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be missing from the liturature. Therefore, in this paper, we will introduce some new
classes of selfmaps that are naturally continuous and virtually stable with respect
to the weak topology, as well as formulate new fixed point theorems for those maps.

In the first section, we recall some backgrounds in functional analysis, topology
and fixed point theory as well as results from [4]. Then, in section 2, we introduce
the notions of a functionally lipschitzian selfmap and a functionally uniformly lip-
schitzian selfmap on a normed space, and show that they are weakly continuous
and weakly virtually stable, respectively. Together with Theorem 2.6 in [4], it is
immediate that the fixed point set of a functionally uniformly lipschitzian selfmap
is always a retract of its weak convergence set. In section 3, we prove some new
fixed point theorems for functionally uniformly lipschitzian selfmaps with respect to
certain sequences. These maps somehow resemble contractions in metric fixed point
theory. Finally, in section 4, we give some criteria for a map to be functionally uni-
formly lipschitzian in an infinite dimensional Banach space having a Shauder basis.
As a result, we obtain some explicit examples of functionally uniformly lipschitzian
selfmaps including the one in Example 5.7 that is not nonexpansive and hence falls
outside the framework of [2].

2. Preliminaries

Let (E, ∥.∥) be a normed space, X ⊆ E and E∗ denote its dual space (the space
of all continuous linear functionals on E). The weak topology on E is the coarsest
topology making each f ∈ E∗ continuous. We will denote X equipped with the
subspace topology of the weak topology on E by Xw. As usual, each open set
in Xw is regarded as a weakly open subset of X, and by a weak neighborhood
of x ∈ X, we mean a weakly open subset of X containing x. It is well known
(see [7]) that Ew is always regular (but it may not be metrizable), and hence so is
Xw. A family F of continuous functionals on X is called weakly equicontinuous at
x ∈ X if for each ϵ > 0, there exists a weak neighborhood U (in X) of x such that
f(U) ⊆ (f(x) − ϵ, f(x) + ϵ) for all f ∈ F . To each selfmap T : X → X, we will
associate its weak counterpart Tw : Xw → Xw given by Tw(x) = T (x). Clearly,
F (Tw) = F (T ) and we will say that T is weakly continuous if Tw is continuous.
Notice also that the continuity of T does not always imply the weak continuity :

Example 2.1. Consider T : ℓ2 → ℓ2 given by T (x) = (∥x∥, 0, 0, . . . ) for any x ∈ ℓ2.

Let en = (0, . . . , 0,

n−th︷︸︸︷
1 , 0, . . . ). Clearly, T is continuous (being nonexpansive).

However, since the sequence (en) weakly converges to 0 while the sequence (T (en)) =
(e1) does not converge to T (0) = 0, the map T is not weakly continuous.

Also recall that a selfmap T : X → X is said to be lipschitzian if there is L ≥ 0
such that ∥T (x) − T (y)∥ ≤ L∥x − y∥ for all x, y ∈ X. The smallest such L of a
lipschitzian map T will be called the Lipschitz constant of T , and denoted by L(h).

When E is finite dimensional, a finite sequence e1, . . . , eN is a basis for E if each
x ∈ E can be uniquely written as x =

∑N
n=1 αnen where α1, . . . , αN are real num-

bers. Similarly, in an infinite dimensional (real) Banach space E, a sequence (en)
is a Shauder basis for E if each x ∈ E can be uniquely written as x =

∑
n∈N αnen
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where (αn) is a sequence of real numbers. In both situations, each coordinate func-
tional e∗m : E → R given by e∗m(

∑
n∈N αnen) = αm is continuous and we can always

assume that the basis is normalised; i.e., ∥en∥ = 1 for all n (see [7] for more details).
Following [4], we will define the weak convergence set of a selfmap T : X → X

to be C(Tw) and simply denote it by Cw(T ). Since Cw(T ) is generally larger
than C(T ), it tends to be topologically simpler than C(T ). For instance, Cw(T )
has a better chance than C(T ) to be the whole domain X. Recall also that a
selfmap T : X → X is virtually stable if it is continuous, F (T ) ̸= ∅, and for each
x ∈ F (T ) and each neighborhood U of x, there exist a neighborhood V of x and an
increasing sequence (kn) of positive integers such that T kn(V ) ⊆ U for all n ∈ N.
When the sequence (kn) is independent of both x and U , we will call T uniformly
virtually stable. Thus, we will say that T is weakly (uniformly) virtually stable
if Tw is (uniformly) virtually stable. With these terminologies, Theorem 2.6 [4]
immediately gives us the following connection between the fixed point set of T and
its weak convergence set :

Theorem 2.2. If T : X → X is weakly virtually stable, then F (T ) is a retract of
Cw(T ).

3. Functionally lipschitzian selfmaps

As seen in Example 2.1, nonexpansive maps do not behave well with respect to
the weak continuity. In this section, we will explore the weak continuity and the
weak virtual stability for new classes of maps whose definitions are motivated by
those of lipschitzian maps. As usual, we let X be a nonempty subset of a normed
space E and T : X → X a selfmap on X with F (T ) ̸= ∅. Also, for each f ∈ E∗, let
∥.∥f denote the seminorm defined by ∥x∥f = |f(x)| for each x ∈ E.

Definition 3.1. T is called

• functionally lipschitzian if for each f ∈ E∗, there exist g1, g2, . . . , gn ∈ E∗

such that

∥T (x)− T (y)∥f ≤
n∑

i=1

∥x− y∥gi

for any x, y ∈ X.
• functionally uniformly lipschitzian if for each f ∈ E∗, there exist g1, g2, . . . ,
gn ∈ E∗ such that

∥T k(x)− T k(y)∥f ≤
n∑

i=1

∥x− y∥gi

for any x, y ∈ X and k ∈ N.
• functionally uniformly quasi-lipschitzian if F (T ) ̸= ∅ and for each f ∈ E∗,
there exist g1, g2, . . . , gn ∈ E∗ such that

∥T k(x)− p∥f ≤
n∑

i=1

∥x− p∥gi

for any x ∈ X, p ∈ F (T ) and k ∈ N.
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It is clear from the above definition that a functionally uniformly lipschitzian self-
map is both functionally lipschitzian and functionally uniformly quasi-lipschitzian.
Although one can readily extend the above definitions to a nonself map T : X → E,
we will restrict our attention only to a selfmap for the purpose of this paper.

Example 3.2. A continuous affine map on a Banach space E is always functionally
lipschitzian. For if T : E → E is a continuous affine map, says T (x) = L(x) + c
for some linear map L : E → E and some c ∈ E, we have for each f ∈ E∗,
∥T (x)−T (y)∥f = |f ◦L(x)− f ◦L(y)|. Hence, by letting g = f ◦L ∈ E∗, we clearly
obtain ∥T (x)− T (y)∥f ≤ ∥x− y∥g for any x, y ∈ X.

Theorem 3.3. Suppose E is finite dimensional. Then T is functionally lipschitzian
if and only if T is lipschitzian.

Proof. Let e1, e2, . . . , eN be a normalised basis for E. So, for each x ∈ X, we write
x =

∑N
n=1 e

∗
n(x)en and T (x) =

∑N
n=1(e

∗
n ◦ T (x))en, where e∗n : E → R denotes the

usual n-th coordinate functional.
(⇒) Since T is functionally lipschitzian, for each n = 1, . . . , N , there are gn,1, . . . ,

gn,kn ∈ E∗ such that for any x, y ∈ X,

|e∗n(T (x)− T (y))| = ∥T (x)− T (y)∥e∗n ≤
kn∑
i=1

∥x− y∥gn,i ≤
kn∑
i=1

∥gn,i∥∥x− y∥

Then, for any x, y ∈ X, we have

∥T (x)− T (y)∥ =
∥∥∥ N∑
n=1

(e∗n(T (x)− T (y)))en

∥∥∥
≤

N∑
n=1

|e∗n(T (x)− T (y))|

≤
( N∑

n=1

kn∑
i=1

∥gn,i∥
)
∥x− y∥.

(⇐) Suppose ∥T (x) − T (y)∥ ≤ L∥x − y∥ for some L ≥ 0 and for all x, y ∈ X.
Without loss of generality, we may assume that L > 0.

Then for any f ∈ E∗ and x, y ∈ X, we have

∥T (x)− T (y)∥f = ∥f(T (x)− T (y))∥
≤ ∥f∥∥T (x)− T (y)∥
≤ L∥f∥∥x− y∥

≤ L∥f∥
∥∥∥ N∑
n=1

e∗n(x− y)en

∥∥∥
≤

N∑
n=1

∥L∥f∥e∗n(x− y)∥



FIXED POINTS OF FUNCTIONALLY LIPSCHITZIAN MAPS 669

=
N∑

n=1

∥x− y∥L∥f∥e∗n .

�
Following the proof of the previous theorem, we also have

Theorem 3.4. Suppose E is finite dimensional. Then T is functionally uniformly
lipschitzian if and only if T is uniformly lipschitzian.

When E is infinite diemensional, the notions of functionally (uniformly) lips-
chitzian maps and (uniformly) lipschitzian maps are not equivalent. In fact, we will
see later on that the map in Example 2.1 (which is a lipschitzian) is not functionally
lipschitzian. In the next section, we will furthur explore functionally lipschitzian
maps and functionally uniformly lipschitzian maps on infinite dimensional Banach
spaces, but for now, we will show that functionally (uniformly quasi-) lipschitzian
maps behave very well with respect to the weak continuity (weak virtual stability).
First, we need the following lemmas :

Lemma 3.5. A map T : X → X is weakly continuous if and only if, for each
f ∈ E∗, f ◦ T is weakly continuous.

Proof. See Corollary 2.4.5 in [7]. �
Theorem 3.6. If T : X → X is functionally lipschitzian, then it is weakly contin-
uous.

Proof. Let f ∈ E∗, x ∈ X and ϵ > 0. Then, there exist g1, g2, . . . , gn ∈ E∗ such
that

∥T (x)− T (y)∥f ≤
n∑

i=1

∥x− y∥gi ,

for all x, y ∈ X. Clearly, U := X ∩
∩n

i=1 gi
−1

(
gi(x) − ϵ

n , gi(x) +
ϵ
n

)
is a weak

neighborhood (in X) of x such that for each y ∈ U , we have

|f ◦ T (x)− f ◦ T (y)| = ∥T (x)− T (y)∥f ≤
n∑

i=1

∥x− y∥gi =
n∑

i=1

|gi(x)− gi(y)| < ϵ;

i.e., T (y) ∈ f−1
(
f ◦ T (x)− ϵ, f ◦ T (x) + ϵ

)
. It follows that

U ⊆ T−1
(
f−1

(
f ◦ T (x)− ϵ, f ◦ T (x) + ϵ

))
= (f ◦ T )−1

(
f ◦ T (x)− ϵ, f ◦ T (x) + ϵ

)
,

and hence f ◦ T is weakly continuous at x. Then by Lemma 3.5, T is weakly
continuous. �
Example 3.7. The map T : ℓ2 → ℓ2 as in Example 2.1 is not functionally lips-
chitzian because it is not weakly continuous.

Lemma 3.8. A weakly continuous map T : X → X is weakly uniformly virtually
stable with respect to a sequence (kn) if and only if, for each f ∈ E∗, the family
{f ◦ T kn} is weakly equicontinuous at each fixed point of T .
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Proof. (⇒) Let f ∈ E∗, ϵ > 0 and p ∈ F (T ). Since U := X ∩ f−1(f(p)− ϵ, f(p)+ ϵ)
is a weak neighborhood (in X) of p, then, by weak virtual stability of T , there exists
a weak neighborhood V (in X) of p such that T kn(V ) ⊆ U for all n ∈ N. It follows
that f ◦ T kn(V ) ⊆ (f(p)− ϵ, f(p) + ϵ) for all n ∈ N, and hence family {f ◦ T kn} is
weakly equicontinuous at x.

(⇐) Let p ∈ F (T ) and U a weak neighborhood (in X) of p. Then, there exist
f1, . . . , fn ∈ E∗ and ϵ > 0 such that X ∩

∩m
i=1 f

−1
i (fi(p)− ϵ, fi(p)+ ϵ) ⊆ U . By weak

equicontinuity of {f ◦T kn} at p, for each i = 1, . . . ,m, there is a weak neighborhood
Vi (in X) of p such that

fi ◦ T kn(Vi) ⊆ (fi ◦ T kn(p)− ϵ, fi ◦ T kn(p) + ϵ) = (fi(p)− ϵ, fi(p) + ϵ),

for all n ∈ N. By letting V =
∩m

i=1 Vi, we obtain a weak neighborhood V (in X) of
p such that for all n ∈ N,

T kn(V ) = T kn(
m∩
i=1

Vi) ⊆
m∩
i=1

T kn(Vi) ⊆ X ∩
m∩
i=1

f−1
i (fi(p)− ϵ, fi(p) + ϵ) ⊆ U.

Therefore, T is weakly uniformly virtually stable with respect to (kn). �
Theorem 3.9. If T : X → X is weakly continuous and functionally uniformly
quasi-lipschitzian, then it is weakly uniformly virtually stable, and hence F (T ) is a
retract of Cw(T ).

Proof. Let f ∈ E∗, p ∈ F (T ) and ϵ > 0. Then, there exists g1, g2, . . . , gn ∈ E∗ such
that

∥T k(x)− p∥f ≤
n∑

i=1

∥x− p∥gi ,

for all x ∈ X and k ∈ N. Clearly, U := X ∩
∩n

i=1 gi
−1

(
gi(p) − ϵ

n , gi(p) +
ϵ
n

)
is a

weak neighborhood (in X) of p such that for each x ∈ U and k ∈ N, we have

|f ◦ T k(x)− f(p)| = ∥T k(x)− p∥f ≤
n∑

i=1

∥x− p∥gi =
n∑

i=1

|gi(x)− gi(p)| < ϵ;

i.e., T k(x) ∈ f−1(f(p)−ϵ, f(p)+ϵ). It follows that f ◦T k(U) ⊆ (f(p)−ϵ, f(p)+ϵ) for
all k ∈ N, and hence {f ◦T k} is weakly equicontinuous at p. Since T is also assumed
to be weakly continuous, then by Lemma 3.8, T is weakly uniformly virtually stable
with respect to the sequence of all natural numbers, and by Theorem 2.2, F (T ) is
a retract of Cw(T ). �

The previous two theorems immediately imply :

Corollary 3.10. If T : X → X is functionally uniformly lipschitzian, then it is
weakly uniformly virtually stable, and hence F (T ) is a retract of Cw(T ).

In particular, we obtain the following criterion for contractibility of fixed point
sets :

Corollary 3.11. If T : X → X is functionally uniformly lipschitzian and Cw(T )
is connected [contractible], then F (T ) is is connected [contractible].
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Remark 3.12. We may tempt to combine Corollary 3.11 with Opial’s type re-
sults (for example, see [8]) to obtain some explicit contractibility criteria for the
fixed point set of a nonexpansive functionally uniformly lipschitzian map. However,
such results are not new since in those settings, X is always convex in a strictly
convex Banach space and hence F (T ) is automatically convex, connected and even
contractible. Therefore, in order that Corollary 3.11 will have some significance
in application, some new results on connectedness or contractibility of Cw(T ) in a
more general setting need to be established.

4. Fixed Point Theorems

To prove some fixed point thorems, we need to introduce a variant of functionally
uniformly lipschitzian selfmaps. Let X be a nonempty subset of a normed space E
and T : X → X a selfmap as in the previous section, but now we will not assume
that T has a fixed point.

Definition 4.1. Let (zk) be a sequence of positive real numbers. The map T :
X → X is called functionally uniformly lipschitzian with respect to (zk) if for each
f ∈ E∗, there exist g1, g2, . . . , gn ∈ E∗ such that

∥T k(x)− T k(y)∥f ≤ zk

n∑
i=1

∥x− y∥gi

for any x, y ∈ X and k ∈ N.

Remark 4.2. A functionally uniformly lipschitzian selfmap is always functionally
uniformly lipschitzian with respect to the constant sequence (1), while a function-
ally uniformly lipschitzian selfmap with respect to a bounded sequence is always
functionally uniformly lipschitzian.

Theorem 4.3. Suppose T : X → X is functionally uniformly lipschitzian selfmap
with respect to a sequence (zk) converging to 0. If there exists x0 ∈ X such that the
sequence (T k(x0)) has a weakly convergent subsequence, then T has a unique fixed
point in X.

Proof. Let (T jk(x0)) be a subsequence of (T k(x0)) such that (T jk(x0)) converges
weakly to p ∈ X. Then we have

∥T jk+1(x0)− p∥f ≤ ∥T jk(T (x0))− T jk(x0)∥f + ∥T jk(x0)− p∥f

≤ zjk

n∑
i=1

∥T (x0)− x0∥gi + ∥T jk(x0)− p∥f

Since (zk) converges to 0, the sequence (T jk+1(x0)) converges weakly to p. Also,
since (zk) is bounded, T is weakly continuous (by Theorem 3.6) and hence the se-
quence (T jk+1(x0)) converges weakly to T (p). Since the weak topology is Hausdorff,
it follows that T (p) = p.

For uniqueness, suppose x and y are fixed points of T . Then for each f ∈ E∗ and
k ∈ N,

∥x− y∥f = ∥T k(x)− T k(y)∥f ≤ zk

n∑
i=1

∥x− y∥gi .
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Since the sequence (zk) converges to 0, we must have x = y. �
Corollary 4.4. If X is closed and bounded subset of a reflexive Banach space, and
T : X → X is functionally uniformly lipschitzian selfmap with respect to a sequence
(zk) converging to 0, then T has a unique fixed point in X.

Proof. By the assumption, every sequence in X has a weakly convergent subse-
quence, and hence, T has a unique fixed point in X by the previous theorem. �
Theorem 4.5. Suppose X is weakly sequentially complete and T : X → X is
functionally uniformly lipschitzian selfmap with respect to a sequence (zk). If the
sequence (zk) is summable, then T has a unique fixed point in X and and Cw(T ) =
X.

Proof. Let x ∈ X. Then for any f ∈ E∗ and m ≤ l, we have

∥Tm(x)− T l(x)∥f ≤
∑

m≤j<l

∥T j(x)− T j+1(x)∥f

≤
∑

m≤j<l

(
zj

n∑
i=1

∥x− T (x)∥gi
)

=
( ∑

m≤j<l

zj

) n∑
i=1

∥x− T (x)∥gi .

Since (zk) is summable, (T k(x)) is a weakly Cauchy sequence in X. By the weak
sequential completeness ofX, there exists p ∈ X such that (T k(x)) converges weakly
to p. Then (T k(x)) also converges weakly to T (p) because of the weak continuity of
T . Since the weak topology is Hausdorff, it follows that T (p) = p. The uniqueness
is obtained in the similar manner to Theorem 4.3. �
Example 4.6. Let 0 ̸= c = (c1, c2, . . . ) ∈ ℓ2 and T : ℓ2 → ℓ2 be defined by

T (x1, x2, . . . ) =
(1
2
sin(g(x)

)
,
1

8
sin2(g(x)), . . . ,

1

n2n
sinn(g(x)), . . . ),

where g(x) = 1
∥c∥2+1

∑∞
n=1 cnxn for all x = (x1, x2, . . . ) ∈ ℓ2. We will see in the next

section (Theorem 5.3 and Example 5.4) that T satisfies every conditions in previous
theorem. So, T has a unique fixed point and Cw(T ) = X. Notice that (0, 0, . . . ) is
clearly a fixed point of T , but it is far from trivial to show directly that T has no
other fixed point.

5. Examples in Infinite Dimensional Banach Spaces

We will now give some criteria for a map to be functionally uniformly lipschitzian
on an infinite dimensional Banach space. Suppose E an infinite dimensional Banach
space having a normalised Schauder basis (en). As usual, X denotes a nonempty
subset of E, and T : X → X denotes a selfmap whose F (T ) ̸= ∅. Moreover, for a
lipschitzian selfmap h : R → R, we will use L(h) to denote the Lipschitz constant
of h.

Proposition 5.1. If T is functionally lipschitzian, then e∗n ◦ T is a lipschitzian
functional for each n ∈ N.
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Proof. Since T is functionally lipschitzian, for each n ∈ N, there are g1, g2, . . . , gm ∈
E∗ such that for any x, y ∈ X,

|e∗n ◦ T (x)− e∗n ◦ T (y)| = ∥T (x)− T (y)∥e∗n

≤
m∑
i=1

∥(x− y)∥gi

=
m∑
i=1

|gi(x− y)|

≤
( m∑

i=1

∥gi∥
)
∥x− y∥,

which implies that e∗n ◦ T is lipschitzian. �

Lemma 5.2. Let g1, g2, . . . , gN ∈ E∗, and for any k ∈ N, (ckn) sequences of non-
negative numbers with

∑∞
n=1 c

k
n < ∞. If for each n, k ∈ N and x, y ∈ X,

|e∗n(T k(x)− T k(y))| ≤ ckn

N∑
i=1

|gi(x− y)|,

then T is functionally uniformly lipschitzian with respect to the sequence (zk), where
zk =

∑∞
n=1 c

k
n.

Proof. Let zk =
∑∞

n=1 c
k
n.

For each f ∈ E∗ and x, y ∈ X, we have

∥T k(x)− T k(y)∥f =
∣∣∣f( ∞∑

n=1

e∗n(T
k(x)− T k(y))en

)∣∣∣
≤ ∥f∥

∞∑
n=1

|e∗n(T k(x)− T k(y))|

≤ ∥f∥
∞∑
n=1

(
ckn

N∑
i=1

|gi(x− y)|
)

= ∥f∥zk
N∑
i=1

|gi(x− y)|

= zk

N∑
i=1

∥x− y∥∥f∥gi .

�

Theorem 5.3. Let g1, g2, . . . , gN ∈ E∗ and {hn,i : n ∈ N; i = 1, . . . , N} a collection
on lipschitzian selfmaps on R satisfying

∑∞
n=1max{L(hn,i) : i = 1, . . . , N} < ∞. If

for each n ∈ N

e∗n ◦ T =

N∑
i=1

hn,i ◦ gi|X ,
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then T is functionally uniformly lipschitzian with respect to the sequence (zk), where

zk =
[( ∞∑

n=1

max{L(hn,i) : i = 1, . . . , N}
)( N∑

i=1

∥gi∥
)]k−1

.

Consequently,

(1) if
(∑∞

n=1max{L(hn,i) : i = 1, . . . , N}
)(∑N

i=1 ∥gi∥
)
≤ 1, then T is func-

tionally uniformly lipschitzian.

(2) if
(∑∞

n=1max{L(hn,i) : i = 1, . . . , N}
)(∑N

i=1 ∥gi∥
)

< 1, then T has a

unique fixed point and Cw(T ) = X.

Proof. Let B =
∑N

i=1 ∥gi∥, Cn = max{L(hn,i) : i = 1, . . . , N} and C =
∑∞

n=1Cn.
First notice that, for any n ∈ N and x, y ∈ X, we have

|e∗n(T (x)− T (y))| =
∣∣∣ N∑
i=1

(
hn,i ◦ gi(x)− hn,i ◦ gi(y)

)∣∣∣
≤

N∑
i=1

|hn,i(gi(x))− hn,i(gi(y))|

≤
N∑
i=1

L(hn,i)|gi(x− y)|

≤ Cn

N∑
i=1

|gi(x− y)|.

Next, we claim that for each n, k ∈ N and x, y ∈ X,

|e∗n(T k(x)− T k(y))| ≤ Cn(BC)k−1
N∑
i=1

|gi(x− y)|.

When k = 1, the statement immediately holds from the previous paragraph. Sup-
pose it is also true for some k ∈ N, we then have

|e∗n(T k+1(x)− T k+1(y))| ≤ Cn(BC)k−1
N∑
i=1

|gi(T (x)− T (y))|

≤ Cn(BC)k−1
( N∑

i=1

∥gi∥
)
∥T (x)− T (y)∥

≤ Cn(BC)k−1B

∞∑
n=1

|e∗n(T (x)− T (y))|

≤ Cn(BC)k−1B

∞∑
n=1

(
Cn

N∑
i=1

|gi(x− y)|
)

= Cn(BC)k−1B
( ∞∑

n=1

Cn

) N∑
i=1

|gi(x− y)|
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= Cn(BC)k−1BC
N∑
i=1

|gi(x− y)|

= Cn(BC)k
N∑
i=1

|gi(x− y)|,

which proves the claim.
By the previous Lemma, we have

∥T k(x)− T k(y)∥f ≤ (BC)k−1
N∑
i=1

∥x− y∥C∥f∥gi

and hence T is functionally uniformly lipschitzian with respect to the sequence
(zk), where zk = (BC)k−1. Therefore, if BC ≤ 1, then (zk) is bounded and T is
functionally uniformly lipschitzian by Remark 4.2. Also, if BC < 1, the sequence
(zk) is summable, and hence by Theorem 4.5, T has a unique fixed point and
Cw(T ) = X. �

Example 5.4. Consider the map T given in Example 4.6. By letting N = 1,
hn = 1

n2n sinn, we have C =
∑∞

n=1 L(hn) ≤ 1 and B = ∥g∥ < 1. The previous
theorem then implies that T has a unique fixed point and Cw(T ) = X.

In the final part of this work, we will give another criterion for a map to be
functionally uniformly lipschitzian. It will help us, for the sake of completeness,
construct a simple selfmap, in the last example, whose fixed point set is not convex
and hence guaranteed be a retract of its weak convergence set only by our results.

Lemma 5.5. Let l ∈ N, {gn,i : n = 1, . . . , l; i = 1, . . . ,mn} ⊆ E∗ and a ∈ R.
Suppose that e∗n(T (x)− T (y)) = ae∗n(x− y) for all n > l and x, y ∈ X.
If for each n ≤ l, k ∈ N and x, y ∈ X, there is ck ≥ 0

|e∗n(T k(x)− T k(y))| ≤ ck
∑mn

i=1 |gn,i(x− y)|,
then T is functionally uniformly lipschitzian with respect to the sequence (zk), where
zk = max{ck, |a|k}.

Proof. Let f ∈ E∗, k ∈ N and x, y ∈ X. Then

∥T k(x)− T k(y)∥f = |f(T k(x)− T k(y))|

=
∣∣∣f( ∞∑

n=1

e∗n(T
k(x)− T k(y))en

)∣∣∣
=

∣∣∣f(∑
n≤l

e∗n(T
k(x)− T k(y))en

)
+ f

(∑
n>l

e∗n(T
k(x)− T k(y))en

)∣∣∣
≤

∣∣∣f(∑
n≤l

e∗n(T
k(x)− T k(y))en

)∣∣∣+∣∣∣f(∑
n>l

e∗n(T
k(x)− T k(y))en

)∣∣∣
≤ ck∥f∥

∑
n≤l

mn∑
i=1

|gn,i(x− y)|+
∣∣∣f(∑

n>l

ake∗n(x− y)en

)∣∣∣(∗∗)



676 P. CHAOHA AND S. SONGSA-ARD

= ck∥f∥
∑
n≤l

mn∑
i=1

|gn,i(x− y)|+
∣∣∣f(ak(x− y)−

∑
n≤l

ake∗n(x− y)en

)∣∣∣
≤ ck∥f∥

∑
n≤l

mn∑
i=1

|gn,i(x− y)|+ |akf(x− y)|+
∣∣∣f(∑

n≤l

ake∗n(x− y)en

)∣∣∣
≤ ck∥f∥

∑
n≤l

mn∑
i=1

|gn,i(x− y)|+ |akf(x− y)|+
∑
n≤l

|akf(en)e∗n(x− y)|

≤ max{ck, |a|k}
(∑

n≤l

mn∑
i=1

∥x− y∥∥f∥gn,i
+ ∥x− y∥f +

∑
n≤l

∥x− y∥|f(en)|e∗n
)
.

Therefore, T is functionally uniformly lipschitzian with respect to the sequence (zk),
where zk = max{ck, |a|k}. �
Theorem 5.6. Let l ∈ N; g1, . . . , gl ∈ E∗; h1, . . . , hl lipschitzian selfmaps on R and

a, bl+1, bl+2, · · · ∈ R satisfying |a| ≤ 1 and
∑l

n=1 L(hn)∥gn∥ < 1.
If for each n ∈ N,

e∗n ◦ T =

{
hn ◦ gn|X ;n ≤ l,

ae∗n + bn ;n > l,

then T is functionally uniformly lipschitzian and hence weakly uniformly virtually
stable.

Proof. LetR =
∑l

n=1 L(hn)∥gn∥, c1 = 1, ck = max{Rk−2, |a|k−1,
∑k−2

j=1 |a|k−j−1Rj−1}
for any k ≥ 2 and x, y ∈ X. Also, to save some spaces, we will simply write Ln

instead of L(hn). From (**) and k = 1 in the previous lemma, we have for any
f ∈ E∗,

∥T (x)− T (y)∥f ≤ ∥f∥
∑
n≤l

Ln|gn(x− y)|+
∣∣∣f(∑

n>l

ae∗n(x− y)en

)∣∣∣,
and, in particular, for each n = 1, . . . , l,

|gn(T (x)− T (y))| ≤ ∥gn∥
∑
i≤l

Li|gi(x− y)|+
∣∣∣gn(∑

i>l

ae∗i (x− y)ei

)∣∣∣.
For each n = 1, . . . , l, we claim that for all k ≥ 2,

|e∗n(T k(x)− T k(y))| ≤ Ln∥gn∥Rk−2
∑
i≤l

Li|gi(x− y)|

+ |a|k−1Ln

∣∣∣gn(∑
i>l

e∗i (x− y)ei

)∣∣∣
+ Ln∥gn∥

( k−2∑
j=1

|a|k−j−1Rj−1
)∑

i≤l

Li

∣∣∣gi(∑
j>l

e∗j (x− y)ej

)∣∣∣.
Once the claim is proved, we will have for each k ≥ 2

|e∗n(T k(x)− T k(y))| ≤ ck

{
Ln∥gn∥

∑
i≤l

Li|gi(x− y)|+ Ln

∣∣∣gn(∑
i>l

e∗i (x− y)ei

)∣∣∣
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+ Ln∥gn∥
∑
i≤l

Li

∣∣∣gi(∑
j>l

e∗j (x− y)ej

)∣∣∣}
= ck

{
Ln∥gn∥

∑
i≤l

Li|gi(x− y)|+ Ln

∣∣∣gn((x− y)−
∑
i≤l

e∗i (x− y)ei

)∣∣∣
+ Ln∥gn∥

∑
i≤l

Li

∣∣∣gi((x− y)−
∑
j≤l

e∗j (x− y)ej

)∣∣∣}
≤ ck

{
Ln∥gn∥

∑
i≤l

Li|gi(x− y)|+ Ln|gn(x− y)|+ Ln

∑
i≤l

|gn(ei)e∗i (x− y)|

+ Ln∥gn∥
∑
i≤l

Li|gi(x− y)|+ Ln∥gn∥
∑
i≤l

∑
j≤l

Li|gn(ej)e∗j (x− y)|
}
.

Also, since |e∗n(T (x) − T (y))| ≤ c1Ln|gn(x − y)|, the above inequality holds for
all k ∈ N. Therefore, T is functionally uniformly lipschitzian with respect to the
sequence (zk) where zk = max{ck, |a|k}. If |a| ≤ 1 and R < 1, then (ck) is bounded,
so is (zk). Therefore T is functionally uniformly lipschitzian by the previous lemma.

To prove the claim, it is clear that

|e∗n(T 2(x)− T 2(y))| ≤ Ln|gn(T (x)− T (y))|

≤ Ln

(
∥gn∥

∑
i≤l

Li|gi(x− y)|+
∣∣∣gn(∑

i>l

ae∗i (x− y)ei

)∣∣∣)
= Ln∥gn∥

∑
i≤l

Li|gi(x− y)|+ |a|Ln

∣∣∣gn(∑
i>l

e∗i (x− y)ei

)∣∣∣.
Now, assume that the claim holds for some k ≥ 2. Then

|e∗n(T k+1(x)− T k+1(y))| ≤ Ln∥gn∥Rk−2
∑
i≤l

Li|gi(T (x)− T (y))|

+ |a|k−1Ln

∣∣∣gn(∑
i>l

e∗i (T (x)− T (y))ei

)∣∣∣
+ Ln∥gn∥

( k−2∑
j=1

|a|k−j−1Rj−1
)∑

i≤l

Li

∣∣∣gi(∑
j>l

e∗j (T (x)− T (y))ej)
∣∣∣

≤ Ln∥gn∥Rk−2
∑
i≤l

Li

[
∥gi∥

∑
j≤l

Lj |gj(x− y)|+
∣∣∣gi(∑

j>l

ae∗j (x− y)ej

)∣∣∣]
+ |a|kLn

∣∣∣gn(∑
i>l

e∗i (x− y)ei

)∣∣∣
+ Ln∥gn∥

( k−2∑
j=1

|a|k−jRj−1
)∑

i≤l

Li

∣∣∣gi(∑
j>l

e∗j (x− y)ej)
∣∣∣

≤ Ln∥gn∥Rk−2
(∑

i≤l

Li∥gi∥
)∑

j≤l

Lj |gj(x− y)|
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+ Ln∥gn∥|a|Rk−2
∑
i≤l

Li

∣∣∣gi(∑
j>l

e∗j (x− y)ej

)∣∣∣
+ |a|kLn

∣∣∣gn(∑
i>l

e∗i (x− y)ei

)∣∣∣
+ Ln∥gn∥

( k−2∑
j=1

|a|k−jRj−1
)∑

i≤l

Li

∣∣∣gi(∑
j>l

e∗j (x− y)ej)
∣∣∣

= Ln∥gn∥Rk−2R
∑
i≤l

Li|gi(x− y)|+ |a|kLn

∣∣∣gn(∑
i>l

e∗i (x− y)ei

)∣∣∣
+ Ln∥gn∥

(
|a|Rk−2 +

k−2∑
j=1

|a|k−jRj−1
)∑

i≤l

Li

∣∣∣gi(∑
j>l

e∗j (x− y)ej)
∣∣∣

= Ln∥gn∥Rk−1
∑
i≤l

Li|gi(x− y)|+ |a|kLn

∣∣∣gn(∑
i>l

e∗i (x− y)ei

)∣∣∣
+ Ln∥gn∥

( k−1∑
j=1

|a|k−jRj−1
)∑

i≤l

Li

∣∣∣gi(∑
j>l

e∗j (x− y)ej)
∣∣∣,

and the claim is proved by induction. �

Example 5.7. Let X =
{
(xn) ∈ ℓ2 : |x1|, |x2| ≤ 10 and for any i ≥ 3, |xi| ≤

10
2i−2

}
and fix c = (10, 10, 15, 4, 8, 12 ,

1
22
, 1
23
, . . . ) ∈ ℓ2. Notice that X is weakly-

compact and convex. Consider T : X → X defined by

T (x1, x2, . . . ) = (sin(g(x)), cos(g(x)), x3, x4, . . . ),

where g(x) = 1
2∥c∥2+1

∑∞
n=1 cnxn for all x = (x1, x2, . . . ) ∈ ℓ2. By letting l = 2,

g1 = g2 = g, h1 = sin, h2 = cos, a = 1 and 0 = b3 = b4 = . . . , we have ∥g1∥ =

∥g2∥ = ∥g∥ = ∥c∥2
2∥c∥2+1 and L(h1)∥g1∥+L(h2)∥g2∥ < 1. By the previous theorem, T is

weakly uniformly virtually stable and hence F (T ) is a retract of Cw(T ). Notice also

that x = (0, 1, 0, 0,−5
4 , 0, . . . ), y = (1, 0, (2∥c∥2+1)π

30 ,−5
2 , 0, . . . ) ∈ F (T ) but 1

2x+
1
2y =

(12 ,
1
2 ,

(2∥c∥2+1)π
60 ,−5

4 ,−
5
8 , 0, . . . ) /∈ F (T ); i.e., F (T ) is not convex. Therefore, since

ℓ2 is uniformly convex, T is not nonexpansive.
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