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DYNAMIC STRING-AVERAGING PROJECTION METHODS FOR
CONVEX FEASIBILITY PROBLEMS IN THE PRESENCE OF
COMPUTATIONAL ERRORS

ALEXANDER J. ZASLAVSKI

ABSTRACT. In the present paper we study convergence of dynamic string-averaging
projection methods for solving convex feasibility problems in a Hilbert space. Our
goal is to obtain an approximate solution of the problem in the presence of compu-
tational errors. We show that our dynamic string-averaging projection algorithm
generates a good approximate solution, if the sequence of computational errors
is bounded from above by a constant.

1. INTRODUCTION

In this paper we study the convergence behavior of a class of projection methods
which are an important tool for solving convex feasibility problems [1-19, 21-30].
Our goal is to obtain an e-approximate solution of the problem in the presence of
computational errors, where € is a small positive number. We apply a dynamic
string-averaging projection methods for solving convex feasibility problems and
show that this algorithm generates a good approximate solution, if the sequence
of computational errors is bounded from above by a constant. Clearly, in practice it
is sufficient to find a good approximate solution instead of constructing a minimizing
sequence. On the other hand, in practice computations induce numerical errors and
if one uses methods in order to solve minimization problems or feasibility problems
these methods usually provide only approximate solutions of the problems.

Let (X, (-,-)) be a Hilbert space with an inner product (-,-) which induces a
complete norm || - ||.

For each x € X and each nonempty set £ C X put

d(e, B) = inf{a — | : y € B},
For each x € X and each r > 0 set
B(z,r) ={ye X: |z —y| <r}.
It is well-known that the following proposition holds.

Proposition 1.1. Let D be a nonempty, closed and convexr subset of X. Then for
each x € X there is a unique point Pp(x) € D satisfying

|z — Pp(z)|| = nf{||lz —y[| : y € D}.
Moreover,

1Pp(x) = Pp(y)ll < llz =yl for all z,y € X
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and for each x € X and each z € D,
(z — Pp(x),z — Pp(x)) <O0.
Thus the mapping Pp is nonexpansive [20].

Corollary 1.2. Assume that D is a nonempty, convexr and closed subset of X.
Then for each x € X and each z € D,

Iz = Pp(a)|* + lz = Pp(2)[* < |2 — /.

Suppose that C1i, ..., ), are nonempty, closed and convex subsets of X where m
is a natural number. Set
(1.1) C:=n,C;.
We suppose that
(1.2) C #0.
Fori:=1,...,m set
(1.3) P, = Pc,.

A point x € C is called a solution of our convex feasibility problem. For a given
€ > 0 a point x € X is called an e-approximate solution of the feasibility problem if

d(z,C;)) <e i=1,...,m.

It should be mentioned that there are cases when a point x € X is an e-
approximate solution of the feasibility problem with a small constant €, but z is
rather far from the intersection of the sets C;, i = 1,...,m. Nevertheless such
situations do not happen if the sets C1,...,Cy, possess the (bounded) regularity
property (see Section 5 of [4]).

In the present paper we apply a dynamic string-averaging projection (DSAP)
method with variable strings and weights [6, 8-12] in order to obtain a good ap-
proximative solution of the feasibility problem.

Next we describe the dynamic string-averaging projection (DSAP) method with
variable strings and weights.

By an index vector, we a mean a vector t = (t1,...,tp) such that t; € {1,...,m}
foralle=1,...,p.
For an index vector t = (t1,...,t,) set
(1.4) p(t)=q, Pltj =Py, P,.
It is easy to see that for each index vector ¢
(1.5) 1P[t)(x) = Pty < [l —yl| for all 2,y € X,
(1.6) P[t](x) =z for all z € C.

Denote by M the collection of all pairs (2, w), where € is a finite set of index
vectors and
(1.7) w: Q= (0,00) be such that » w(t) = 1.

teQ
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A pair (2, w) € M is called an amalgamator and w is called a fit weight function
[6].
Let (2, w) € M. Define
(1.8) Pow(x) =Y w(t)Plt)(z), = € X.

teQ
It is easy to see that

(1.9) 1Po.w() = Pow(®)ll < |l -yl for all z,y € X,

(1.10) Po () = for all z € C.

The dynamic string-averaging projection (DSAP) method with variable strings
and variable weights can now be described by the following algorithm [6, 8-12].

Initialization: select an arbitrary zop € X.
Iterative step: given a current iteration vector xj pick a pair

(Qp41, wt1) €M
and calculate the next iteration vector x41 by
Tpt+1 = Pﬂk+1awk+l (mk)

The convergence properties and the, so called, perturbation resilience of this
DSAP method were analyzed in [6, 8-12].
Fix a number

(1.11) A€ (0,m™]

and an integer

(1.12) q>m.
Denote by M, the set of all (2, w) € M such that
(1.13) p(t) < q forallteQ,
(1.14) w(t) > A for all ¢t € Q.

Fix a natural number N.

In the studies of the convex feasibility problem the goal is to find a point = € C.
In order to meet this goal we apply an algorithm generated by

{(Q4,wi)}i2, € M,
such that for each natural number j,
j+N—1
{]—7"‘7m} CUi:j (UtEQi{th"')tp(t)})‘
This algorithm generates, for any starting point zo € X, a sequence {z1}32, C X,
where
Tt+1 = P9k+1,wk+1 (xk)

According to the results known in the literature, this sequence should converge to
an element of C' [6, 8-12]. In this paper, we study the behavior of the sequences
generated by {(€;,w;)}°, taking into account computational errors which always
present in practice. These computational errors are bounded from above by a small
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constant depending only on our computer system which is denoted in the paper
by 0. This computational error § presents in all calculations which we do using

our computer system. For example, if x € X and i € {1,...,m} and we need to
calculate P;(x), then using our computer system we obtain a point y € X satisfying
ly = Pi(z)|| < 6.

If k£ is a natural number, y;, € X, i = 1,...,k, oy > 0, ¢ = 1,...,k satisfying
Ele o; = 1 and if need to calculate Zle oy, then by using our computer system
we obtain a point y € X satisfying

k
Hy - Z QY
i=1

Surely, in this situation one cannot expect that the sequence of iterates generated
by our algorithm converges to the set C. The goal of our paper is to understand
what approximate solutions of the feasibility problem can be obtained.

We will prove the following result (Theorem 1.3), which shows that in the presence
of computational errors bounded from above by a constant &, an e-approximate
solution can be obtained after (ng — 1)N iterations of the algorithm, where ¢ and
no are constants depending on J (see (1.19) and (1.26)).

In order to state our main result we need the following definitions.

Let 0 >0, z € X and let t = (t1,...,t,)) be an index vector. Define

<.

Ao(z,t,6) = {(y,\) € X x R': there is a sequence {y; fito) C X such that
yo =z and for all i = 1,... p(t),
lys = Pr(yim1)| <,
Y= Yp@)

(1.15) A=max{|lyi —yi—1l|: i=1,...,p(t)}}.
Let 6 > 0, z € X and let (Q,w) € M. Define

Az, (Q,w),0) :{(y, A\) € X x R': there exist
(ye, A\e) € Ag(z,t,0), t € Q such that
(1.16) Hy — Zw(t)ytH <0, A=max{\: t € Qt}}
teq)

Denote by Card(A) the cardinality of a set A. Suppose that the sum over empty
set is zero.

Theorem 1.3. Let M > 0 satisfy

(1.17) B(0,M)NC # 0,
d > 0 satisfy
(1.18) § < (2gN)71

and let a natural number ng satisfy
(1.19) no > 1+4M?671(g+ 1) (2M + 4)74aN) L.
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Assume that

(1.20) {(Q, wi) }i21 € M.

satisfies for each natural number j

(1.21) {1,....om} UL N (Ugeq, {ts -ty 1)
(1.22) xo € B(0, M) and {z;};2; C X, {\i}j=; C [0,00)

satisfy for each matural number i,
(1.23) (@i, \i) € A(xi—1, (4, wy),0).
Then there exists an integer q € [0,ng — 1] such that

(1.24) || <3M +1,i=0,...,qN,

(1.25) Ai < (64A715(G 4+ 1)(2M + 4)4N)Y/2,

i=qN+1,...,(g+1)N.

Moreover, if an integer q € [0,ng — 1] satisfies (1.25), then for each s = 1,...,m
and each i = gN,...,(¢+ 1)N,

(1.26) d(zi, Cs) < (G+ 1)(N + 1)(64A716(q + 1)(2M + 4)4N)1/2,
and
(1.27) i — ;]| < (7+ V)N (64A76(q + 1)(2M + 4)4N)/?

for eachi,j € {gN,...,(¢g+1)N}.

Theorem 1.3 is proved in Section 2. It provides the estimations for the constants
¢ and ng, which follow from (1.26) and (1.19). According to (1.26),

(1.28) €= (74 1)(N 4 1)(64A718(q + 1)(2M + 4)4N)'/2,

Note that € = ¢16'/2 and ng = [c2671] + 1, where ¢1 and ¢y are positive constants
depending on M and [u] denotes the integer part of u.

Let 6 > 0 satisfy (1.18) and a natural number ng satisfy (1.19). Assume that we
apply an algorithm associated with

{(Q4,w) 1724 € M,

which satisfies (1.21) for each natural number j, under the presence of compu-
tational errors bounded from above by a constant § and that our goal is to find
an e-approximate solution with e defined by (1.28). Theorem 1.3 also answers an
important question: how we can find an iteration number k for which z; is an
e-approximate solution of the feasibility problem. By Theorem 1.3 we need just to
find the smallest integer g € [0,...,no — 1] such that (1.24) and (1.25) hold.
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2. PROOF OF THEOREM 1.3

By (1.17) there exists

(2.1) z€ BO,M)nC.

Fix a positive number

(2.2) €0 = (64A715(7+ 1)(2M + 4)4N)'/2,

Assume that a nonnegative integer s is such that for each integer k € [0, s],
(2.3) max{\;: i =kN+1,...,(k+1)N} > €.

By (2.1) and (1.22),

(2.4) llxzo — 2| < 2M.

Assume that an integer k € [0, s] satisfies

(2.5) ey — 2| < 2M.

We prove the following auxiliary result.

Lemma 2.1. Assume that an integer

(2.6) i€[0,N—1]

satisfies

(2.7) |2pnpi — 2l < 2M +i6(q +1).

Then

(2.8) |Zgmpivr — 2l <6(@+ 1) + |z — 2l

and

(2.9) |2 4ir1 — 2P < lepyss — 2017+ 6(7 + 1) (M + 3).

If )\kN+i+1 > €0, then
(2.10) zrm e — 207 = llepmys — 2017 < =327 A,

Proof By (1.23),

(2.11) (Trntitt Menvrivt) € A@pnpir (Qenpivt, Wentig1):0)-
In view of (2.11) and (1.16) there exists
(2.12) (yt, ) € Ao(@pn4irt:6)s £ € Qyiin
such that
(2.13) H%NHH - Z wkN+i+1(t)ytH <9,
€N 4it1

By (2.12) and (1.15) for each t = (t1,...,ty4)) € Qx4 there exists a finite
sequence {yl@ }fi% C X such that

(2.15) y((Jt) = TEN+i» yl()la) =Y
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(2.16) Hy](-t) - P (y](QI)H < § for each integer j =1,...,p(t),
(2.17) ar = max{|ly), =y i=0,...,p(t) -1},
Let

t=(t1, s tp) € UNtit1-
Let
(2.18) je{l,...,p(t)}.

It follows from Corollary 1.2, (1.1), (1.3) and (2.1) that
(2.19) Iz = Py (21 4+ 1P (62) = w241 < N1z = w2
By (1.1), (1.3), (2.1), (2.16), (2.18) and Proposition 1.1,
yN2 =llz - P,y () + Py () — )12
<|lz = Py (O DIP + 1P, (1) — 3712
+2llz = Py ()P, (670 — o)l
<|lz = Py, (I + 62 + 28]z — Py, (50 )
(2.20) <llz = Py, (11 + 62 + 2681z — P, ).
In view of (2.19) and (2.20),

t t t
1z = 53712 <z — 501012 = 1P, 7)) — 442101

Iz =

(2.21) +0% 4 26)2 — 5\ 1.
By (2.21),
(2.22) Iz =y < 1z — 21 + 6.

Thus we have shown that the following property holds:

(P1) for each t = (t1,...,tpn)) € Qyiipq and each j € {1,...,p(t)} (2.21) and
(2.22) hold.

It follows from (P1), (2.22), (2.15) and (1.13) that for each ¢t € € 5, ,,, and each

jefl,...pt)}
t t . .
Iz = 5”1 <llz = 5”11 + 05 = l12 — 2yl + 05
In view of (2.23) and (2.7) for each t € Q5 ,;,, and each j € {1,...,p(t)},
(2.24) 2 =y < 2M + (1 + g)id + 6q < 2M + 8(q(i + 1) + ).

By (1.18), (2.24), (2.6), (2.7) and (2.15) the following property holds:
(P2) for each t € Qy x5, ;41 and each j € {1,...,p(t)},

(2.25) 2 — 47|l < 2M +20gN < 2M + 1.
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By (2.15) and (2.23) for each t € Q5. 1,

t _
(2.26) Iz = will = llz = 50, | < Il = w4l + 02
It follows from (2.13), (2.26) and (1.7) that
2o — 2l < H%NHH - Z wkN+i+1(t)ytH
SN P
+ H Z wkN+i+1(t)yt - ZH
tEQp Ry g
<0+ Z Wyn i O llye — 2| <0+ l|lzpy g — 2l + 64,
€N it

[2pypivn — 2l < 6@+ 1) + 2wy — 2
and (2.8) is true.

By (2.8), (2.7), (2.6) and (1.18)
‘|ka+i+1 - Z||2 < ||33kj\7+i - 2”2 + 52( 1) +20(q + I)kaﬁ—i—i — 2|
< epmys — 2l +6%(@+1)* +26(g + 1)(2M + 1)
< llopngs — 217+ 8(a + 1)(4M + 3).

Thus (2.9) holds.
Assume that

(2.27) ARNtit1 > €o-

By (2.14) there is

(2.28) $= (81, Sp(s)) € Qpntit1
such that

(2.29) Qs = Npyaip1 > €o-

In view of (2.29), (2.28) and (2.17), there is

(2.30) jo €{1,...,p(s)}

such that

(2.31) Iy = o5l = e > co.

By (P1), (P2) and (2.21) applied with t = s, j = jo

2= 512 < e =yl 12 = 1P, (05 ) — o) )1

+ 0% + 25(2M +1)

(2.32) <z =y 12 = 1P, (05 1) =y 12 + 26(2M + 2).
By (2.31) and (2.16),
(233) (1P, (05 ) = oS > ) = o8l = ) — P, 05 ) > 0 — 6.
Relations (2.32) and (2.33) imply that
(2.34) 2 =212 < e — o8 112 — (60 — 8)% + 26(2M + 2).
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By (P2) applied with ¢t = s for all j € {0,1,...,p(s)},

(2.35) lz = $7) < 20 + 1.

By (P1), (2.22) with ¢t = s and (2.35), for all j € {1,...,p(s)},
Iz =y < 11z = g2 12 + 6% + 262 — 2, |

(2.36) <z — gl + 26(2M + 2).
In view of (2.15), (2.30), (2.34), (2.36) and (1.13),
p(s)
2 = waal® = Nl = vl = Y lll2 = 512 = 112 — 5|
> (co— 8)° — 36(2M +2) — 26(2M + 2)q
(2.37) > (eg — 0)% —20(2M +2)(g + 1).

By (P1), (P2) and (2.22), for all t € Q5,1 and all j € {1,...,p(t)},
t t t
2 = 5112 < 1z — 524 1% + 82 + 26]|2 — |
<Jlz =y, |12 + 26(2M +2),

(2.38) 2= g0 02 = 12 = 5\7)? > —26(2M + 2.
By (2.15), (2.38) and (1.13), for all t € Q5.1 1,
p(t) . .
2 = zpmaill® = Iz = wl® = Y 1z = 42012 = 11z — o)
=1
(2.39) > —2q6(2M +2).

Since the function u — ||u — 2||?, u € X is convex it follows from (1.7) and (2.28)
that

2
H Z wkN+z‘+1(t)yt_ZH < Z wk;N+i+1(t)Hyt—Z||2

tEQpr it PEQL N 441
=z —mwsl®+ D0 wemr Olllye — 217 = 112 — 2xill?)
) S LS AR ) )
< Iz = Zengill” + wemgip () llys — 2117 = 12 = zpm il
(2.40) + ) Awpmpir 1 Olllye = 2l1° = 12 = 2l s £ € Qi \ {51}

By (2.40), (2.37), (2.39), (1.7), (2.2), (1.14)

2
| S v Om 2| < s (9o — 82 + 2520 + 2)(a + 1)
(O
S +200(2M 4 2) + ||z — 24
<z = wpgpll® +206(2M +2)
- wkN+z‘+1(3)[4_lfg —20(2M +2)(q + 1)]
<z = @pmpall® +209(2M +2)
(2.41) — A(4TYE —25(M +2)(G+1)).
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By (2.41) and (2.2)

2
| Y v ®Ow = 2| = oy — 2 < 20@M +2)g - 871 A
tGQkN+i+1

(2.42) > — 1671 A€.
It follow from (2.13), (2.42) and (1.7) that
25 i1 — z|)?

2
:’)ka+i+1_ Z Wy 4iv1 (DY + Z wkN+i+1(t)yt_ZH

QR it e R it
2
< ka]\_fHJrl - Z wkN+i+1(t)ytH
tEQ R it
2
+ H Z wkN+z‘+1(t)yt -z
SN
+2ka1\7+z‘+1 - Z wkN+i+1(t)l/tHH Z Win i1 (DY — ZH
€N tiv1 e N it

< 8 167 A+ |y — 2

+ 25” Z Wy N i1 By — 2
tEQL N4t
< 02— 167 Acq + [lepy g — 2]
(2.43) + 20 max{||y: — 2| : t € Qyiip1)-
By (2.43), (P2), (2.15) and (2.2),
ks = 2017 = gy — 2l1* < 6% — 167 Aeg + 20(2M + 1)
< —16A 4+ 20(2M +2) < —327 1A,

Lemma 2.1 is proved.

By (2.5), Lemma 2.1 applied by induction and (1.18) for all i = 0,..., N — 1,
[ern i — 21 < llwpyps — 2l +6(7+ 1),

(244)  llzgmpior — 2 S2M +6(g+1)(i+1) <2M +5(7+ )N < 2M + 1,

(2.45) lTpyys — 2l <2M +1,0=0,...,N.
It follows from (2.5), (2.44), (2.3), (2.2) and Lemma 2.1 that
N-1
lzgesnym — 217 = lzey = 217 = D lleagipn — 2 = llzegss — 21°)
i=0

< —327'AE + N§(G+1)(4M 4 3) < —64 1Al
Thus we have shown that the following property holds:
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(P3) if an integer k € [0, s] satisfies ||z,5 — 2| < 2M, then
|zj — 2| <2M +1, j =kN,...,(k+1)N,

(2.46) lzgnyn = 2l = gy — 2)* < —647 A
By (2.4) and property (P3),
(2.47) |zj— 2| <2M +1, 5=0,...,(s+1)N

and (2.46) holds for all k =0,...,s.
In view of (2.46) and (2.4),

647" A (s +1) < D llary — 21 — ey — 21°]
k=0

= llwo — 2I” = llzeyryn — 217 < llwo — 2[|* < 402,

s+1 <256 M?A ey

Thus we have shown that the following property holds:
(P4) If an integer s > 0 and for each integer k € [0, s] (2.3) holds, then

s < 256M7A " eg? — 1,
|zj —z|| <2M +1, j=0,...,(s + 1)N,
|zpy — 2| <2M, k=0,...,s+1.

(P4), (1.19) and (2.2) imply that there exists an integer ¢ € [0, ng — 1] such that for
each integer k satisfying 0 < k < ¢,

max{\;: i=kN+1,...,(k+1)N} > «,
max{\;: i =qN+1,...,(g+1)N} < €.
By (2.4), the choice of ¢, (P4) and (2.1),
gy = 2[ < 2M,
|zj— 2| <2M +1, j=0,...,¢N,
lzjl <3M +1, j=0,...,qN.
Assume that an integer ¢ € [0,n9 — 1] satisfies

(2.48) Ni<e€,i=gN+1,...,(¢+1)N.
Let

(2.49) j€{gN,...,(g+1)N —1}.
Then by (1.23) and (1.49),

(2.50) (11, A1) € Az, (Qj11, wj41),6)-
It follows from (2.50), (1.16) and (2.48) that there exist
(2.51) W7, oy € Ag(x),t,6), t € Qp
such that

(2.52) o= D2 winn?| <,

t€Q541
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(2.53) max{agj) teQint <eo.
By (2.51), (1 15) and (2.53) for each t = (t1,...,tp4)) € 2541 there exists a finite
sequence {y b)Y } 0 C X such that

(2.54) ! =,

for each integer i = 1,...,p(t),

(2.55) Iy — P ()] <6,

(2.56) vy = v’

(2.57) 0 > o = max{|y\" — y"| i =1, pt)}.

By (2.54), (2.56), (2.57) and (1.13), for each t € ;i1 and each integer i =
1? R 7p(t)’

(2.58) |z; — || < ieo < eod,

(2.59) |z — 57| < eod.
By (2.56) and (2.55) for each t = (t1,...,t,4)) € Q41 and each i = 1,...,p(t),
d(w;,Cy) < oy = P ()]
< oy =)+ Iy = P
(2.60) < eyq+ 6.
In view of (2.52), (2.59) and (1.7),

g =il < ez = 3 win@u? | +]| 3 w0 o
tEQj+1 EQJ+1

<o+ Y wia®ly? -zl

t€Qy41
< 0+ €oq.
Together with (2.2) this implies that
(2.61) 24 — 251l < 0@+ D).
By (2.60) and (2.2),
(2.62) d(zj,C) < eo(q+1), t € Qjp1, i=1,...,p(t).

Clearly, (2.61) and (2.62) hold for all j = gN,...,(¢+1)N —1.
By (2.61) for each j1,j2 € {¢N,...,(¢+1)N},

(2'63) ijl - x]’QH < 60(‘.7+ 1)]\7

Let s € {1,...,m}. By (1.21) there exist j € {¢gN,...,(¢g+1)N — 1} and t =
(tl, e 7tp(t)) S Qj+1 such that

s € {t1,... 7tp(t)}-
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Together with (2.62) this implies that

(2.64) d(z;,Cs) < eo(q+1).

In view of (2.63) and (2.64) for each i € {¢N,...,(¢+ 1)N},

(2.65) d(z, Cs) < ||z — ]| +d(xj,Cs) < €o(@+1)N +eo(q+1) < €o(q+1)(N+1).
It follows from (2.63) and (2.2) that for all j1,jo € {gN,...,(¢+1)N},

|2, — 2]l < (7+ 1N (64A716(G + 1)(2M + 4)4N)"/2,

By (2.2) and (2.65), for each i € {gN,...,(¢+ 1)N} and each s € {1,...,m},

d(zi,Cs) < (G+ 1)(N +1)(64A715(g 4 1)(2M + 4)4N)*/2.

Theorem 1.3 is proved.
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