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Definition 1.3. An operator F on RJ is called firmly non-expansive (fne) if, for
every x and y in RJ , we have

⟨Fx− Fy, x− y⟩ ≥ ∥Fx− Fy∥22.(1.3)

Using Cauchy’s Inequality, we show easily that a firmly non-expansive operator
on RJ is non-expansive. The following lemma provides a useful characterization of
fne operators.

Lemma 1.4. An operator F : RJ → RJ is fne if and only if F = 1
2(I + N), for

some operator N that is ne with respect to the two-norm.

Proof. Suppose that F = 1
2(I +N). We show that F is fne if and only if N is ne in

the two-norm. First, we have

⟨Fx− Fy, x− y⟩ = 1

2
∥x− y∥22 +

1

2
⟨Nx−Ny, x− y⟩.

Also,∥∥∥1
2
(I +N)x− 1

2
(I +N)y

∥∥∥2
2
=

1

4
∥x− y∥2 + 1

4
∥Nx−Ny∥2 + 1

2
⟨Nx−Ny, x− y⟩.

Therefore,
⟨Fx− Fy, x− y⟩ ≥ ∥Fx− Fy∥22

if and only if
∥Nx−Ny∥22 ≤ ∥x− y∥22.

�
Corollary 1.5. An operator F is fne if and only if I − F is fne.

Definition 1.6. An operator A : RJ → RJ is averaged (av) if A = (1− α)I + αN ,
for some operator N that is non-expansive with respect to the two-norm, and some
scalar α in [0, 1).

It is clear from the definitions and Lemma 1.4 that any fne operator is av. The
product of finitely many av operators is again av [1]. According to the Kras-

nosel’skĭi-Mann Theorem [18, 16], if A is averaged and has fixed points, then the
sequence {Anx0} converges to a fixed point of A, for every initial vector x0. The
following theorem is well known; see, for example, [15, 19].

Theorem 1.7. Let f(x) be convex and differentiable and its derivative, ∇f(x),
non-expansive in the two-norm. Then ∇f(x) is firmly non-expansive.

Suppose that g(x) : RJ → R is convex and the function ∇g(x) is L-Lipschitz con-
tinuous. Let f(x) = 1

Lg(x), so that ∇f(x) is a non-expansive operator. According

to Theorem 1.7, the operator ∇f(x) = 1
L∇g(x) is firmly non-expansive. The proof

of Theorem 1.7 is not trivial. In [15] Golshtein and Tretyakov prove the following
theorem, from which Theorem 1.7 follows immediately.

Theorem 1.8. Let g : RJ → R be convex and differentiable. The following are
equivalent:

1)

||∇g(x)−∇g(y)||2 ≤ ||x− y||2;(1.4)
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2)

g(x) ≥ g(y) + ⟨∇g(y), x− y⟩+ 1

2
||∇g(x)−∇g(y)||22;(1.5)

and
3)

⟨∇g(x)−∇g(y), x− y⟩ ≥ ||∇g(x)−∇g(y)||22.(1.6)

The proof of Theorem 1.8 given in [15] is repeated in [8].
If f : RJ → R is convex and differentiable, and ∇f is L-Lipschitz continuous,

then A = I − γ∇f is averaged, for any γ in the interval (0, 2/L).

1.2. Moreau’s Proximity Operators. Let f : RJ → R be convex. For each
z ∈ RJ the function

mf (z) := min
x

{
f(x) +

1

2
∥x− z∥22

}
(1.7)

is minimized by a unique x [24]. The operator that associates with each z the
minimizing x is Moreau’s proximity operator, and we write x = proxf (z). The
operator proxf extends the notion of orthogonal projection onto a closed convex set
[20, 21, 22]. We have x = proxf (z) if and only if z−x ∈ ∂f(x), where the set ∂f(x)
is the sub-differential of f at x, given by

∂f(x) := {u|⟨u, y − x⟩ ≤ f(y)− f(x), for all y}.(1.8)

Proximity operators are also firmly non-expansive [11]; indeed, the proximity oper-
ator proxf is the resolvent of the maximal monotone operator B(x) = ∂f(x) and
all such resolvent operators are firmly non-expansive [4].

1.3. The Forward-Backward Splitting Algorithm. Our objective here is to
provide an elementary proof of convergence for the forward-backward splitting
(FBS) algorithm; a detailed discussion of this algorithm and its history is given
by Combettes and Wajs in [11].

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differentiable, and
∇f2 L-Lipschitz continuous. The iterative step of the FBS algorithm is

xk = proxγf1

(
xk−1 − γ∇f2(x

k−1)
)
.(1.9)

The FBS iteration has the form xk = Axk−1. When we select γ in the interval
(0, 2/L), the operator A becomes averaged, since it is now the product of a fne
operator and an av operator. Convergence of the sequence {xk} to a fixed point of
A, whenever A has fixed points, then follows from the KM Theorem.

As we shall show, convergence of the sequence {xk} to a fixed point of A can
be established without using the KM Theorem or the machinery of fne and av
operators, if γ is chosen to lie within the interval (0, 1/L].
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2. Sequential unconstrained optimization

Sequential unconstrained optimization algorithms can be used to minimize a func-
tion f : RJ → (−∞,∞] over a (not necessarily proper) subset C of RJ [13]. At
the kth step of a sequential unconstrained minimization method we obtain xk by
minimizing the function

Gk(x) = f(x) + gk(x),(2.1)

where the auxiliary function gk(x) is appropriately chosen. If C is a proper subset
of RJ we may force gk(x) = +∞ for x not in C, as in the barrier-function methods;
then each xk will lie in C. The objective is then to select the gk(x) so that the
sequence {xk} converges to a solution of the problem, or failing that, at least to
have the sequence {f(xk)} converging to the infimum of f(x) over x in C.

Our main focus in this paper is the use of sequential unconstrained optimiza-
tion algorithms to obtain iterative methods in which each iterate can be obtained
in closed form. Now the auxiliary functions gk(x) are selected not to impose a
constraint, but to facilitate computation.

3. SUMMA

In [7] we presented a particular class of sequential unconstrained minimization
methods called SUMMA. As we showed in that paper, this class is broad enough to
contain barrier-function methods, proximal minimization methods, and the simulta-
neous multiplicative algebraic reconstruction technique (SMART). By reformulating
the problem, the penalty-function methods can also be shown to be members of the
SUMMA class. Any alternating minimization (AM) problem with the five-point
property [12] can be reformulated as a SUMMA problem; therefore the expectation
maximization maximum likelihood (EMML) algorithm for Poisson data, which is
such an AM algorithm, must also be a SUMMA algorithm.

For a method to be in the SUMMA class we require that each auxiliary function
gk(x) satisfy the inequality

0 ≤ gk(x) ≤ Gk−1(x)−Gk−1(x
k−1),(3.1)

for all x. Note that it follows that gk(x
k−1) = 0, for all k.

We assume that the inequality in (3.1) holds for each k. We also assume that
inf f(x) = b > −∞. The next two results are taken from [7].

Proposition 3.1. The sequence {f(xk)} is non-increasing and the sequence {gk(xk)}
converges to zero.

Proof. We have

f(xk+1) + gk+1(x
k+1) = Gk+1(x

k+1) ≤ Gk+1(x
k) = f(xk).

Therefore,
f(xk)− f(xk+1) ≥ gk+1(x

k+1).

The sequence {f(xk)} is decreasing to a finite limit, since it is bounded below by b,
and, therefore, the sequence {gk(xk)} converges to zero. �
Theorem 3.2. The sequence {f(xk)} converges to b.
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Proof. Suppose that there is δ > 0 such that f(xk) ≥ b+ 2δ, for all k. Then there
is z ∈ C such that f(xk) ≥ f(z) + δ, for all k. From the inequality in (3.1) we have

gk(z)− gk+1(z) ≥ f(xk) + gk(x
k)− f(z) ≥ f(xk)− f(z) ≥ δ,(3.2)

for all k. But this cannot happen; the successive differences of a non-increasing
sequence of non-negative terms must converge to zero. �

4. Convergence of the FBS algorithm

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differentiable,
and ∇f2 L-Lipschitz continuous. Let {xk} be defined by Equation (1.9) and let
0 < γ ≤ 1/L.

For each k = 1, 2, . . . let

Gk(x) = f(x) +
1

2γ
∥x− xk−1∥22 −Df2(x, x

k−1),(4.1)

where

Df2(x, x
k−1) = f2(x)− f2(x

k−1)− ⟨∇f2(x
k−1), x− xk−1⟩.(4.2)

Since f2(x) is convex, Df2(x, y) ≥ 0 for all x and y and is the Bregman distance
formed from the function f2 [3].

The auxiliary function

gk(x) =
1

2γ
∥x− xk−1∥22 −Df2(x, x

k−1)(4.3)

can be rewritten as

gk(x) = Dh(x, x
k−1),(4.4)

where

h(x) =
1

2γ
∥x∥22 − f2(x).(4.5)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

⟨∇h(x)−∇h(y), x− y⟩ ≥ 0,(4.6)

for all x and y. This is equivalent to

1

γ
∥x− y∥22 − ⟨∇f2(x)−∇f2(y), x− y⟩ ≥ 0.(4.7)

Since ∇f2 is L-Lipschitz, the inequality (4.7) holds for 0 < γ ≤ 1/L.

Lemma 4.1. The xk that minimizes Gk(x) over x is given by Equation (1.9).

Proof. We know that xk minimizes Gk(x) if and only if

0 ∈ ∇f2(x
k) +

1

γ
(xk − xk−1)−∇f2(x

k) +∇f2(x
k−1) + ∂f1(x

k),

or, equivalently, (
xk−1 − γ∇f2(x

k−1)
)
− xk ∈ ∂(γf1)(x

k).
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Consequently,
xk = proxγf1(x

k−1 − γ∇f2(x
k−1)).

�
Theorem 4.2. The sequence {xk} converges to a minimizer of the function f(x),
whenever minimizers exist.

Proof. A relatively simple calculation shows that

Gk(x)−Gk(x
k) =

1

2γ
∥x− xk∥22 +

(
f1(x)− f1(x

k)− 1

γ
⟨(xk−1 − γ∇f2(x

k−1))− xk, x− xk⟩
)
.(4.8)

Since
(xk−1 − γ∇f2(x

k−1))− xk ∈ ∂(γf1)(x
k),

it follows that(
f1(x)− f1(x

k)− 1

γ
⟨(xk−1 − γ∇f2(x

k−1))− xk, x− xk⟩
)
≥ 0.

Therefore,

Gk(x)−Gk(x
k) ≥ 1

2γ
∥x− xk∥22 ≥ gk+1(x).(4.9)

Therefore, the inequality in (3.1) holds and the iteration fits into the SUMMA class.
Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(x
k) = f(x̂) + gk(x̂)− f(xk)− gk(x

k)

≤ f(x̂) +Gk−1(x̂)−Gk−1(x
k−1)− f(xk)− gk(x

k),

so that(
Gk−1(x̂)−Gk−1(x

k−1)
)
−

(
Gk(x̂)−Gk(x

k)
)
≥ f(xk)− f(x̂) + gk(x

k) ≥ 0.

Therefore, the sequence {Gk(x̂)−Gk(x
k)} is decreasing and the sequences {gk(xk)}

and {f(xk)− f(x̂)} converge to zero.
From

Gk(x̂)−Gk(x
k) ≥ 1

2γ
∥x̂− xk∥22,

it follows that the sequence {xk} is bounded and that a subsequence converges to
some x∗ with f(x∗) = f(x̂).

Replacing the generic x̂ with x∗, we find that {Gk(x
∗) − Gk(x

k)} is decreasing,
and by Equation (4.8), a subsequence, and therefore, the entire sequence, converges
to zero. From the inequality in (4.9), we conclude that the sequence {∥x∗ − xk∥22}
converges to zero, and so {xk} converges to x∗. This completes the proof of the
theorem. �

5. Some examples

We present some examples to illustrate the application of the convergence theo-
rem.
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5.1. Projected Gradient Descent. Let C be a non-empty, closed convex subset
of RJ and f1(x) = ιC(x), the function that is +∞ for x not in C and zero for x
in C. Then ιC(x) is convex, but not differentiable. We have proxγf1 = PC , the
orthogonal projection onto C. The iteration in Equation (1.9) becomes

xk = PC

(
xk−1 − γ∇f2(x

k−1)
)
.(5.1)

The sequence {xk} converges to a minimizer of f2 over x ∈ C, whenever such
minimizers exist, for 0 < γ ≤ 1/L.

5.1.1. The CQ Algorithm. Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI ,
both closed convex sets. The split feasibility problem (SFP) is to find x in C such
that Ax is in Q. The function

f2(x) =
1

2
∥PQAx−Ax∥22(5.2)

is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spectral radius
of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax.(5.3)

We want to minimize the function f2(x) over x in C, or, equivalently, to minimize
the function f(x) = ιC(x) + f2(x). The projected gradient descent algorithm has
the iterative step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
;(5.4)

this iterative method was called the CQ-algorithm in [5, 6]. The sequence {xk}
converges to a solution whenever f2 has a minimum on the set C, for 0 < γ ≤ 1/L.

In [10, 9] the CQ algorithm was extended to a multiple-sets algorithm and applied
to the design of protocols for intensity-modulated radiation therapy.

5.1.2. The Projected Landweber Algorithm. The problem is to minimize the function

f2(x) =
1

2
∥Ax− b∥22,

over x ∈ C. This is a special case of the SFP and we can use the CQ-algorithm,
with Q = {b}. The resulting iteration is the projected Landweber algorithm [2];
when C = RJ it becomes the Landweber algorithm [17].

6. Minimizing f2 over a linear manifold

Suppose that we want to minimize f2 over x in the linear manifold M = S + p,
where S is a subspace of RJ of dimension I < J and p is a fixed vector. Let A be an
I by J matrix such that the I columns of AT form a basis for S. For each z ∈ RI

let

d(z) = f2(A
T z + p),

so that d is convex, differentiable, and its gradient,

∇d(z) = A∇f2(A
T z + p),
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is K-Lipschitz continuous, for K = ρ(ATA)L. The sequence {zk} defined by

zk = zk−1 − γ∇d(zk−1)(6.1)

converges to a minimizer of d over all z in RI , whenever minimizers exist, for
0 < γ ≤ 1/K.

From Equation (6.1) we get

xk = xk−1 − γATA∇f2(x
k−1),(6.2)

with xk = AT zk + p. The sequence {xk} converges to a minimizer of f2 over all x
in M .

Suppose now that we begin with an algorithm having the iterative step

xk = xk−1 − γATA∇f2(x
k−1),(6.3)

where A is any real I by J matrix having rank I. Let x0 be in the range of AT , so
that x0 = AT z0, for some z0 ∈ RI . Then each xk = AT zk is again in the range of
AT , and we have

AT zk = AT zk−1 − γATA∇f2(A
T zk−1).(6.4)

With d(z) = f2(A
T z), we can write Equation (6.4) as

AT
(
zk − (zk−1 − γ∇d(zk−1))

)
= 0.(6.5)

Since A has rank I, AT is one-to-one, so that

zk − zk−1 − γ∇d(zk−1) = 0.(6.6)

The sequence {zk} converges to a minimizer of d, over all z ∈ RI , whenever such
minimizers exist, for 0 < γ ≤ 1/K. Therefore, the sequence {xk} converges to a
minimizer of f2 over all x in the range of AT .

7. Feasible-point algorithms

Suppose that we want to minimize a convex differentiable function f(x) over x
such that Ax = b, where A is an I by J full-rank matrix, with I < J . If Axk = b
for each of the vectors {xk} generated by the iterative algorithm, we say that the
algorithm is a feasible-point method.

7.1. The Projected Gradient Algorithm. Let C be the feasible set of all x in
RJ such that Ax = b. For every z in RJ , we have

PCz = PNS(A)z +AT (AAT )−1b,(7.1)

where NS(A) is the null space of A. Using

PNS(A)z = z −AT (AAT )−1Az,(7.2)

we have

PCz = z +AT (AAT )−1(b−Az).(7.3)

Using Equation (1.9), we get the iteration step for the projected gradient algorithm:

xk = xk−1 − γPNS(A)∇f(xk−1),(7.4)

which converges to a solution for 0 < γ ≤ 1/L, whenever solutions exist.
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In the next subsection we present a somewhat simpler approach.

7.2. The Reduced Gradient Algorithm. Let x0 be a feasible point, that is,
Ax0 = b. Then x = x0 + p is also feasible if p is in the null space of A, that is,
Ap = 0. Let Z be a J by J − I matrix whose columns form a basis for the null
space of A. We want p = Zv for some v. The best v will be the one for which the
function

ϕ(v) = f(x0 + Zv)

is minimized. We can apply to the function ϕ(v) the steepest descent method, or
the Newton-Raphson method, or any other minimization technique.

The steepest descent method, applied to ϕ(v), is called the reduced steepest
descent algorithm [23]. The gradient of ϕ(v), also called the reduced gradient, is

∇ϕ(v) = ZT∇f(x),

where x = x0+Zv; the gradient operator∇ϕ is thenK-Lipschitz, forK = ρ(ATA)L.
Let x0 be feasible. The iteration in Equation (1.9) now becomes

vk = vk−1 − γ∇ϕ(vk−1),(7.5)

so that the iteration for xk = x0 + Zvk is

xk = xk−1 − γZZT∇f(xk−1).(7.6)

The vectors xk are feasible and the sequence {xk} converges to a solution, whenever
solutions exist, for any 0 < γ < 1

K .

7.3. The Reduced Newton-Raphson Method. The same idea can be applied
to the Newton-Raphson method. The Newton-Raphson method, applied to ϕ(v), is
called the reduced Newton-Raphson method [23]. The Hessian matrix of ϕ(v), also
called the reduced Hessian matrix, is

∇2ϕ(v) = ZT∇2f(c)Z,

so that the reduced Newton-Raphson iteration becomes

xk = xk−1 − Z
(
ZT∇2f(xk−1)Z

)−1
ZT∇f(xk−1).(7.7)

Let c0 be feasible. Then each xk is feasible. The sequence {xk} is not guaranteed
to converge.

8. Conclusions

The forward-backward splitting algorithm can be formulated as a member of the
SUMMA class of sequential unconstrained minimization algorithms. Convergence
of the iterative sequence can then be established without relying on the machinery
of firmly non-expansive and averaged operators. Examples are given to illustrate
the usefulness of the forward-backward splitting algorithm.
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