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(i) If x, y, w, z ∈ D and s ∈ [0, 1], then

kD (sx+ (1− s) y, sw + (1− s) z) ≤ max [kD (x,w) , kD (y, z)] ;

(ii) if x, y ∈ D and s, t ∈ [0, 1], then

kD (sx+ (1− s) y, tx+ (1− t) y) ≤ kD (x, y) .

In order to recall a characterization of kD-bounded sets, we need the following
notion. LetD be a bounded and convex domain in a complex Banach space (X, ∥·∥).
A nonempty subset C of D is said to lie strictly inside D if

dist∥·∥ (C, ∂D) := inf{∥x− y∥ : x ∈ C, y ∈ ∂D} > 0.

It is known [21] that for such a domain D, a nonempty subset C of D is kD-bounded
if and only if C lies strictly inside D.

The following concept of a complex geodesic will play a key role in our consider-
ations.

Definition 2.2 ([15], [38]). Let D be a bounded and convex domain in a complex
Banach space (X, ∥ · ∥) and let ∆ be the open unit disc in the complex plane C. A
holomorphic mapping ϕ : ∆ → D is a complex geodesic (with respect to kD) if there
exist points z ̸= w in ∆ such that

k∆(w, z) = kD(ϕ(w), ϕ(z)).

In this case we say that ϕ(w) and ϕ(z) are joined by a complex geodesic. If,
moreover, w = 0 and 0 < z ∈ R, we call ϕ a normalized complex geodesic joining
ϕ(w) with ϕ(z).

We proceed with the following definition.

Definition 2.3 ([15], [19]). We say that a bounded and convex domain D in a

complex Banach space (X, ∥ · ∥) is strictly convex if for every x, y ∈ D
∥·∥

, the open
segment

(x, y) = {z ∈ X : z = sx+ (1− s) y for some 0 < s < 1}
lies in D.

Using strict convexity, one can prove the following very useful theorem and
lemma.

Theorem 2.4 ([15]). Let D be a bounded and strictly convex domain in a complex
and reflexive Banach space (X, ∥ · ∥). Then any pair of distinct points in D can be
joined by a unique normalized kD-geodesic.

Lemma 2.5 ([11], [24]). Let D be a bounded and strictly convex domain in a complex
Banach space (X, ∥ · ∥). Let {xj}j∈J and {yj}j∈J be two nets in D which converge

in norm to ξ ∈ ∂D and to η ∈ D
∥·∥

, respectively. If

sup {kD (xj , yj) : j ∈ J} = c < ∞,

then ξ = η.
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3. kD-nonexpansive mappings and kD-nonexpansive retracts

If D1 and D2 are bounded domains in the complex Banach spaces (X1, ∥·∥1) and
(X2, ∥·∥2), respectively, and kD1 and kD2 are the Kobayashi distances in D1 and
D2, respectively, then each holomorphic f : D1 → D2 is nonexpansive, that is,

kD2(f(x), f(y)) ≤ kD1(x, y)

for all x, y ∈ D1 [21] (see also [15], [18], [20], [22] and [37]).
In particular, if D is a bounded domain in a complex Banach space (X, ∥ · ∥),

then each holomorphic f : D → D is kD-nonexpansive (see [20] and [31]).

Definition 3.1. Let D be a bounded and convex domain in a complex Banach
space (X, ∥·∥) . If ∅ ̸= F ⊂ D and there exists a kD-nonexpansive (holomorphic)
retraction of D onto F , then we say that F is a kD-nonexpansive (holomorphic)
retract of D.

The following theorem will be applied in the proof of our main theorem.

Theorem 3.2 ( [14], [11]). Let D be a bounded and strictly convex domain in a
complex reflexive Banach space (X, ∥·∥) . Let F be a family of holomorphic (kD-

nonexpansive) retracts of D. If F =
∩

F̃∈F F̃ ̸= ∅, then F is a holomorphic (kD-
nonexpansive) retract of D.

Recall that, using the Bruck method ( [7] and [8]), M. Budzyńska, T. Kuczumow
and A. Stachura established the following result (see also [2], [6] and [30]).

Theorem 3.3 ([13]). Let D be a bounded and strictly convex domain in a com-
plex and reflexive Banach space (X, ∥·∥) . Then, for every family F of commuting
holomorphic (kD-nonexpansive) self-mappings of D with a nonempty common fixed
point set Fix(F), this set Fix(F) is a holomorphic (kD-nonexpansive) retract of
D.

4. Horospheres

The main tool which we use in the proof of our main result is the newly defined

horosphere H̃
(
x, ξ,R, {xγ}γ∈Γ

)
, which is introduced in the following way (for other

types of horospheres and their applications see [1], [4], [9], [10], [11], [12], [23], [24],
[29], [31] and [32]).

Definition 4.1. LetD be a bounded and convex domain in a complex Banach space
(X, ∥ · ∥). Let {γ}γ∈Γ be an ultranet, x ∈ D, ξ ∈ ∂D, R > 0, xγ ∈ D for each γ ∈ Γ,

and assume that limγ∈Γ xγ = ξ in (X, ∥ · ∥). The horosphere H̃
(
x, ξ,R, {xγ}γ∈Γ

)
in D is defined as follows:

H̃
(
x, ξ,R, {xγ}γ∈Γ

)
:=

{
y ∈ D : lim

γ∈Γ
[kD (y, xγ)− kD (x, xγ)] <

1

2
logR

}
.

We collect several properties of these horospheres H̃
(
x, ξ,R, {xγ}γ∈Γ

)
in the

following theorem (for the ideas of the proof of this theorem see [1], [4] and [9]).
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Theorem 4.2 ([10]). Let D be a bounded and convex domain in a complex and
reflexive Banach space (X, ∥ · ∥). Let {γ}γ∈Γ be an ultranet, x ∈ D, ξ ∈ ∂D, R > 0,
xγ ∈ D for each γ ∈ Γ, and assume that limγ∈Γ xγ = ξ.

Then the horospheres H̃
(
x, ξ,R, {xγ}γ∈Γ

)
have the following properties:

(i) if the horosphere H̃
(
x, ξ,R, {xγ}γ∈Γ

)
is nonempty, then it is convex;

(ii) for each 0 < R1 < R2, we have[
H̃

(
x, ξ,R1, {xγ}γ∈Γ

)∥·∥
∩D

]
⊂ H̃

(
x, ξ,R2, {xγ}γ∈Γ

)
;

(iii) if x, x̃ ∈ D and limγ∈Γ [kD (x̃, xγ)− kB (x, xγ)] <
1
2 logL, then

H̃
(
x̃, ξ, R, {xγ}γ∈Γ

)
⊂ H̃

(
x, ξ, LR, {xγ}γ∈Γ

)
;

(iv) for each R > 1, we have B
(
x, 12 logR

)
⊂ H̃

(
x, ξ,R, {xγ}γ∈Γ

)
, where

B
(
x, 12 logR

)
is a ball in the metric space (D, kD);

(v) for each R < 1, we have B
(
x,−1

2 logR
)
∩ H̃

(
x, ξ,R, {xγ}γ∈Γ

)
= ∅, where

B
(
x,−1

2 logR
)
is a ball in the metric space (D, kD);

(vi)
∪

R>0

H̃
(
x, ξ,R, {xγ}γ∈Γ

)
= D and

∩
R>0

H̃
(
x, ξ,R, {xγ}γ∈Γ

)
= ∅;

(vii)
∩

R>0

H̃
(
x, ξ,R, {xγ}γ∈Γ

)∥·∥
⊂ ∂D;

(viii) if D is strictly convex and each horosphere is nonempty, then∩
R>0

H̃
(
x, ξ,R, {xγ}γ∈Γ

)∥·∥
= {ξ} .

Observe that directly from (iii) it follows that if for some point x̃ ∈ D all horo-

spheres H̃
(
x̃, ξ, R, {xγ}γ∈Γ

)
are nonempty, then the same is true for each point

x ∈ D. We do not know, however, whether the horosphere H̃
(
x, ξ,R, {xγ}γ∈Γ

)
is

nonempty for each R > 0. It is known that this does hold for open unit balls in
complex Banach spaces (see the proofs in [24], [29], [31] and [32]; see also [9] for the
case of bounded and convex domains in Ck). Now we prove this fact in the spe-
cial case where the ultranet {xγ}γ∈Γ is connected with a compact kD-nonexpansive

retraction r of D.

Theorem 4.3. Let D be a bounded and convex domain in a complex reflexive Ba-
nach space (X, ∥ · ∥). Let r : D → F be a compact and kD-nonexpansive retraction
onto F , where ∅ ̸= F ⊂ D. Let {γ}γ∈Γ be an ultranet and let a net {xγ}γ∈Γ in D

be such that

lim
γ∈Γ

xγ = ξ ∈ ∂D

and
r(xγ) = xγ
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for each γ ∈ Γ. Then the horosphere H̃
(
x, ξ,R, {xγ}γ∈Γ

)
is nonempty for each

x ∈ D and for each R > 0.

Proof. Fix x ∈ D. By Theorem 2.4, for each w ∈ D, where w ̸= x, and for each
0 < α̃ < kD(w, x), there exists a point yw,x,α̃ in D such that

kD(w, x) = kD(w, yw,x,α̃) + kD(yw,x,α̃, x)

and

kD(yw,x,α̃, x) = α̃.

Now fix 0 < R < 1 and let α > −1
2 logR. Since limγ∈Γ xγ = ξ ∈ ∂D, we may

assume, without loss of generality, that 0 < α < kD(xγ , x̃) for each γ ∈ Γ. Then for
each yxγ ,x,α, we have

kD(yxγ ,x,α, x) = α

and

kD(xγ , x) = kD(xγ , yxγ ,x,α) + kD(yxγ ,x,α, x) = kD(xγ , yxγ ,x,α) + α.

Set

zxγ ,x,α = r(yxγ ,x,α)

for each γ ∈ Γ. Since

kD(zxγ ,x,α, r(x)) = kD(r(yxγ ,x,α), r(x)) ≤ kD(yxγ ,x,α, x) = α,

the ultranet {zxγ ,x,α}γ∈Γ lies strictly insideD and in the compact set r(D)
∥·∥

= F
∥·∥

.
Therefore this ultranet {zxγ ,x,α}γ∈Γ is convergent in the norm ∥ · ∥ to a limit point
zx,α ∈ D. Hence we get

lim
γ∈Γ

kD(zxγ ,x,α, zx,α) = 0

and

lim
γ∈Γ

[kD(zx,α, xγ)− kD(x, xγ)] = lim
γ∈Γ

[kD(zxγ ,x,α, xγ)− kD(x, xγ)]

= lim
γ∈Γ

[kD(r(yxγ ,x,α), r(xγ))− kD(x, xγ)]

≤ lim
γ∈Γ

kD[(yxγ ,x,α, xγ)− kD(x, xγ)] = −α <
1

2
logR.

Therefore zx,α ∈ H̃
(
x, ξ,R, {xγ}γ∈Γ

)
and so the horosphere H̃

(
x, ξ,R, {xγ}γ∈Γ

)
is indeed not empty, as asserted. �

5. Families of kD-nonexpansive retracts

Before stating our main theorem, we recall that the Hausdorff distance (with
respect to the norm in a Banach space (X, ∥ · ∥)) between a set A and a point b
is given by Dist∥·∥(A, b) := sup{∥x− b∥ : x ∈ A}. Now we are ready to state and
prove the main theorem of our paper. It extends Theorems 9.4 and 10.2 in [11],
where X = Ck and D = B, the open unit ball of X, respectively.
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Theorem 5.1. Let D be a bounded and strictly convex domain in a complex and
reflexive Banach space (X, ∥ · ∥), and let {Fi}i∈I be a family of kD-nonexpansive
retracts of D such that

∩
j∈J Fj ̸= ∅ for each finite set ∅ ̸= J ⊂ I of indices.

If
∩

i∈I Fi = ∅ and there exists a nonempty finite set ∅ ̸= J̃ ⊂ I of indices

such that
∩

j∈J̃ Fj
∥·∥

is compact, then there exists a point ξ ∈ ∂D such that

limJ Dist∥·∥(
∩

j∈J Fj , ξ) = 0, where the family {J : ∅ ̸= J ⊂ I and J is a finite set}
of all nonempty finite sets of indices is partially ordered by inclusion.

Proof. Since the family {J : ∅ ̸= J ⊂ I and J is a finite set} of all nonempty
finite sets of indices is partially ordered by inclusion, without any loss of generality
we may consider the family {J}J≥J̃ in place of the whole family. Let {γ}γ∈Γ be

an ultranet such that {Jγ}γ∈Γ is a subnet of {J}J≥J̃ . The subnet {Jγ}γ∈Γ is also

an ultranet. These considerations imply that in place of {Fi}i∈I we may take

{F̂γ}γ∈Γ = {
∩

j∈Jγ Fj}γ∈Γ. Each F̂γ

∥·∥
is compact and by Theorem 3.2, each F̂γ is

also a kD-nonexpansive retract of D and
∩

γ∈Γ F̂γ = ∅ . Now we choose xγ ∈ F̂γ

for each γ ∈ Γ. Then the ultranet {xγ}γ∈Γ is convergent to ξ and its limit point ξ

lies on the boundary ∂D of the domain D. This holds true because
∩

γ∈Γ F̂γ = ∅,
and all retracts are closed in (D, kD) and relatively compact in (X, ∥ · ∥). Next, we

choose x ∈ D and consider the horosphere H̃
(
x, ξ,R, {xγ}γ∈Γ

)
, which is nonempty

by Theorem 4.3. For each γ ∈ Γ, let r̂γ be a kD-nonexpansive retraction of D onto

F̂γ . Then by the inequality

lim
γ∈Γ

[
kD

(
r̂γ′(y), xγ

)
− kD (x, xγ)

]
≤ lim

γ∈Γ
[kD (y, xγ)− kD (x, xγ)] <

1

2
logR,

which holds for each y ∈ H̃
(
x, ξ,R, {xγ}γ∈Γ

)
and γ′ ∈ Γ, each horosphere

H̃
(
x, ξ,R, {xγ}γ∈Γ

)
is nonempty, convex, and r̂γ′-invariant for each γ′ ∈ Γ. Now we fix z ∈ D and let
ξ(z) ∈ ∂D be the limit point in the norm ∥ · ∥ of the ultranet {r̂γ (z)}γ∈Γ. Observe

that for each w ∈ D and γ ∈ Γ, we have

kD (r̂γ(z), r̂γ(w)) ≤ kD(z, w).

Hence, applying Lemma 2.5, we see that the point ξ(z) is independent of the choice
of z ∈ D, say ξ0 = ξ(z) for all z ∈ D. Next, by Theorem 4.2, we obtain

{ξ0} ⊂ ∂D ∩
∩
R>0

H̃
(
x, ξ,R, {xγ}γ∈Γ

}∥·∥
= {ξ} .

Thus ξ = ξ0 and this means that limγ∈Γ r̂γ(w) = ξ for each w ∈ D. Finally, observe

that each ultranet {x̃γ}γ∈Γ, where x̃γ ∈ F̂γ for γ ∈ Γ, can play the role of the above

ultranet {xγ}γ∈Γ. This implies that limγ∈ΓDist∥·∥(F̂γ , ξ) = 0 and this leads to our
asserted result, namely, limJ Dist∥·∥(

∩
j∈J Fj , ξ) = 0. �

Directly from Theorem 5.1 we deduce the following corollaries.
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Corollary 5.2. Let D be a bounded and strictly convex domain in a complex and
reflexive Banach space (X, ∥ · ∥), and let {Fi}i∈I be a family of kD-nonexpansive
retracts of D such that

∩
j∈J Fj ̸= ∅ for each finite set ∅ ̸= J ⊂ I of indices. If∩

i∈I Fi = ∅ and there exists a nonempty finite set ∅ ̸= J̃ ⊂ I of indices such

that
∩

j∈J̃ Fj
∥·∥

is compact, then there exists a point ξ ∈ ∂D such that the net of

kD-nonexpansive retractions {rJ}J converges uniformly on D to the constant map
taking the value ξ, where the family {∅ ̸= J ⊂ I} of all nonempty finite sets J of
indices is partially ordered by inclusion and rJ is a kD-nonexpansive retraction of
D onto the intersection

∩
j∈J Fj for each J.

Corollary 5.3. Let D be a bounded and strictly convex domain in a complex and
reflexive Banach space (X, ∥ · ∥), and let {Fi}i∈I be a family of kD-nonexpansive
retracts of D such that

∩
j∈J Fj ̸= ∅ for each finite set ∅ ̸= J ⊂ I of indices. If∩

i∈I Fi = ∅ and there exists a nonempty finite set ∅ ̸= J̃ ⊂ I of indices such that∩
j∈J̃ Fj

∥·∥
is compact, then limJ diam∥·∥(

∩
j∈J Fj) = 0, where the family {∅ ̸= J ⊂

I} of all nonempty finite sets J of indices is partially ordered by inclusion.

Finally, applying Theorem 3.3, we obtain our last two results.

Theorem 5.4. Let D be a bounded and strictly convex domain in a complex and
reflexive Banach space (X, ∥ · ∥), and let F = {fi}i∈I be a commuting family of
kD-nonexpansive self-mappings of D such that

∩
j∈J Fix(fj) ̸= ∅ for each finite set

∅ ̸= J ⊂ I of indices. If the family F does not have a common fixed point in D and

there exists a nonempty finite set ∅ ̸= J̃ ⊂ I of indices such that
∩

j∈J̃ Fix(fj)
∥·∥

is

compact, then there exists a point ξ ∈ ∂D such that limJ Dist∥·∥(
∩

j∈J Fix(fj), ξ) =

0, where each ∅ ̸= J ⊂ I is a nonempty finite set of indices and the family of all
such sets is partially ordered by inclusion.

Corollary 5.5. Let D be a bounded and strictly convex domain in a complex and
reflexive Banach space (X, ∥ · ∥), and let F = {fi}i∈I be a commuting family of kD-
nonexpansive self-mappings of D such that

∩
j∈J Fix(fj) ̸= ∅ for each nonempty

finite set ∅ ̸= J ⊂ I of indices. If the family F does not have a common fixed
point in D and there exists a nonempty finite set ∅ ̸= J̃ ⊂ I of indices such that∩

j∈J̃ Fix(fj)
∥·∥

is compact, then limJ diam∥·∥(
∩

j∈J Fix(fi)) = 0, where each ∅ ̸=
J ⊂ I is a nonempty finite set of indices and the family of all such sets is partially
ordered by inclusion.
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