and{

xn = PCn(x0),

Cn+1 = {z ∈ Cn : ⟨Txn − z, xn − Txn⟩ ≥ 0} ,

for all n ∈ N. Then the following are equivalent:

(1)
∞∩
n=1

Cn is nonempty;

(2) {xn} is bounded;
(3) F (T ) is nonempty.

Motivated and inspired by the results mentioned above, in this paper, we provide
some existence theorems of a strict pseudo-contraction by the way of the shrink-
ing projection method involving some necessary and sufficient conditions. Then we
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prove a strong convergence theorem and apply its applications to confirm the exis-
tence of a firmly nonexpansive mapping, a nonexpansive mapping and the existence
of the zeros of an inverse strongly monotone operator along with its convergent
results, respectively.

Throughout the paper, we will use the notation:

(1) → for strong convergence and ⇀ for weak convergence,
(2) ωw(xn) = {x : ∃xni ⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries

In this section, some definitions and remarks are provided and some relevant
lemmas which are useful to prove in the next section are collected. Most of them
are known others are not hard to find and understand the proof.

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥ and let C
be a closed convex subset of H. For every point x ∈ H there exists a unique nearest
point in C, denoted by PC(x), such that

∥x− PCx∥ 6 ∥x− y∥, ∀y ∈ C.

The mapping PC is called the metric projection of H onto C. It is well known that
PC is a firmly nonexpansive mapping of H onto C, that is

∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ , ∀x, y ∈ H.

Furthermore, for any x ∈ H and z ∈ C,

z = PCx ⇔ ⟨x− z, z − y⟩ ≥ 0, ∀y ∈ C.

Moreover, PCx is characterized by the following:

∥x− y∥2 ≥ ∥x− PCx∥2 + ∥y − PCx∥2, ∀y ∈ C.

It is obvious that the following identities hold:

(2.1) ∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2 ⟨x− y, y⟩ , ∀x, y ∈ H,

and

(2.2) ∥x− y∥2 = ∥x∥2 − 2 ⟨x, y⟩+ ∥y∥2, ∀x, y ∈ H.

Remark 2.1. Let H be a real Hilbert space and T be a mapping with domain
D(T ) and range R(T ). Then the following are equivalent:

(a) T is firmly nonexpansive (i.e., ∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩ , ∀x, y ∈
D(T ));

(b) ∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2, ∀x, y ∈ D(T ).

Proof. For each x, y ∈ D(T ) we notice that

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩

⇔ ∥Tx− Ty∥2 ≤ ∥x− y∥2 −
(
∥x− y∥2 − 2 ⟨x− y, Tx− Ty⟩+ ∥Tx− Ty∥2

)
⇔ ∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2.

The proof is complete. �
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Remark 2.2. Let H be a real Hilbert space and T be a mapping with domain
D(T ) and range R(T ). Then the following are equivalent:

(1) T is a strict pseudo-contraction in the terminology of Browder and

Petryshyn [5] (i.e., there exists γ > 0 such that ⟨Tx− Ty, x− y⟩ ≤ ∥x− y∥2−
γ∥x− y − (Tx− Ty)∥2, ∀x, y ∈ D(T ));

(2) ⟨x− y, (I − T )x− (I − T )y⟩ ≥ γ∥(I − T )x− (I − T )y∥2, ∀x, y ∈ D(T );

(3) ∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ D(T ) where
k := 1− 2γ.

Proof. It is easy to see that (i) and (ii) are equivalent. On the other hand, for all
x, y ∈ D(T ), it follows from the identity (2.2) that

∥Tx− Ty∥2 = ∥x− y − [(I − T )x− (I − T ) y]∥2

= ∥x− y∥2+ ∥(I − T )x− (I − T ) y∥2− 2 ⟨x− y, (I − T )x− (I − T ) y⟩ .(2.3)

It follows from (ii) and joining with (2.3), we get that

⟨x− y, (I − T )x− (I − T )y⟩ ≥ γ∥(I − T )x− (I − T )y∥2

⇔ −2 ⟨x− y, (I − T )x− (I − T )y⟩ ≤ −2γ∥(I − T )x− (I − T )y∥2

⇔ ∥Tx− Ty∥2 ≤ ∥x− y∥2 + (1− 2γ) ∥(I − T )x− (I − T )y∥2,
for all x, y ∈ D(T ). This shows that (ii) and (iii) are equivalent. The proof is
complete. �
Proposition 2.3 ( [14, Proposition 2.1]). Assume C is a closed convex subset of a
Hilbert space H let T : C → C be a self-mapping of C.

(1) If T is a k-strict pseudo-contraction, then T satisfies the Lipschitz condition

∥Tx− Ty∥ 6 1 + k

1− k
∥x− y∥ ∀x, y ∈ C.

(2) If T is a k-strict pseudo-contraction, then I − T is demiclosed at zero, i.e.,
if {xn} is a sequence in C such that xn ⇀ z and (I − T )xn → 0, then
(I − T )z = 0.

(3) If T is a k-quasi-strict pseudo-contraction, then the set of fixed point F (T )
is closed convex subset of C.

Next, we will provide some extensions of Proposition 2.3 in the sense of a k-strict
pseudo-contraction in the terminology of Browder and Petryshyn [5] (i.e., there
exists k ∈ (−∞, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C).

Proposition 2.4. Let C be a nonempty closed convex subset of a real Hilbert space
H and T : C → C be a k-strict pseudo-contraction in the terminology of Browder
and Petryshyn [5] (i.e., k ∈ (−∞, 1)). Then the following are satisfied:

(1) T satisfies the Lipschitz condition with Lipschitz constant L = max
{

1+k
1−k , 1

}
.

That is

∥Tx− Ty∥ ≤ max

{
1 + k

1− k
, 1

}
∥x− y∥ , ∀x, y ∈ C.
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(2) I−T is demiclosed at zero, i.e., if {xn} is a sequence in C such that xn ⇀ z
and (I − T )xn → 0, then (I − T )z = 0.

(3) If T is a k-quasi-strict pseudo-contraction in the terminology of Browder
and Petryshyn [5] (i.e., k ∈ (−∞, 1)), then the set F (T ) of fixed points of
T is a closed convex subset of C.

Proof. (i) We will divide the proof into two cases.
Case I. k ≤ 0.

Notice that k ≤ 0 ⇔ 2k ≤ 0 ⇔ 1 + k ≤ 1 − k ⇔ 1+k
1−k ≤ 1 ⇔ max

{
1+k
1−k , 1

}
= 1,

and then

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T ) y∥2

≤ ∥x− y∥2.
This implies that

∥Tx− Ty∥ ≤ ∥x− y∥ = max

{
1 + k

1− k
, 1

}
∥x− y∥ , ∀x, y ∈ C.

Case II. 0 ≤ k < 1.
In this case, we have 1− k > 0 and then

k ≥ 0 ⇔ 2k ≥ 0 ⇔ 1 + k ≥ 1− k ⇔ 1 + k

1− k
≥ 1 ⇔ max

{
1 + k

1− k
, 1

}
=

1 + k

1− k
.

On the other hand, we observe that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T ) y∥2

⇔ ∥Tx− Ty∥2 ≤ ∥x− y∥2 + k
(
∥x− y∥2 − 2 ⟨x− y, Tx− Ty⟩+ ∥Tx− Ty∥2

)
⇔ (1− k) ∥Tx− Ty∥2 ≤ (1 + k) ∥x− y∥2 − 2k ⟨x− y, Tx− Ty⟩ .

This implies by Cauchy-Schwarz inequality that

(1− k) ∥Tx− Ty∥2 − 2k ∥x− y∥ ∥Tx− Ty∥ − (1 + k) ∥x− y∥2 ≤ 0.

Solving this quadratic inequality, we obtain

∥Tx− Ty∥ ≤ 1 + k

1− k
∥x− y∥ = max

{
1 + k

1− k
, 1

}
∥x− y∥ , ∀x, y ∈ C.

The proofs of (ii) and (iii) are the same as Marino and Xu [14, Proposition
2.1]. �
Lemma 2.5 ( [24, Theorem 7.1.8]). Let K be a bounded closed convex subset of
a Hilbert space H and A : K → H a continuous monotone mapping. Then there
exists an element u0 ∈ K such that ⟨v − u0, Au0⟩ ≥ 0 for all v ∈ K.

3. Main results

In this section, motivated by Aoyama, Kohsaka and Takahashi [1] (see also, Mat-
sushita and Takahashi [17]), we discuss the existence of fixed point of a strict pseudo-
contraction in the terminology of Browder and Petryshyn [5] (i.e., k ∈ (−∞, 1)) by
using the shrinking projection technique playing as the tool to guarantee the exis-
tence of fixed point of this mapping.
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Lemma 3.1. Let H be a real Hilbert space and T be a k-strict pseudo-contraction
in the terminology of Browder and Petryshyn [5] (i.e., k ∈ (−∞, 1)) with domain
D(T ) and range R(T ). Then for all x, y ∈ D(T ) the following inequalities hold and
are equivalent:

(1) ∥x− Tx∥2 + ∥y − Ty∥2 ≤ 2

1− k
⟨x− y, (I − T )x⟩ − 2k

1− k
⟨x− y, y − Ty⟩

−2 ⟨Tx− y, y − Ty⟩ ;

(2) ∥x− Tx∥2 + ∥y − Ty∥2 ≤ 2

1− k
⟨x− y, (I − T )x⟩ − 2

1− k
⟨x− y, (I − T )y⟩

+2 ⟨x− Tx, y − Ty⟩ ;

(3) ∥x− Tx∥2 + ∥y − Ty∥2 ≤ 2

1− k
⟨x− Ty, (I − T )x⟩ − 2

1− k
⟨Tx− y, (I − T )y⟩

−2
1 + k

1− k
⟨x− Tx, y − Ty⟩ ;

(4) ∥x− Tx∥2 + ∥y − Ty∥2 ≤ ⟨x− Ty, (I − T )x⟩ − ⟨Tx− y, (I − T )y⟩

+
1 + k

2
∥(I − T )x− (I − T )y∥2.

Proof. Firstly, we will show that (2) holds. It follows from the identity (2.2) and
the inverse strongly monotone of (I − T )(See Remark 2.2) that

∥x− Tx∥2 + ∥y − Ty∥2 = ∥(I − T )x− (I − T ) y∥2 + 2 ⟨x− Tx, y − Ty⟩

≤ 2

1− k
⟨x− y, (I − T )x− (I − T )y⟩+ 2 ⟨x− Tx, y − Ty⟩

=
2

1− k
⟨x− y, (I − T )x⟩ − 2

1− k
⟨x− y, (I − T )y⟩(3.1)

+ 2 ⟨x− Tx, y − Ty⟩ .

So, we obtain (2). Next, we observe that

− 2

1− k
⟨x− y, (I − T )y⟩+ 2 ⟨x− Tx, y − Ty⟩

= − 2

1− k
⟨x− y, (I − T )y⟩+ 2 ⟨x− y, y − Ty⟩+ 2 ⟨y − Tx, y − Ty⟩

=

[
2− 2

1− k

]
⟨x− y, y − Ty⟩ − 2 ⟨Tx− y, y − Ty⟩(3.2)

= − 2k

1− k
⟨x− y, y − Ty⟩ − 2 ⟨Tx− y, y − Ty⟩ .

Substituting (3.2) in (3.1), we get (1) and hence (1) and (2) are equivalent. Next,
we will show that (4) is true. Let us consider

⟨Tx− Ty, (I − T )x− (I − T )y⟩ = ⟨Tx− Ty, (I − T )x⟩ − ⟨Tx− Ty, (I − T )y⟩
= ⟨Tx− Ty, (I − T )x⟩
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− ⟨(Tx− y) + (y − Ty) , (I − T )y⟩(3.3)

= ⟨Tx− Ty, (I − T )x⟩

− ⟨Tx− y, (I − T )y⟩ − ∥y − Ty∥2.

Adding and subtracting with x for the first term of the last line of (3.3), we have

⟨Tx− Ty, (I − T )x⟩ = ⟨Tx− x+ x− Ty, (I − T )x⟩
= ⟨Tx− x, (I − T )x⟩+ ⟨x− Ty, (I − T )x⟩

= −∥x− Tx∥2 + ⟨x− Ty, (I − T )x⟩ .(3.4)

Replacing (3.4) in (3.3), we obtain

⟨Tx− Ty, (I − T )x− (I − T )y⟩ = −∥x− Tx∥2 + ⟨x− Ty, (I − T )x⟩

− ⟨Tx− y, (I − T )y⟩ − ∥y − Ty∥2.(3.5)

On the other hand, we observe that

⟨Tx− Ty, (I − T )x− (I − T )y⟩
= ⟨x− y − [(I − T )x− (I − T )y] , (I − T )x− (I − T )y⟩

= ⟨x− y, (I − T )x− (I − T )y⟩ − ∥(I − T )x− (I − T )y∥2

≥ 1− k

2
∥(I − T )x− (I − T )y∥2 − ∥(I − T )x− (I − T )y∥2(3.6)

=

[
1− k − 2

2

]
∥(I − T )x− (I − T )y∥2

= −1 + k

2
∥(I − T )x− (I − T )y∥2.

Substituting (3.5) in (3.6), we have that

−∥x− Tx∥2 + ⟨x− Ty, (I − T )x⟩ − ⟨Tx− y, (I − T )y⟩ − ∥y − Ty∥2

≥ −1 + k

2
∥(I − T )x− (I − T )y∥2.(3.7)

By simple calculation, (3.7) can be written in the form

∥x− Tx∥2 + ∥y − Ty∥2 ≤ ⟨x− Ty, (I − T )x⟩ − ⟨Tx− y, (I − T )y⟩

+
1 + k

2
∥(I − T )x− (I − T )y∥2.(3.8)

This shows that (4) is true. Next, we will show that (3) is true. Let us look at the
last term of (3.8), we get

1 + k

2
∥(I − T )x− (I − T )y∥2

=
1 + k

2

(
∥x− Tx∥2 − 2 ⟨x− Tx, y − Ty⟩+ ∥y − Ty∥2

)
(3.9)

=
1 + k

2
∥x− Tx∥2 − (1 + k) ⟨x− Tx, y − Ty⟩+ 1 + k

2
∥y − Ty∥2.
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Replacing (3.8) with (3.9), we obtain

∥x− Tx∥2 + ∥y − Ty∥2 ≤ ⟨x− Ty, (I − T )x⟩ − ⟨Tx− y, (I − T )y⟩

+
1 + k

2
∥x− Tx∥2 − (1 + k) ⟨x− Tx, y − Ty⟩

+
1 + k

2
∥y − Ty∥2

⇕(
1− 1 + k

2

)(
∥x− Tx∥2 + ∥y − Ty∥2

)
≤ ⟨x− Ty, (I − T )x⟩ − ⟨Tx− y, (I − T )y⟩

− (1 + k) ⟨x− Tx, y − Ty⟩
⇕(

1− k

2

)(
∥x− Tx∥2 + ∥y − Ty∥2

)
≤ ⟨x− Ty, (I − T )x⟩ − ⟨Tx− y, (I − T )y⟩

− (1 + k) ⟨x− Tx, y − Ty⟩
⇕

∥x− Tx∥2 + ∥y − Ty∥2 ≤ 2

1− k
⟨x− Ty, (I − T )x⟩ − 2

1− k
⟨Tx− y, (I − T )y⟩

− 2
1 + k

1− k
⟨x− Tx, y − Ty⟩ .

This shows that (3) is true and hence (3) and (4) are equivalent. Next, we will show
that (2) and (3) are equivalent. For this fact, let us consider the three terms on the
right side of (2)

2

1− k
⟨x− y, (I − T )x⟩ − 2

1− k
⟨x− y, (I − T ) y⟩+ 2 ⟨x− Tx, y − Ty⟩

=
2

1− k
⟨x− Ty, (I − T )x⟩+ 2

1− k
⟨Ty − y, (I − T )x⟩

− 2

1− k
⟨x− Tx, (I − T ) y⟩ − 2

1− k
⟨Tx− y, (I − T ) y⟩

+ 2 ⟨x− Tx, y − Ty⟩

=
2

1− k
⟨x− Ty, (I − T )x⟩ − 2

1− k
⟨Tx− y, (I − T ) y⟩

+

[
2− 2

1− k
− 2

1− k

]
⟨x− Tx, y − Ty⟩

=
2

1− k
⟨x− Ty, (I − T )x⟩ − 2

1− k
⟨Tx− y, (I − T ) y⟩

− 2
1 + k

1− k
⟨x− Tx, y − Ty⟩ .

The proof is complete. �
Lemma 3.2. Let H be a real Hilbert space and T be a k-strict pseudo-contraction
in the terminology of Browder and Petryshyn [5] (i.e., k ∈ (−∞, 1)) with domain
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D(T ) and range R(T ). If there exists u ∈ D(T ) such that ⟨x− u, u− Tu⟩ ≥ 0 and
⟨Tx− u, u− Tu⟩ ≥ 0 for some x ∈ D(T ), then the following inequalities hold:
(3.10)

∥x− Tx∥2

≤



2

1− k
⟨x− u, (I − T )x⟩ ,

{
if k ∈ [0, 1) ;

or if ⟨x− Tx, u− Tu⟩ ≤ 0;
2

1− k
⟨x− u, (I − T )x⟩

2

1− k
⟨x− Tu, (I − T )x⟩

, if ⟨x− Tx, u− Tu⟩ ≥ 0 and k ∈ [0, 1) ;

2

1− k
⟨x− Tu, (I − T )x⟩ , if ⟨x− Tx, u− Tu⟩ ≥ 0 and k ∈ [−1, 0) ;

⟨x− Tu, (I − T )x⟩ , if k ∈ (−∞,−1] ,

Proof. If k ∈ [0, 1), then k < 1 ⇔ 0 < 1 − k and note that 0 ≤ 2k, so we have
2k
1−k ≥ 0 ⇔ − 2k

1−k ≤ 0, thus by using Lemma 3.1 (1), we obtain

∥x− Tx∥2 ≤ ∥x− Tx∥2 + ∥u− Tu∥2

≤ 2

1− k
⟨x− u, (I − T )x⟩ − 2k

1− k
⟨x− u, u− Tu⟩

− 2 ⟨Tx− u, u− Tu⟩(3.11)

≤ 2

1− k
⟨x− u, (I − T )x⟩ .

If ⟨x− Tx, u− Tu⟩ ≤ 0, then by using Lemma 3.1 (2), we obtain

∥x− Tx∥2 ≤ ∥x− Tx∥2 + ∥u− Tu∥2

≤ 2

1− k
⟨x− u, (I − T )x⟩ − 2

1− k
⟨x− u, (I − T )u⟩

+ 2 ⟨x− Tx, u− Tu⟩

≤ 2

1− k
⟨x− u, (I − T )x⟩ .

Before the proof in the next case, let us consider the following.

k ∈ [−1, 1) ⇔ −1 ≤ k < 1


⇔ 0 ≤ 1 + k < 2.

⇔ 1 ≥ −k > −1 ⇔ 2 ≥ 1− k > 0 ⇔ 1

2
≤ 1

1− k
.

Therefore, we have 21+k
1−k ≥ 1 + k ≥ 0 and then

(3.12) − 2
1 + k

1− k
≤ 0 whenever k ∈ [−1, 1) .

If ⟨x− Tx, u− Tu⟩ ≥ 0 and k ∈ [0, 1), then it follows from (3.12) and Lemma
3.1 (3) that

∥x− Tx∥2 ≤ ∥x− Tx∥2 + ∥u− Tu∥2
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≤ 2

1− k
⟨x− Tu, (I − T )x⟩ − 2

1− k
⟨Tx− u, (I − T )u⟩

− 2
1 + k

1− k
⟨x− Tx, u− Tu⟩

≤ 2

1− k
⟨x− Tu, (I − T )x⟩ .(3.13)

It follows simultaneously that (3.11) holds together, so we can conclude in this case
that

∥x− Tx∥2 ≤


2

1− k
⟨x− u, (I − T )x⟩

2

1− k
⟨x− Tu, (I − T )x⟩ .

If ⟨x− Tx, u− Tu⟩ ≥ 0 and k ∈ [−1, 0), then by employing (3.12) and Lemma
3.1 (3), we obtain (3.13).

Finally, if k ∈ (−∞,−1], then by the virtue of Lemma 3.1 (4), we obtain

∥x− Tx∥2 ≤ ∥x− Tx∥2 + ∥u− Tu∥2

≤ ⟨x− Tu, (I − T )x⟩ − ⟨Tx− u, (I − T )u⟩

+
1 + k

2
∥(I − T )x− (I − T )u∥2

≤ ⟨x− Tu, (I − T )x⟩ .

This completes the proof. �

Every iteration process generated by the shrinking projection method for a k-
strict pseudo-contraction T in the terminology of Browder and Petryshyn [5] (i.e.,
k ∈ (−∞, 1)) is well defined even if T is fixed point free.

Lemma 3.3. Let H be a Hilbert space, C a nonempty closed convex subset of
H, T : C → C a k-strict pseudo-contraction in the terminology of Browder and
Petryshyn [5] (i.e., k ∈ (−∞, 1)) and x0 ∈ H. Let {xn} be a sequence in C and
{Cn} a sequence of closed convex subsets of H generated by C1 = C and

(3.14)


xn = PCn(x0),

Cn+1 =

{
z ∈ Cn

∣∣∣∣ ∥xn − Txn∥2 ≤ max

{
2

1− k
, 1

}
⟨xn − z, xn − Txn⟩

}
for all n ∈ N. Then Cn is nonempty for every n ∈ N, and consequently, {xn} is
well defined.

Proof. Clearly, C1 is nonempty. Suppose that Cn is nonempty for some n ∈ N.
Since Cn ⊂ Cn−1 ⊂ . . . ⊂ C1, we have C1, C2, . . . , Cn are nonempty and hence
{x1, x2, . . . , xn} is well define. Put r = max {∥xi∥ , ∥Txi∥ : i = 1, 2, . . . , n} and Br =
{z ∈ H : ∥z∥ ≤ r}. Obviously C ∩Br is a nonempty bounded closed convex subset
of H. Let I denote the identity mapping on C. Since I − T is continuous and
monotone, it follows from Lemma 2.5 that there exists u ∈ C ∩Br such that

⟨y − u, (I − T )u⟩ ≥ 0, ∀y ∈ C ∩Br.



704 KASAMSUK UNGCHITTRAKOOL

In particular, we have

(3.15) ⟨xi − u, (I − T )u⟩ ≥ 0 and ⟨Txi − u, (I − T )u⟩ ≥ 0,

for every i = 1, 2, . . . , n.

Case I. max
{

2
1−k , 1

}
= 2

1−k .

Notice that max
{

2
1−k , 1

}
= 2

1−k ⇔ 1 ≤ 2
1−k ⇔ 1 − k ≤ 2 ⇔ −1 ≤ k ⇔ k ∈

[−1, 1), it follows from (3.15) and Lemma 3.2 that

∥xi − Txi∥2

≤



2

1− k
⟨xi − u, (I − T )xi⟩ ,

{
if k ∈ [0, 1) ;

or if ⟨xi − Txi, u− Tu⟩ ≤ 0;
2

1− k
⟨xi − u, (I − T )xi⟩

2

1− k
⟨xi − Tu, (I − T )xi⟩

, if ⟨xi − Txi, u− Tu⟩ ≥ 0 and k ∈ [0, 1) ;

2

1− k
⟨xi − Tu, (I − T )xi⟩ , if ⟨xi − Txi, u− Tu⟩ ≥ 0 and k ∈ [−1, 0) ,

for every i = 1, 2, . . . , n. This shows that u ∨ Tu ∈ Cn+1.

Case II. max
{

2
1−k , 1

}
= 1.

Notice that max
{

2
1−k , 1

}
= 1 ⇔ 2

1−k ≤ 1 ⇔ 2 ≤ 1 − k ⇔ k ≤ −1 ⇔ k ∈
(−∞,−1], it follows from (3.15) and Lemma 3.2 that

∥xi − Txi∥2 ≤ ⟨xi − Tu, (I − T )xi⟩ ,

for every i = 1, 2, . . . , n. This shows that Tu ∈ Cn+1.
By Case I and Case II, we can conclude that u∨ Tu ∈ Cn+1. By induction on n,

we obtain the desired result. �

The following theorem provides some necessary and sufficient conditions to con-
firm the existence of a fixed point of a k-strict pseudo-contraction in the terminology
of Browder and Petryshyn [5] (i.e., k ∈ (−∞, 1)) in Hilbert spaces.

Theorem 3.4. Let all the assumptions be as in Lemma 3.3. Then the following
are equivalent:

(1)
∞∩
n=1

Cn is nonempty;

(2) {xn} is bounded;
(3) F (T ) is nonempty.

Proof. [(1)⇒(2)] Let u ∈
∞∩
n=1

Cn, it follows from the nonexpansiveness of PCn that

∥xn − u∥ = ∥PCnx0 − PCnu∥ ≤ ∥x0 − u∥ .

This shows that {xn} is bounded.
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[(2)⇒(3)] Suppose that {xn} is bounded, we observe that

(3.16)

0 ≤ ∥xn+1 − xn∥2 = ∥xn+1 − PCnx0∥
2

≤ ∥xn+1 − x0∥2 − ∥PCnx0 − x0∥2

= ∥xn+1 − x0∥2 − ∥xn − x0∥2.

This shows that {∥xn − x0∥} is non-decreasing and then with the boundedness of
{xn}, we have lim

n→∞
∥xn − x0∥ exists. By using (3.16), we obtain

∥xn+1 − xn∥ → 0 as n → ∞.

Since xn+1 ∈ Cn+1, we have

(3.17) ∥xn − Txn∥2 ≤ max

{
2

1− k
, 1

}
⟨xn − xn+1, (I − T )xn⟩ → 0 as n → ∞.

Since {xn} is bounded, the reflexivity of H allows a subsequence {xni} of {xn} such
that xni ⇀ p ∈ C as i → ∞. By using (3.17) and the demicloseness of (I − T ), we
obtain p− Tp = 0 that is p ∈ F (T ) ̸= ∅.

[(3)⇒(1)] Suppose that F (T ) ̸= ∅. We will show that F (T ) ⊂ Cn for every
n ∈ N. If p ∈ F (T ), then we have (I − T )p = 0. Let us replace u in the proof of
Lemma 3.3 with p, it is not difficult to see that all inequalities are satisfied. This

implies that p ∈ Cn for all n ∈ N. Therefore F (T ) ⊂
∞∩
n=1

Cn ̸= ∅. �

Theorem 3.5. Let all the assumptions be as in Lemma 3.4. Then, if
∞∩
n=1

Cn ̸= ∅

(⇔ {xn} is bounded ⇔ F (T ) ̸= ∅), then the sequence {xn} generated by (3.14)
converges strongly to some points of C and its strong limit point is a member of
F (T ), that is, lim

n→∞
xn = PF (T )x0 ∈ F (T ).

Proof. If
∞∩
n=1

Cn ̸= ∅, then Theorem 3.4 ensures that {xn} is bounded and

lim
n→∞

∥xn − x0∥ exists. Thus, there exists {xni} ⊂ {xn} such that xni ⇀ p ∈ C as

i → ∞. By using (3.17) and the demicloseness of (I − T ), we obtain p − Tp = 0
that is p ∈ F (T ). Since PF (T )x0 ∈ F (T ) ⊂ Cn, we observe that

(3.18) ∥xn − x0∥ = ∥PCnx0 − x0∥ ≤
∥∥PF (T )x0 − x0

∥∥
for every n ∈ N. Since ∥ · ∥2 is weakly lower semicontinuous and {∥xn − x0∥} is
convergent, it follows from (3.18) that

∥p− x0∥2 ≤ lim inf
i→∞

∥xni − x0∥2 = lim
n→∞

∥xn − x0∥2 ≤
∥∥PF (T )x0 − x0

∥∥2.
Taking into account p ∈ F (T ), we obtain p = PF (T )x0. This implies that xn ⇀
PF (T )x0 and ∥xn − x0∥ → ∥PF (T )x0 − x0∥. Consequently, from (2.1), we obtain∥∥xn − PF (T )x0

∥∥2 = ∥∥xn − x0 −
(
PF (T )x0 − x0

)∥∥2
= ∥xn − x0∥2 −

∥∥PF (T )x0 − x0
∥∥2

− 2
⟨
xn − PF (T )x0, PF (T )x0 − x0

⟩
→ 0.
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This completes the proof. �

4. Deduced theorems and applications

In this section, some deduced theorems and applications of the main theorem are
provided in order to guarantee the existence of fixed points of a firmly nonexpansive
mapping, a nonexpansive mapping and the existence of the zeros of an inverse
strongly monotone operator. Moreover, we also have the methods that can be used
to find fixed points and zero points of the mappings mentioned above.

In particular case, if we set k = −1 in the previous section, then T is reduced to
a firmly nonexpansive mapping and 2

1−k = 2
1−(−1) = 1, so we have for any n ∈ N,

∥xn − Txn∥2 ≤ max

{
2

1− k
, 1

}
⟨xn − z, (I − T )xn⟩ = ⟨xn − z, (I − T )xn⟩

⇔ ⟨Txn − z, xn − Txn⟩ ≥ 0,

then we obtain the following corollaries:
Every iteration process generated by the shrinking projection method for a firmly

nonexpansive mapping T is well defined even if T is fixed point free.

Corollary 4.1 (Aoyama, Kohsaka, Takahashi [1, Lemma 4.2]). Let H be a Hilbert
space, C a nonempty closed convex subset of H, T : C → C a firmly nonexpansive
mapping and x0 ∈ H. Let {xn} be a sequence in C and {Cn} a sequence of closed
convex subsets of H generated by C1 = C and{

xn = PCn(x0),

Cn+1 = {z ∈ Cn : ⟨Txn − z, xn − Txn⟩ ≥ 0} ,

for all n ∈ N. Then Cn is nonempty for every n ∈ N, and consequently, {xn} is
well defined.

Corollary 4.2 (Aoyama, Kohsaka, Takahashi [1, Theorem 4.3]). Let H be a Hilbert
space, C a nonempty closed convex subset of H, T : C → C a firmly nonexpansive
mapping and x0 ∈ H. Let {xn} be a sequence in C and {Cn} a sequence of closed
convex subsets of H generated by C1 = C and{

xn = PCn(x0),

Cn+1 = {z ∈ Cn : ⟨Txn − z, xn − Txn⟩ ≥ 0} ,

for all n ∈ N. Then the following are equivalent:

(1)
∞∩
n=1

Cn is nonempty;

(2) {xn} is bounded;
(3) F (T ) is nonempty.

In particular case, if we set k = 0 in the previous section, then T is reduced to a
nonexpansive mapping and 2

1−k = 2
1−(0) = 2, so we have for any n ∈ N,

∥xn − Txn∥2 ≤ max

{
2

1− k
, 1

}
⟨xn − z, (I − T )xn⟩ = 2 ⟨xn − z, (I − T )xn⟩

then we obtain the following corollaries:
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Every iteration process generated by the shrinking projection method for a non-
expansive mapping T is well defined even if T is fixed point free.

Corollary 4.3. Let H be a Hilbert space, C a nonempty closed convex subset of H,
T : C → C a nonexpansive mapping and x0 ∈ H. Let {xn} be a sequence in C and
{Cn} a sequence of closed convex subsets of H generated by C1 = C and

(4.1)

xn = PCn(x0),

Cn+1 =
{
z ∈ Cn : ∥x− Tx∥2 ≤ 2 ⟨x− z, (I − T )x⟩

}
,

for all n ∈ N. Then Cn is nonempty for every n ∈ N, and consequently, {xn} is
well defined.

Corollary 4.4. Let all the assumptions be as in Lemma 4.3 for all n ∈ N. Then
the following are equivalent:

(1)
∞∩
n=1

Cn is nonempty;

(2) {xn} is bounded;
(3) F (T ) is nonempty.

Corollary 4.5. Let all the assumptions be as in Lemma 4.3. Then, if
∞∩
n=1

Cn ̸= ∅

(⇔ {xn} is bounded ⇔ F (T ) ̸= ∅), then the sequence {xn} generated by (4.1)
converges strongly to some points of C and its strong limit point is a member of
F (T ), that is lim

n→∞
xn = PF (T )x0 ∈ F (T ).

Recall that a mapping A is said to be monotone, if ⟨x− y,Ax−Ay⟩ > 0 for
all x, y ∈ H and inverse strongly monotone if there exists a real number γ > 0
such that ⟨x− y,Ax−Ay⟩ > γ∥Ax − Ay∥2 for all x, y ∈ H. For the second case,
A is said to be γ-inverse strongly monotone. It follows immediately that if A is
γ-inverse strongly monotone, then A is monotone and Lipschitz continuous, that
is, ∥Ax − Ay∥ 6 1

γ ∥x − y∥. It is well known (see, e.g., [6]) that if A is monotone,

then the solutions of the equation Ax = 0 correspond to the equilibrium points
of some evolution systems. Therefore, it is important to focus on finding the zero
point of monotone mappings. The pseudo-contractive mapping and strictly pseudo-
contractive mapping are strongly related to the monotone mapping and inverse
strongly monotone mapping, respectively. It is well known that

(i) A is γ-inverse strongly monotone
⇔ T := (I−A) a k-strict pseudo-contraction in the terminology of Brow-

der and Petryshyn [5] where k := 1− 2γ.

Indeed, for (i), we notice that the following equality always holds in a real Hilbert
space
(4.2)
∥(I−A)x− (I−A)y∥2 = ∥x− y∥2+∥Ax−Ay∥2− 2 ⟨x− y,Ax−Ay⟩ , ∀x, y ∈ H,

then by the virtue of (4.2) we obtain

⟨x− y,Ax−Ay⟩ > γ∥Ax−Ay∥2 ⇔ −2 ⟨x− y,Ax−Ay⟩ 6 −2γ∥Ax−Ay∥2
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⇔ ∥(I −A)x− (I −A)y∥2 6 ∥x− y∥2 + (1− 2γ)∥Ax−Ay∥2

⇔ ∥Tx− Ty∥2 6 ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2

(where T := (I −A) and k := 1− 2γ).

Every iteration process generated by the shrinking projection method for a γ-inverse
strongly monotone A is well defined even if A has no zeros.

Corollary 4.6. Let H be a Hilbert space and A : H → H be a γ-inverse strongly
monotone. Let x0 ∈ H, C1 = C and {xn} be a sequence generated by

(4.3)


x1 = PC1x0,

Cn+1 =

{
z ∈ Cn

∣∣∣∣ ∥Axn∥2 ≤ max

{
1

γ
, 1

}
⟨xn − z,Axn⟩

}
,

xn+1 = PCn+1x0,

for all n ∈ N. Then Cn is nonempty for every n ∈ N, and consequently, {xn} is
well defined.

Proof. Let T := (I−A). Then T is a k-strict pseudo-contraction in the terminology
of Browder and Petryshyn [5] and 1

γ = 2
1−(1−2γ) = 2

1−k where k := (1 − 2γ) ∈
(−∞, 1). Hence, applying Theorem 3.3, we have the desired result. �

The following corollary provides some necessary and sufficient conditions to con-
firm the existence of a zeros of a γ-inverse strongly monotone in Hilbert spaces.

Corollary 4.7. Let all the assumptions be as in Lemma 4.6 for all n ∈ N. Then
the following are equivalent:

(1)
∞∩
n=1

Cn is nonempty;

(2) {xn} is bounded;
(3) A−1(0) is nonempty.

Proof. Let T := (I−A). Then T is a k-strict pseudo-contraction in the terminology
of Browder and Petryshyn [5] and 1

γ = 2
1−k where k := 1 − 2γ, it is not difficult

to show that F (T ) = A−1(0). Hence, applying Theorem 3.4, we have the desired
result. �

Corollary 4.8. Let all the assumptions be as in Lemma 4.6. Then, if
∞∩
n=1

Cn ̸= ∅

(⇔ {xn} is bounded ⇔ A−1(0) ̸= ∅), then the sequence {xn} generated by (4.3)
converges strongly to some points of H and its strong limit point is a member of
A−1(0), that is lim

n→∞
xn = PA−1(0)x0 ∈ A−1(0).

Proof. Let T := (I−A) and by applying Theorem 3.5, we have the desired result. �
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