Journal of Nonlinear and Convex Analysis Volume 15, Number 4, 2014, 637–645

THEOREMS OF DENJOY-WOLFF TYPE FOR FAMILIES OF HOLOMORPHIC RETRACTS

MONIKA BUDZYŃSKA, TADEUSZ KUCZUMOW, AND SIMEON REICH

ABSTRACT. Using the Kobayashi distance k_D , we establish theorems of Denjoy-Wolff type for certain families of holomorphic and k_D -nonexpansive retracts of a bounded and strictly convex domain D in a complex and reflexive Banach space.

1. INTRODUCTION

Using the horosphere technique and applying those properties of the Kobayashi distance k_D which are closely connected with convexity, we prove in this paper theorems of Denjoy-Wolff type for certain families of holomorphic and k_D -nonexpansive retracts of a bounded and strictly convex domain D in a complex and reflexive Banach space X (see Theorems 5.1 and 5.4 below). Theorem 5.1, our main result, and its corollaries extend several results in [11], where either $X = \mathbb{C}^k$ or D = B, the open unit ball of X.

Our paper is organized as follows. In the next section we recall several properties of the Kobayashi distance k_D , where D is a bounded and convex domain in a complex Banach space. In Section 3 we briefly discuss k_D -nonexpansive mappings and k_D -nonexpansive retracts. In Section 4 we introduce a new kind of horospheres and study their properties. Section 5 is devoted to families of k_D -nonexpansive retracts. In this last section we first use the results of Section 4 to establish Theorem 5.1 and then derive a few of its consequences.

2. The Kobayashi distance and its properties

Let $(X, \|\cdot\|)$ be a complex Banach space, $D \subset X$ be a bounded and convex domain, and let k_D be the Kobayashi distance in D. It is well known that in the case of the open unit disc Δ in the complex plane \mathbb{C} , the Kobayashi distance k_{Δ} coincides with the Poincaré distance on Δ ([26], [27], [28], [35], [16], and also [3], [22] and [36]). It is also known that the Kobayashi distance k_D is locally equivalent to the norm $\|\cdot\|$ in X [21]. We also take note of the following result.

Lemma 2.1 ([24], [32], [34]). Let D be a bounded and convex domain in a complex Banach space $(X, \|\cdot\|)$.

²⁰¹⁰ Mathematics Subject Classification. 32A10, 32F45, 32H02, 46G20, 46T25, 47H09, 47H10, 54E25.

Key words and phrases. Fixed point, holomorphic mapping, holomorphic retract, horosphere, k_D -nonexpansive mapping, k_D -nonexpansive retract, Kobayashi distance.

The first two authors were partially supported by the Polish MNiSW Grant N N201 393737. The third author was partially supported by the Israel Science Foundation (Grant 389/12), the Fund for the Promotion of Research at the Technion, and by the Technion General Research Fund.

(i) If
$$x, y, w, z \in D$$
 and $s \in [0, 1]$, then

$$k_D(sx + (1 - s)y, sw + (1 - s)z) \le \max[k_D(x, w), k_D(y, z)];$$

(ii) if $x, y \in D$ and $s, t \in [0, 1]$, then

$$k_D(sx + (1-s)y, tx + (1-t)y) \le k_D(x, y).$$

In order to recall a characterization of k_D -bounded sets, we need the following notion. Let D be a bounded and convex domain in a complex Banach space $(X, \|\cdot\|)$. A nonempty subset C of D is said to lie *strictly inside* D if

$$\operatorname{dist}_{\|\cdot\|}(C,\partial D) := \inf\{\|x - y\| : x \in C, \ y \in \partial D\} > 0.$$

It is known [21] that for such a domain D, a nonempty subset C of D is k_D -bounded if and only if C lies strictly inside D.

The following concept of a complex geodesic will play a key role in our considerations.

Definition 2.2 ([15], [38]). Let D be a bounded and convex domain in a complex Banach space $(X, \|\cdot\|)$ and let Δ be the open unit disc in the complex plane \mathbb{C} . A holomorphic mapping $\phi : \Delta \to D$ is a *complex geodesic* (with respect to k_D) if there exist points $z \neq w$ in Δ such that

$$k_{\Delta}(w, z) = k_D(\phi(w), \phi(z)).$$

In this case we say that $\phi(w)$ and $\phi(z)$ are joined by a complex geodesic. If, moreover, w = 0 and $0 < z \in \mathbb{R}$, we call ϕ a normalized complex geodesic joining $\phi(w)$ with $\phi(z)$.

We proceed with the following definition.

Definition 2.3 ([15], [19]). We say that a bounded and convex domain D in a complex Banach space $(X, \|\cdot\|)$ is *strictly convex* if for every $x, y \in \overline{D}^{\|\cdot\|}$, the open segment

$$(x,y) = \{z \in X : z = sx + (1-s)y \text{ for some } 0 < s < 1\}$$

lies in D.

Using strict convexity, one can prove the following very useful theorem and lemma.

Theorem 2.4 ([15]). Let D be a bounded and strictly convex domain in a complex and reflexive Banach space $(X, \|\cdot\|)$. Then any pair of distinct points in D can be joined by a unique normalized k_D -geodesic.

Lemma 2.5 ([11], [24]). Let D be a bounded and strictly convex domain in a complex Banach space $(X, \|\cdot\|)$. Let $\{x_j\}_{j\in J}$ and $\{y_j\}_{j\in J}$ be two nets in D which converge in norm to $\xi \in \partial D$ and to $\eta \in \overline{D}^{\|\cdot\|}$, respectively. If

$$\sup \left\{ k_D\left(x_j, y_j\right) : j \in J \right\} = c < \infty,$$

then $\xi = \eta$.

638

3. k_D -nonexpansive mappings and k_D -nonexpansive retracts

If D_1 and D_2 are bounded domains in the complex Banach spaces $(X_1, \|\cdot\|_1)$ and $(X_2, \|\cdot\|_2)$, respectively, and k_{D_1} and k_{D_2} are the Kobayashi distances in D_1 and D_2 , respectively, then each holomorphic $f: D_1 \to D_2$ is nonexpansive, that is,

$$k_{D_2}(f(x), f(y)) \le k_{D_1}(x, y)$$

for all $x, y \in D_1$ [21] (see also [15], [18], [20], [22] and [37]).

In particular, if D is a bounded domain in a complex Banach space $(X, \|\cdot\|)$, then each holomorphic $f: D \to D$ is k_D -nonexpansive (see [20] and [31]).

Definition 3.1. Let D be a bounded and convex domain in a complex Banach space $(X, \|\cdot\|)$. If $\emptyset \neq F \subset D$ and there exists a k_D -nonexpansive (holomorphic) retraction of D onto F, then we say that F is a k_D -nonexpansive (holomorphic) retract of D.

The following theorem will be applied in the proof of our main theorem.

Theorem 3.2 ([14], [11]). Let D be a bounded and strictly convex domain in a complex reflexive Banach space $(X, \|\cdot\|)$. Let \mathcal{F} be a family of holomorphic $(k_D$ -nonexpansive) retracts of D. If $F = \bigcap_{\tilde{F} \in \mathcal{F}} \tilde{F} \neq \emptyset$, then F is a holomorphic $(k_D$ -nonexpansive) retract of D.

Recall that, using the Bruck method ([7] and [8]), M. Budzyńska, T. Kuczumow and A. Stachura established the following result (see also [2], [6] and [30]).

Theorem 3.3 ([13]). Let D be a bounded and strictly convex domain in a complex and reflexive Banach space $(X, \|\cdot\|)$. Then, for every family \mathcal{F} of commuting holomorphic $(k_D$ -nonexpansive) self-mappings of D with a nonempty common fixed point set $Fix(\mathcal{F})$, this set $Fix(\mathcal{F})$ is a holomorphic $(k_D$ -nonexpansive) retract of D.

4. Horospheres

The main tool which we use in the proof of our main result is the newly defined horosphere $\tilde{H}\left(x,\xi,R,\{x_{\gamma}\}_{\gamma\in\Gamma}\right)$, which is introduced in the following way (for other types of horospheres and their applications see [1], [4], [9], [10], [11], [12], [23], [24], [29], [31] and [32]).

Definition 4.1. Let *D* be a bounded and convex domain in a complex Banach space $(X, \|\cdot\|)$. Let $\{\gamma\}_{\gamma\in\Gamma}$ be an ultranet, $x \in D$, $\xi \in \partial D$, R > 0, $x_{\gamma} \in D$ for each $\gamma \in \Gamma$, and assume that $\lim_{\gamma\in\Gamma} x_{\gamma} = \xi$ in $(X, \|\cdot\|)$. The horosphere $\tilde{H}(x, \xi, R, \{x_{\gamma}\}_{\gamma\in\Gamma})$ in *D* is defined as follows:

$$\tilde{H}\left(x,\xi,R,\left\{x_{\gamma}\right\}_{\gamma\in\Gamma}\right) := \left\{y\in D: \lim_{\gamma\in\Gamma}\left[k_{D}\left(y,x_{\gamma}\right)-k_{D}\left(x,x_{\gamma}\right)\right] < \frac{1}{2}\log R\right\}.$$

We collect several properties of these horospheres $\tilde{H}\left(x,\xi,R,\{x_{\gamma}\}_{\gamma\in\Gamma}\right)$ in the following theorem (for the ideas of the proof of this theorem see [1], [4] and [9]).

Theorem 4.2 ([10]). Let D be a bounded and convex domain in a complex and reflexive Banach space $(X, \|\cdot\|)$. Let $\{\gamma\}_{\gamma \in \Gamma}$ be an ultranet, $x \in D, \xi \in \partial D, R > 0$, $x_{\gamma} \in D$ for each $\gamma \in \Gamma$, and assume that $\lim_{\gamma \in \Gamma} x_{\gamma} = \xi$.

Then the horospheres $\tilde{H}\left(x,\xi,R,\left\{x_{\gamma}\right\}_{\gamma\in\Gamma}\right)$ have the following properties:

- (i) if the horosphere $\tilde{H}\left(x,\xi,R,\{x_{\gamma}\}_{\gamma\in\Gamma}\right)$ is nonempty, then it is convex;
- (ii) for each $0 < R_1 < R_2$, we have

$$\left| \overline{\tilde{H}\left(x,\xi,R_{1},\left\{x_{\gamma}\right\}_{\gamma\in\Gamma}\right)}^{\|\cdot\|} \cap D \right| \subset \tilde{H}\left(x,\xi,R_{2},\left\{x_{\gamma}\right\}_{\gamma\in\Gamma}\right);$$

(iii) if $x, \tilde{x} \in D$ and $\lim_{\gamma \in \Gamma} [k_D(\tilde{x}, x_\gamma) - k_B(x, x_\gamma)] < \frac{1}{2} \log L$, then

$$\tilde{H}\left(\tilde{x},\xi,R,\left\{x_{\gamma}\right\}_{\gamma\in\Gamma}\right)\subset\tilde{H}\left(x,\xi,LR,\left\{x_{\gamma}\right\}_{\gamma\in\Gamma}\right);$$

- (iv) for each R > 1, we have $B\left(x, \frac{1}{2}\log R\right) \subset \tilde{H}\left(x, \xi, R, \{x_{\gamma}\}_{\gamma \in \Gamma}\right)$, where $B(x, \frac{1}{2}\log R)$ is a ball in the metric space (D, k_D) ;
- (v) for each R < 1, we have $B\left(x, -\frac{1}{2}\log R\right) \cap \tilde{H}\left(x, \xi, R, \{x_{\gamma}\}_{\gamma \in \Gamma}\right) = \emptyset$, where
- (v) for each $R \in \mathbb{Q}$, $x \in$

(vii)
$$\bigcap_{R>0} \overline{\tilde{H}\left(x,\xi,R,\left\{x_{\gamma}\right\}_{\gamma\in\Gamma}\right)}^{\parallel\cdot\parallel} \subset \partial D;$$

(viii) if D is strictly convex and each horosphere is nonempty, then

$$\bigcap_{R>0} \overline{\tilde{H}\left(x,\xi,R,\left\{x_{\gamma}\right\}_{\gamma\in\Gamma}\right)}^{\|\cdot\|} = \{\xi\}$$

Observe that directly from (iii) it follows that if for some point $\tilde{x} \in D$ all horospheres $\tilde{H}(\tilde{x},\xi,R,\{x_{\gamma}\}_{\gamma\in\Gamma})$ are nonempty, then the same is true for each point $x \in D$. We do not know, however, whether the horosphere $\tilde{H}(x,\xi,R,\{x_{\gamma}\}_{\gamma\in\Gamma})$ is nonempty for each R > 0. It is known that this does hold for open unit balls in complex Banach spaces (see the proofs in [24], [29], [31] and [32]; see also [9] for the case of bounded and convex domains in \mathbb{C}^k). Now we prove this fact in the special case where the ultranet $\{x_{\gamma}\}_{\gamma\in\Gamma}$ is connected with a compact k_D -nonexpansive retraction r of D.

Theorem 4.3. Let D be a bounded and convex domain in a complex reflexive Banach space $(X, \|\cdot\|)$. Let $r: D \to F$ be a compact and k_D -nonexpansive retraction onto F, where $\emptyset \neq F \subset D$. Let $\{\gamma\}_{\gamma \in \Gamma}$ be an ultranet and let a net $\{x_{\gamma}\}_{\gamma \in \Gamma}$ in D be such that

$$\lim_{\gamma \in \Gamma} x_{\gamma} = \xi \in \partial D$$
$$r(x_{\gamma}) = x_{\gamma}$$

and

for each $\gamma \in \Gamma$. Then the horosphere $\tilde{H}\left(x,\xi,R,\{x_{\gamma}\}_{\gamma\in\Gamma}\right)$ is nonempty for each $x \in D$ and for each R > 0.

Proof. Fix $x \in D$. By Theorem 2.4, for each $w \in D$, where $w \neq x$, and for each $0 < \tilde{\alpha} < k_D(w, x)$, there exists a point $y_{w,x,\tilde{\alpha}}$ in D such that

$$k_D(w,x) = k_D(w, y_{w,x,\tilde{\alpha}}) + k_D(y_{w,x,\tilde{\alpha}}, x)$$

and

$$k_D(y_{w,x,\tilde{\alpha}},x) = \tilde{\alpha}$$

Now fix 0 < R < 1 and let $\alpha > -\frac{1}{2}\log R$. Since $\lim_{\gamma \in \Gamma} x_{\gamma} = \xi \in \partial D$, we may assume, without loss of generality, that $0 < \alpha < k_D(x_{\gamma}, \tilde{x})$ for each $\gamma \in \Gamma$. Then for each $y_{x_{\gamma},x,\alpha}$, we have

$$k_D(y_{x_{\gamma},x,\alpha},x) = \alpha$$

and

$$k_D(x_\gamma, x) = k_D(x_\gamma, y_{x\gamma, x, \alpha}) + k_D(y_{x\gamma, x, \alpha}, x) = k_D(x_\gamma, y_{x\gamma, x, \alpha}) + \alpha$$

Set

$$z_{x_{\gamma},x,\alpha} = r(y_{x_{\gamma},x,\alpha})$$

for each $\gamma \in \Gamma$. Since

$$k_D(z_{x_{\gamma},x,\alpha},r(x)) = k_D(r(y_{x_{\gamma},x,\alpha}),r(x)) \le k_D(y_{x_{\gamma},x,\alpha},x) = \alpha,$$

the ultranet $\{z_{x_{\gamma},x,\alpha}\}_{\gamma\in\Gamma}$ lies strictly inside D and in the compact set $\overline{r(D)}^{\|\cdot\|} = \overline{F}^{\|\cdot\|}$. Therefore this ultranet $\{z_{x_{\gamma},x,\alpha}\}_{\gamma\in\Gamma}$ is convergent in the norm $\|\cdot\|$ to a limit point $z_{x,\alpha} \in D$. Hence we get

$$\lim_{\gamma \in \Gamma} k_D(z_{x\gamma,x,\alpha}, z_{x,\alpha}) = 0$$

and

$$\begin{split} \lim_{\gamma \in \Gamma} [k_D(z_{x,\alpha}, x_{\gamma}) - k_D(x, x_{\gamma})] &= \lim_{\gamma \in \Gamma} [k_D(z_{x_{\gamma}, x, \alpha}, x_{\gamma}) - k_D(x, x_{\gamma})] \\ &= \lim_{\gamma \in \Gamma} [k_D(r(y_{x_{\gamma}, x, \alpha}), r(x_{\gamma})) - k_D(x, x_{\gamma})] \\ &\leq \lim_{\gamma \in \Gamma} k_D[(y_{x_{\gamma}, x, \alpha}, x_{\gamma}) - k_D(x, x_{\gamma})] = -\alpha < \frac{1}{2} \log R. \end{split}$$

Therefore $z_{x,\alpha} \in \tilde{H}\left(x,\xi,R,\{x_{\gamma}\}_{\gamma\in\Gamma}\right)$ and so the horosphere $\tilde{H}\left(x,\xi,R,\{x_{\gamma}\}_{\gamma\in\Gamma}\right)$ is indeed not empty, as asserted.

5. Families of k_D -nonexpansive retracts

Before stating our main theorem, we recall that the Hausdorff distance (with respect to the norm in a Banach space $(X, \|\cdot\|)$) between a set A and a point b is given by $\text{Dist}_{\|\cdot\|}(A, b) := \sup\{\|x - b\| : x \in A\}$. Now we are ready to state and prove the main theorem of our paper. It extends Theorems 9.4 and 10.2 in [11], where $X = \mathbb{C}^k$ and D = B, the open unit ball of X, respectively.

Theorem 5.1. Let D be a bounded and strictly convex domain in a complex and reflexive Banach space $(X, \|\cdot\|)$, and let $\{F_i\}_{i\in I}$ be a family of k_D -nonexpansive retracts of D such that $\bigcap_{j\in J} F_j \neq \emptyset$ for each finite set $\emptyset \neq J \subset I$ of indices. If $\bigcap_{i\in I} F_i = \emptyset$ and there exists a nonempty finite set $\emptyset \neq \tilde{J} \subset I$ of indices such that $\overline{\bigcap_{j\in \tilde{J}} F_j}^{\|\cdot\|}$ is compact, then there exists a point $\xi \in \partial D$ such that $\lim_J \text{Dist}_{\|\cdot\|} (\bigcap_{j\in J} F_j, \xi) = 0$, where the family $\{J : \emptyset \neq J \subset I \text{ and } J \text{ is a finite set}\}$ of all nonempty finite sets of indices is partially ordered by inclusion.

Proof. Since the family $\{J : \emptyset \neq J \subset I \text{ and } J \text{ is a finite set}\}$ of all nonempty finite sets of indices is partially ordered by inclusion, without any loss of generality we may consider the family $\{J\}_{J \geq \tilde{J}}$ in place of the whole family. Let $\{\gamma\}_{\gamma \in \Gamma}$ be an ultranet such that $\{J_{\gamma}\}_{\gamma \in \Gamma}$ is a subnet of $\{J\}_{J \geq \tilde{J}}$. The subnet $\{J_{\gamma}\}_{\gamma \in \Gamma}$ is also an ultranet. These considerations imply that in place of $\{F_i\}_{i \in I}$ we may take $\{\hat{F}_{\gamma}\}_{\gamma \in \Gamma} = \{\bigcap_{j \in J_{\gamma}} F_j\}_{\gamma \in \Gamma}$. Each $\overline{\hat{F}_{\gamma}}^{\|\cdot\|}$ is compact and by Theorem 3.2, each \widehat{F}_{γ} is also a k_D -nonexpansive retract of D and $\bigcap_{\gamma \in \Gamma} \widehat{F}_{\gamma} = \emptyset$. Now we choose $x_{\gamma} \in \widehat{F}_{\gamma}$ for each $\gamma \in \Gamma$. Then the ultranet $\{x_{\gamma}\}_{\gamma \in \Gamma}$ is convergent to ξ and its limit point ξ lies on the boundary ∂D of the domain D. This holds true because $\bigcap_{\gamma \in \Gamma} \widehat{F}_{\gamma} = \emptyset$, and all retracts are closed in (D, k_D) and relatively compact in $(X, \|\cdot\|)$. Next, we choose $x \in D$ and consider the horosphere $\widetilde{H}(x, \xi, R, \{x_{\gamma}\}_{\gamma \in \Gamma})$, which is nonempty by Theorem 4.3. For each $\gamma \in \Gamma$, let \widehat{r}_{γ} be a k_D -nonexpansive retraction of D onto \widehat{F}_{γ} . Then by the inequality

$$\lim_{\gamma \in \Gamma} \left[k_D\left(\hat{r}_{\gamma'}(y), x_{\gamma}\right) - k_D\left(x, x_{\gamma}\right) \right] \le \lim_{\gamma \in \Gamma} \left[k_D\left(y, x_{\gamma}\right) - k_D\left(x, x_{\gamma}\right) \right] < \frac{1}{2} \log R,$$

which holds for each $y \in \tilde{H}\left(x, \xi, R, \{x_{\gamma}\}_{\gamma \in \Gamma}\right)$ and $\gamma' \in \Gamma$, each horosphere

$$\tilde{H}\left(x,\xi,R,\left\{x_{\gamma}\right\}_{\gamma\in\Gamma}\right)$$

is nonempty, convex, and $\hat{r}_{\gamma'}$ -invariant for each $\gamma' \in \Gamma$. Now we fix $z \in D$ and let $\xi(z) \in \partial D$ be the limit point in the norm $\|\cdot\|$ of the ultranet $\{\hat{r}_{\gamma}(z)\}_{\gamma \in \Gamma}$. Observe that for each $w \in D$ and $\gamma \in \Gamma$, we have

$$k_D(\widehat{r}_{\gamma}(z), \widehat{r}_{\gamma}(w)) \le k_D(z, w)$$

Hence, applying Lemma 2.5, we see that the point $\xi(z)$ is independent of the choice of $z \in D$, say $\xi_0 = \xi(z)$ for all $z \in D$. Next, by Theorem 4.2, we obtain

$$\{\xi_0\} \subset \partial D \cap \bigcap_{R>0} \overline{\tilde{H}\left(x,\xi,R,\{x_\gamma\}_{\gamma\in\Gamma}\right)}^{\parallel\cdot\parallel} = \{\xi\}$$

Thus $\xi = \xi_0$ and this means that $\lim_{\gamma \in \Gamma} \widehat{r}_{\gamma}(w) = \xi$ for each $w \in D$. Finally, observe that each ultranet $\{\widetilde{x}_{\gamma}\}_{\gamma \in \Gamma}$, where $\widetilde{x}_{\gamma} \in \widehat{F}_{\gamma}$ for $\gamma \in \Gamma$, can play the role of the above ultranet $\{x_{\gamma}\}_{\gamma \in \Gamma}$. This implies that $\lim_{\gamma \in \Gamma} \text{Dist}_{\|\cdot\|}(\widehat{F}_{\gamma}, \xi) = 0$ and this leads to our asserted result, namely, $\lim_{J} \text{Dist}_{\|\cdot\|}(\bigcap_{j \in J} F_j, \xi) = 0$.

Directly from Theorem 5.1 we deduce the following corollaries.

Corollary 5.2. Let D be a bounded and strictly convex domain in a complex and reflexive Banach space $(X, \|\cdot\|)$, and let $\{F_i\}_{i\in I}$ be a family of k_D -nonexpansive retracts of D such that $\bigcap_{j\in J} F_j \neq \emptyset$ for each finite set $\emptyset \neq J \subset I$ of indices. If $\bigcap_{i\in I} F_i = \emptyset$ and there exists a nonempty finite set $\emptyset \neq \tilde{J} \subset I$ of indices such that $\overline{\bigcap_{j\in \tilde{J}} F_j}^{\|\cdot\|}$ is compact, then there exists a point $\xi \in \partial D$ such that the net of k_D -nonexpansive retractions $\{r_J\}_J$ converges uniformly on D to the constant map taking the value ξ , where the family $\{\emptyset \neq J \subset I\}$ of all nonempty finite sets J of indices is partially ordered by inclusion and r_J is a k_D -nonexpansive retraction of D onto the intersection $\bigcap_{i\in J} F_j$ for each J.

Corollary 5.3. Let D be a bounded and strictly convex domain in a complex and reflexive Banach space $(X, \|\cdot\|)$, and let $\{F_i\}_{i\in I}$ be a family of k_D -nonexpansive retracts of D such that $\bigcap_{j\in J} F_j \neq \emptyset$ for each finite set $\emptyset \neq J \subset I$ of indices. If $\bigcap_{i\in I} F_i = \emptyset$ and there exists a nonempty finite set $\emptyset \neq \tilde{J} \subset I$ of indices such that $\overline{\bigcap_{j\in \tilde{J}} F_j}^{\|\cdot\|}$ is compact, then $\lim_J \dim_{\|\cdot\|} (\bigcap_{j\in J} F_j) = 0$, where the family $\{\emptyset \neq J \subset I\}$ of all nonempty finite sets J of indices is partially ordered by inclusion.

Finally, applying Theorem 3.3, we obtain our last two results.

Theorem 5.4. Let D be a bounded and strictly convex domain in a complex and reflexive Banach space $(X, \|\cdot\|)$, and let $\mathcal{F} = \{f_i\}_{i\in I}$ be a commuting family of k_D -nonexpansive self-mappings of D such that $\bigcap_{j\in J} Fix(f_j) \neq \emptyset$ for each finite set $\emptyset \neq J \subset I$ of indices. If the family \mathcal{F} does not have a common fixed point in D and there exists a nonempty finite set $\emptyset \neq \tilde{J} \subset I$ of indices such that $\overline{\bigcap_{j\in J} Fix(f_j)}^{\|\cdot\|}$ is compact, then there exists a point $\xi \in \partial D$ such that $\lim_J \text{Dist}_{\|\cdot\|}(\bigcap_{j\in J} Fix(f_j), \xi) =$ 0, where each $\emptyset \neq J \subset I$ is a nonempty finite set of indices and the family of all such sets is partially ordered by inclusion.

Corollary 5.5. Let D be a bounded and strictly convex domain in a complex and reflexive Banach space $(X, \|\cdot\|)$, and let $\mathcal{F} = \{f_i\}_{i \in I}$ be a commuting family of k_D nonexpansive self-mappings of D such that $\bigcap_{j \in J} Fix(f_j) \neq \emptyset$ for each nonempty finite set $\emptyset \neq J \subset I$ of indices. If the family \mathcal{F} does not have a common fixed point in D and there exists a nonempty finite set $\emptyset \neq \tilde{J} \subset I$ of indices such that $\overline{\bigcap_{j \in \tilde{J}} Fix(f_j)}^{\|\cdot\|}$ is compact, then $\lim_{J} \operatorname{diam}_{\|\cdot\|}(\bigcap_{j \in J} Fix(f_i)) = 0$, where each $\emptyset \neq J \subset I$ is a nonempty finite set of indices and the family of all such sets is partially ordered by inclusion.

Acknowledgments

Part of this research was carried out when the first two authors were visiting the Technion. They are grateful to their colleagues for their kind hospitality.

References

- [1] M. Abate, Horospheres and iterates of holomorphic maps, Math. Z. 198 (1988), 225–238.
- [2] M. Abate, Common fixed points of commuting holomorphic maps, Math. Ann. 283 (1989), 645–655.

- [3] M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, Rende, 1989.
- M. Abate, Iteration theory, compactly divergent sequences and commuting holomorphic maps, Ann. Scuola Norm. Sup. 18 (1991), 167–191.
- [5] M. Abate and J. Raissy, *Wolff-Denjoy theorems in non-smooth convex domains*, Ann. Mat. Pura Appl., in press.
- [6] M. Abate and J.-P. Vigué, Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc. 112 (1991), 503–512.
- [7] R. E. Bruck, Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc. 76 (1970), 384–386.
- [8] R. E. Bruck, Properties of fixed point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251–262.
- [9] M. Budzyńska, The Denjoy-Wolff theorem in \mathbb{C}^n , Nonlinear Anal. 75 (2012), 22–29.
- [10] M. Budzyńska, T. Kuczumow and S. Reich, The Denjoy-Wolff theorem for compact holomorhic mappings in reflexive Banach spaces, J. Math. Anal. Appl. 396 (2012), 504–512.
- [11] M. Budzyńska, T. Kuczumow and S. Reich, *Theorems of Denjoy-Wolff type*, Ann. Mat. Pura Appl. **192** (2013), 621–648.
- [12] M. Budzyńska, T. Kuczumow and S. Reich, The Denjoy-Wolff theorem for compact holomorphic mappings in complex Banach spaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), 747–756.
- [13] M. Budzyńska, T. Kuczumow and A. Stachura, Properties of the Kobayashi distance, in Proceedings of the Second Conference on Nonlinear Analysis and Convex Analysis (W. Takahashi & T. Tanaka, Eds.), Yokohama Publishers, Yokohama, 2003, pp. 25–36.
- [14] M. Budzyńska and S. Reich, Intersections of holomorphic retracts in Banach spaces, J. Aust. Math. Soc. 89 (2010), 297–307.
- [15] S. Dineen, The Schwarz Lemma, Clarendon Press, New York, 1989.
- [16] S. Dineen, R. M. Timoney and J.-P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe, Ann. Scuola Norm. Sup. Pisa 12 (1985), 515–529.
- [17] R. Engelking, Outline of General Topology, North-Holland & PWN, Amsterdam & Warsaw, 1968.
- [18] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland, Amsterdam, 1980.
- [19] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [20] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
- [21] L. A. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, Advances in Holomorphy, North Holland, 1979, pp. 345–406.
- [22] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, Berlin, 1993.
- [23] J. Kapeluszny, T. Kuczumow and S. Reich, The Denjoy-Wolff theorem in the open unit ball of a strictly convex Banach space, Adv. Math. 143 (1999), 111–123.
- [24] J. Kapeluszny, T. Kuczumow and S. Reich, The Denjoy-Wolff theorem for condensing holomorphic mappings, J. Funct. Anal. 167 (1999), 79–93.
- [25] J. L. Kelley, General Topology, Springer, New York, 1975.
- [26] S. Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan 19 (1967), 460–480.
- [27] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
- [28] S. Kobayashi, Hyperbolic Complex Spaces, Springer, Berlin, 1998.
- [29] A. Kryczka and T. Kuczumow, The Denjoy-Wolff-type theorem for compact k_{B_H}-nonexpansive maps on a Hilbert ball, Ann. Univ. Mariae Curie-Skłodowska Sect. A 51 (1997), 179–184.
- [30] T. Kuczumow, S. Reich and D. Shoikhet, The existence and non-existence of common fixed points for commuting families of holomorphic mappings, Nonlinear Anal. 43 (2001), 45–59.

- [31] T. Kuczumow, S. Reich and D. Shoikhet, Fixed points of holomorphic mappings: a metric approach, in Handbook of Metric Fixed Point Theory (W. A. Kirk & B. Sims, Eds.), Kluwer Academic Publishers, Dordrecht, 2001, pp. 437–515.
- [32] T. Kuczumow and A. Stachura, The Denjoy-Wolff theorem for s-condensing mappings, Ann. Univ. Mariae Curie Skłodowska Sect. A 53 (1999), 109–115.
- [33] K. Kuratowski, Topology, Vol. I, Academic Press & PWN, New York & Warsaw, 1966.
- [34] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427–474.
- [35] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257–261.
- [36] R. Meyer, The Carathéodory pseudodistance and positive linear operators, Internat. J. Math. 8 (1997), 809–824.
- [37] S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005.
- [38] E. Vesentini, Invariant distances and invariant differential metrics in locally convex spaces, Spectral Theory, Banach Center Publications 8 (1982), 493–512.

Manuscript received October 2, 2013 revised October 25, 2013

Monika Budzyńska

Instytut Matematyki UMCS, 20-031 Lublin, Poland *E-mail address*: monikab1@hektor.umcs.lublin.pl

TADEUSZ KUCZUMOW

Instytut Matematyki UMCS, 20-031 Lublin, Poland *E-mail address*: tadek@hektor.umcs.lublin.pl

Simeon Reich

Department of Mathematics, The Technion – Israel Institute of Technology, 32000 Haifa, Israel *E-mail address*: sreich@tx.technion.ac.il