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continuous if there exists L > 0 such that ∥V x− V y∥ ≤ L∥x− y∥ for all x, y ∈ H.
Such V is also called L-Lipschitzian continuous.

Let B : H ( H be a multivalued mapping. The effective domain of B is denoted
by D(B), that is, D(B) = {x ∈ H : Bx ̸= ∅}. A multivalued mapping B is said
to be a monotone operator on H if ⟨x − y, u − v⟩ ≥ 0 for all x, y ∈ D(B), u ∈ Bx,
and v ∈ By. A monotone operator B on H is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued
operator Jr = (I+ rB)−1 : H → D(B), which is called the resolvent of B for r, and
define the set B−10 as B−10 = {x ∈ H : 0 ∈ Bx}.

In 2011, Lin and Takahashi [15] proved the following strong convergence theorem.

Theorem 1.1. Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Let α > 0 and let F be a α−inverse-strongly monotone mapping of
C into H. Let B be a maximal monotone mapping on H and let G be a maximal
monotone mapping on H such that the domain of G is included in C. Let Jλ =
(I + λB)−1 and Tr = (I + rG)−1 for each λ > 0 and r > 0. Let 0 < k < 1
and let g be a k−contraction of H into itself. Let V be a γ̄− strongly monotone
and L−Lipschitzian continuous operator with γ̄ > 0 and L > 0. Soppose that
(A+B)−10

∩
G−10 ̸= ∅. Take µ, γ ∈ R as follows:

0 < µ <
2γ̄

L2
, 0 < γ <

γ̄ − L2µ
2

k
.

Let x1 = x ∈ H and let {xn} ⊂ H be defined by

xn+1 = αnxn + (1− αn)(βnγf(xn) + (1− βnV )Jλn(I − λnF )Trnxn)

for each n ∈ N, λn ⊂ (0,∞), αn ⊂ (0, 1), βn ⊂ (0, 1), and rn ⊂ (0,∞). Assume
that:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) lim

n→∞
βn = 0, and

∑∞
n=1 βn = ∞;

(iii) 0 < a ≤ λn ≤ b < 2α, and lim infn→∞ rn > 0.

Then lim
n→∞

xn = x̄, where x̄ = P(F+B)−10
∩

G−10(I − V + γg)x̄.

On the other hand, the split feasibility problem can be formulated as the following
problem:

(SFP) Find x̄ ∈ H1 such that x̄ ∈ C and Ax̄ ∈ Q,

where C and Q are nonempty closed convex subsets of Hilbert spaces H1 and H2,
respectively, and A : H1 → H2 is an operator.

The split feasibility problem (SFP) in finite dimensional Hilbert spaces was first
introduced by Censor and Elfving [7] for modeling inverse problems which arise from
medical image reconstruction. Since then, the split feasibility problem (SFP) has re-
ceived much attention due to its applications in signal processing, image reconstruc-
tion, with particular progress in intensity-modulated radiation therapy, approx-
imation theory, control theory, biomedical engineering, communications, and geo-
physics. For examples, one can refer to [5, 7, 8, 16, 20] and related literatures. Since
then, many researchers study (SFP) in finite dimensional or infinite dimensional
Hilbert spaces. For examples, one can see [5, 6, 11, 18, 19, 25, 27, 26, 28, 29, 30].



A UNIFIED STUDY OF THE SPLIT FEASIBLE PROBLEMS WITH APPLICATIONS 607

A special case of problem (SFP) is the convexly constrained linear inverse prob-
lem in the finite dimensional Hilbert space [12]:

(CLIP) Find x̄ ∈ C such that Ax̄ = b, where b ∈ H2,

which has extensively been investigated by using the Landweber iterative method
[17]:

xn+1 := xn + γAT (b−Axn), n ∈ N.

In 2002, Byrne [5] first introduced the so-called CQ algorithm which generates a
sequence {xn} by the following recursive procedure:

(1.1) xn+1 = PC(xn − ρnA
∗(I − PQ)Axn),

where the stepsize ρn is chosen in the interval (0, 2/||A||2), and PC and PQ are the
metric projections onto C ⊆ Rn and Q ⊆ Rm, respectively. Compared with Censor
and Elfving’s algorithm [7] where the matrix inverse A is involved, the CQ algorithm
(1.1) seems more easily executed since it only deals with metric projections with no
need to compute matrix inverses.

In 2010, Xu [26] modified Byrne’s CQ algorithm and proved the following weak
convergence theorem in infinite Hilbert spaces for their modified algorithm.

Theorem 1.2 ([26]). Suppose that the solution set of (SFP) is nonempty. Let
{xn} ⊂ H be defined by

(1.2) xn+1 = PC((1− ρϵn)xn − ρA∗(I − PQ)Axn),

for each n ∈ N and εn ⊂ (0, 1). Assume that 0 < ρ < 2
∥A∥2 and

∑∞
n=1 εn < ∞. Then

{xn} converges weakly to a solution of (SFP).

Besides, we know that the equilibrium problem is to find z ∈ C such that

(EP) g(z, y) ≥ 0 for each y ∈ C,

where g : C × C → R is a bifunction.
This problem includes fixed point problems, optimization problems, variational

inequality problems, Nash equilibrium problems, minimax inequalities, and saddle
point problems as special cases. (For examples, one can see [3] and related litera-
tures.)

The solution set of equilibrium problem (EP) is denoted by EP (g). For solving
the equilibrium problem, let us assume that the bifunction g : C × C → R satisfies
the following conditions:

(A1) g(x, x) = 0 for each x ∈ C;
(A2) g is monotone, i.e., g(x, y) + g(y, x) ≤ 0 for any x, y ∈ C;
(A3) for each x, y, z ∈ C, lim

t↓0
g(tz + (1− t)x, y) ≤ g(x, y);

(A4) for each x ∈ C, the scalar function y → g(x, y) is convex and lower semi-
continuous.

We have the following result from Blum and Oettli [3].
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Theorem 1.3 ([3]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let g : C × C → R be a bifunction which satisfies conditions (A1)-(A4).
Then for each r > 0 and each x ∈ H, there exists z ∈ C such that

g(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0

for all y ∈ C.

In 2005, Combettes and Hirstoaga [9] estabilshed the following important prop-
erties of resolvent operator.

Theorem 1.4 ([9]). Let C be a nonempty closed convex subset of a real Hilbert
space H and let g : C × C → R be a function satisfying conditions (A1)–(A4). For
r > 0, define T g

r : H → C by

T g
r x =

{
z ∈ C : g(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀ y ∈ C

}
.

for all x ∈ H. Then the following hold:

(i) T g
r is single-valued;

(ii) T g
r is firmly nonexpansive, that is, ||T g

r x− T g
r y||2 ≤ ⟨x− y, T g

r x− T g
r y⟩ for

all x, y ∈ H;
(iii) {x ∈ H : T g

r x = x} = {x ∈ C : g(x, y) ≥ 0, ∀y ∈ C};
(iv) {x ∈ C : g(x, y) ≥ 0, ∀y ∈ C} is a closed and convex subset of C.

We call such T g
r the resolvent of g for r > 0.

Motivated by Theorem 1.1 and Theorem 1.2, we first consider the following al-
gorithm for finding a point x̄ = P(F+B)−10

∩
G−10(0):

Let Jρ, Tr and F be defined as Theorem 1.1. Suppose that (F +B)−10
∩

G−10 ̸=
∅. Let {xn} ⊂ H be defined by{

x1 ∈ C chosen arbitrarily,
xn+1 = Jρ(I − ρ(F + βnI))Trxn

for each n ∈ N, ρ ⊂ (0,∞), βn ⊂ (0, 1), and r ⊂ (0,∞). Assume that:

(i) 0 < a ≤ ρ < 2
α2+2

;

(ii) limn→∞ βn = 0 and Σ∞
n=1βn = ∞.

Then lim
n→∞

xn = x̄, where x̄ = P(F+B)−10
∩

G−10(0).

Let C1, C2 andQ be nonempty closed convex subsets of Hilbert spacesH1, H1 and
H2, respectively. Let g1 : C1×C1 → R, g2 : C2×C2 → R and g3 : Q×Q → R be three
bifunctions which satisfies conditions (A1)-(A4). Let F1 be a firmly nonexpansive
mapping of H2 into H2. Let A : H1 → H2 be a bounded linear operator. Then
we apply a strong convergence theorem for finding a element of the solutions set of
a monotone inclusion problem in a Hilbert space to prove a strongly convergence
theorem for the following generalized feasibility problem :

(GSFPFF) Find x̄ ∈ H1 such that x̄ ∈ Fix(Jλ)
∩

Fix(Tr) and Ax̄ ∈ Fix(F1).

The generalized split feasibility problem (GSFPFF) contains many important prob-
lems as special cases.

(i) If Jρ1 = T g1
ρ1 , Tρ2 = T g2

ρ2 and F1 = T g3
ρ3 , then (GSFPFF) is reduced to

generalized split feasibility equilibrium problem: (GSFPEE).
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(GSFPEE) Find x̄ ∈ H1 such that x̄ ∈ EP (g1)
∩

EP (g2) and Ax̄ ∈ EP (g3).
(ii) If C1 = C2, g2(x, y) = 0 for each (x, y) ∈ C1 × C1 , then (GSFPEE) is

reduced to the split equilibrium problem (SFPEE):
(SFPEE) Find x̄ ∈ H1 such that x̄ ∈ EP (g1) and Ax̄ ∈ EP (g3).

(iii) If g1(x, y) = 0, and g2(u, v) = 0 for each (x, y) ∈ C1 × C1 and each (u, v) ∈
C2 × C2, then (GSFPEE) is reduced to (GSFPCE):

(GSFPCE) Find x̄ ∈ H1 such that x̄ ∈ C1
∩

C2 and Ax̄ ∈ EP (g3).
(iv) If g3(x, y) = 0 for each (x, y) ∈ Q × Q , then (GSFPCE) is reduced to

(GSFPCQ):
(GSFPCQ) Find x̄ ∈ H1 such that x̄ ∈ C1

∩
C2 and Ax̄ ∈ Q.

(v) If C1 = C2, then (GSFPCQ) is reduced to split feasibility problem(SFPCQ):
(SFPCQ) Find x̄ ∈ H1 such that x̄ ∈ C1 and Ax̄ ∈ Q.

In this paper, we first establish a strong convergence theorem with a Regularized-
like method to find a element of the solutions set of a monotone inclusion problem
in a Hilbert space. Using this result, we also prove a strong convergence theorem
for finding a element of the solutions set of generalized split feasibility problem
(GSFPFF). As applications, we study the solutions and algorithms for the convex
feasibility problems, split feasibility problems. To be the best of our knowledge,
there are no researchers consider generalized split feasibility problem (GSFPFF)
by using these methods in the infinite dimensional real Hilbert spaces and finite
dimensional Euclidean spaces.

2. Preliminaries

Throughout this paper, let N be the set of positive integers and let R be the set
of real numbers. Let H be a (real) Hilbert space with inner product ⟨·, ·⟩ and norm
|| · ||, respectively. We denote the strongly convergence and the weak convergence
of {xn} to x ∈ H by xn → x and xn ⇀ x, respectively. From [24], for each x, y ∈ H
and λ ∈ [0, 1], we have

||λx+ (1− λ)y||2 = λ||x||2 + (1− λ)||y||2 − λ(1− λ)||x− y||2.
Hence, we also have

2⟨x− y, u− v⟩ = ||x− v||2 + ||y − u||2 − ||x− u||2 − ||y − v||2(2.1)

for all x, y, u, v ∈ H.
Let C be a nonempty subset of a real Hilbert space H, and let T : C → H is said

to be a firmly nonexpansive mapping if

||Tx− Ty||2 ≤ ||x− y||2 − ||(I − T )x− (I − T )y||2

for every x, y ∈ C, that is,

||Tx− Ty||2 ≤ ⟨x− y, Tx− Ty⟩
for every x, y ∈ C. The following results are needed in this paper.

Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let α > 0, F is a 1

α2−inverse-strong-monotone mapping of C into H, and γ ∈ R,
then F + γI is a 1

γ+α2−inverse-strong-monotone mapping.
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Proof. Since F is a 1
α2−inverse-strong-monotone mapping, we have

⟨Fx− Fy, x− y⟩ ≥ 1

α2
∥Fx− Fy∥2.

for all x, y ∈ C. This implies that

(γ + α2)⟨(F + γI)x− (F + γI)y, x− y⟩
= (γ + α2)[γ∥x− y∥2 + ⟨Fx− Fy, x− y⟩]
= γ2∥x− y∥2 + γ⟨Fx− Fy, x− y⟩+ γα2∥x− y∥2 + α2⟨Fx− Fy, x− y⟩
≥ γ2∥x− y∥2 + 2γ⟨Fx− Fy, x− y⟩+ ∥Fx− Fy∥2

= ∥γ(x− y) + Fx− Fy∥2 = ∥(F + γI)x− (F + γI)y∥2.

(2.2)

Thus, we obtain that F + γI be a 1
γ+α2−inverse-strong-monotone mapping. �

Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let α > 0, F is a 1

α2−inverse-strong-monotone mapping of C into H, γ ∈ R, λ ∈
(0, 1) and 0 < λ ≤ 2

α2+2γ
, then I−λ(F+γI) is a contractive mapping with coefficient

(1− λγ).

Proof. Since F is a 1
α2−inverse-strong-monotone mapping, we have

⟨Fx− Fy, x− y⟩ ≥ 1

α2
∥Fx− Fy∥2.

This implies that

||(I − λ(F + γI))x− (I − λ(F + γI))y||2

≤ ||(1− λγ)(x− y)− λ(Fx− Fy)||2

≤ (1− λγ)2||x− y∥2 − 2(1− λγ)λ⟨x− y, Fx− Fy⟩+ λ2∥Fx− Fy||2

≤ (1− λγ)2||x− y∥2 − 2

α2
(1− λγ)λ∥Fx− Fy∥2 + λ2∥Fx− Fy||2

≤ (1− λγ)2||x− y∥2 − λ(
2(1− λγ)

α2
− λ)∥Fx− Fy∥2

≤ (1− λγ)2||x− y∥2.
≤ (1− λγ)2||x− y∥2.

(2.3)

So, I − λ(F + γI) is a contractive mapping with coefficient (I − λγ). �

Lemma 2.3. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded
linear operator, and A∗ be the adjoint of A. Let C be a nonempty closed convex
subset of H2, and let G : H2 → H2 be a firmly nonexpansive mapping. Then
A∗(I −G)A is a 1

∥A∥2−ism, that is,

1

∥A∥2
||A∗(I −G)Ax−A∗(I −G)Ay||2 ≤ ⟨x− y,A∗(I −G)Ax−A∗(I −G)Ay⟩

for all x, y ∈ H1.
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Proof. Since G is a firmly nonexpansive mapping. Hence,

||A∗(I −G)Ax−A∗(I −G)Ay||2

≤ ∥A∥2||(I −G)Ax− (I −G)Ay||2

= ∥A∥2(||Ax−Ay||2 + ||GAx−GAy||2 − 2⟨Ax−Ay,GAx−GAy⟩)
≤ ∥A∥2(||Ax−Ay||2 − ⟨Ax−Ay,GAx−GAy⟩)
= ∥A∥2(⟨Ax−Ay, (I −G)Ax− (I −G)Ay⟩)
= ∥A∥2(⟨x− y,A∗(I −G)Ax−A∗(I −G)Ay⟩)

for all x, y ∈ H. Therefore, A∗(I −G)A is 1
∥A∥2− ism. �

Lemma 2.4 ([2]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let G : H → H be a firmly nonexpansive mapping. Suppose that F (G) ̸= ∅.
Then ⟨x−Gx,Gx− w⟩ ≥ 0 for each x ∈ H and each w ∈ Fix(G).

Lemma 2.5. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let G : H → H be a firmly nonexpansive mapping. Suppose that Fix(G) ̸= ∅. Then
∥x−Gx∥2 + ∥Gx− w∥2 ≤ ∥x− w∥2 for each x ∈ H and each w ∈ Fix(G).

Proof. By Lemma 2.4, we have

⟨x−Gx,Gx− w⟩ ≥ 0

for each x ∈ H and each w ∈ Fix(G). Using (2.1), we have that

2⟨x−Gx,Gx− w⟩ = − ∥x−Gx∥2 + ∥x− w∥2 − ∥Gx− w∥2 ≥ 0,

for each x ∈ H and each w ∈ Fix(G). Hence, we have that

∥x−Gx∥2 + ∥Gx− w∥2 ≤ ∥x− w∥2

for each x ∈ H and each w ∈ Fix(G). �
We also know that the metric projection from H onto C is the mapping PC :

H → C which assigns to each point x ∈ H the unique point PCx satisfying the
property ||x − PCx|| = infy∈C ||x − y||. The following Lemma is a special case of
Lemma 2.4.

Lemma 2.6 ([23]). Let C be a nonempty closed convex subset of a Hilbert space
H. Let PC be the metric projection from H onto C. Then for each x ∈ H, ⟨x −
PCx, PCx− y⟩ ≥ 0 for all y ∈ C.

Proof. Since PC is a firmly nonexpansive mapping. It is easy to see that Fix(PC) =
C. Put Gx = PCx in Lemma 2.4, for all x ∈ H. Then Lemma 2.6 follows from
Lemma 2.4. �

In 2013, He and Du [14] gave the following result which is an special case of
Lemma 2.5.

Lemma 2.7 ([14]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let G : C × C → R be a bifunction which satisfies conditions (A1)-(A4). Take
any α > 0 and let α be fixed. Suppose that EP (G) ̸= ∅. Then ||x−TG

α x||2+ ||TG
α x−

x̄||2 ≤ ||x− x̄||2 for each x ∈ H and each x̄ ∈ EP (G).
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Proof. Lemma 2.7 follows immediately from Lemma 2.5 and Theorem 1.3. �
Lemma 2.8 ([4]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T be a nonexpansive mapping of C into itself, and let {xn} be a sequence
in C. If xn ⇀ w and lim

n→∞
||xn − Txn|| = 0, then Tw = w.

Lemma 2.9 ([21]). Let {xn} and {yn} be bounded sequences in a Banach space X,
and let {αn} be a sequence in [0, 1] with 0 < lim inf

n→∞
αn ≤ lim sup

n→∞
αn < 1. Suppose

that xn+1 = αnyn + (1−αn)xn for each n ∈ N, and lim sup
n→∞

(||yn+1 − yn|| − ||xn+1 −

xn||) ≤ 0. Then lim
n→∞

||xn − yn|| = 0.

We also know the following lemma from [23].

Lemma 2.10 ([23]). Let H be a Hilbert space and B be a maximal monotone
mapping on H. Let Jr is the resolvent of B defined by Jr = (I + rB)−1 for each
r > 0.

(i) For each r > 0, Jβ is single-valued and firmly nonexpansive;
(ii) D(Jβ) = H and Fix(Jβ) = {x ∈ D(A) : 0 ∈ Ax}.

Lemma 2.11 ([10, 26]). Let C be a nonempty closed convex subset of a real Hilbert
space H, and let T : C → C be a mapping. Then the following satisfied:

(i) T is nonexpansive if and only if the complement (I − T ) is 1/2-ism.
(ii) If S is υ-ism, then for γ > 0, γS is υ/γ-ism.
(iii) S is averaged if and only if the complement I−S is υ-ism for some υ > 1/2.
(iv) If S and T are both averaged, then the product (composite) ST is averaged.
(v) If the mappings {Ti}ni=1 are averaged and have a common fixed point, then∩n

i=1 Fix(Ti) = Fix(T1 · · ·Tn). The notation Fix(T ) denotes the set of all
fixed points of the mapping T , that is, Fix(T ) = {x ∈ H : Tx = x}.

Lemma 2.12 ([1]). Let {an}n∈N be a sequence of nonnegative real numbers, {αn}
a sequence of real numbers in [0, 1] with

∑∞
n=1 αn = ∞, {un} a sequence of non-

negative real numbers with
∑∞

n=1 un < ∞, {tn} a sequence of real numbers with
lim sup tn ≤ 0. Suppose that an+1 ≤ (1− αn)an + αntn + un for each n ∈ N. Then
lim
n→∞

an = 0.

3. Main results

In this section, we first establish a strong convergence theorem with a Regularized-
like method to find an element of the set of solutions for a monotone inclusion
problem in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Let α > 0, F is a 1

α2−inverse-strongly monotone mapping of C
into H. Let B be a maximal monotone mapping on H and let G be a maximal
monotone mapping on H such that the domains of B and G are included in C. Let
Jρ = (I + ρB)−1 and Tr = (I + rG)−1 for each ρ > 0 and r > 0. Suppose that
(F +B)−10

∩
G−10 ̸= ∅. Let {xn} ⊂ H be defined by

(3.1)

{
x1 ∈ C chosen arbitrarily,
xn+1 = Jρ(I − ρ(F + βnI))Trxn
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for each n ∈ N, ρ ∈ (0,∞), βn ∈ (0, 1), and r ∈ (0,∞). Assume that:

(i) 0 < a ≤ ρ < 2
α2+2

;

(ii) limn→∞ βn = 0 and Σ∞
n=1βn = ∞.

Then lim
n→∞

xn = x̄, where x̄ = P(F+B)−10
∩

G−10(0).

Proof. By Lemma 2.10, we know that Jρ = (I+ρB)−1 and Tr = (I+rG)−1 are firmly
nonexpansive mappings, for each ρ > 0 and r > 0. It follows from 0 < a ≤ ρ < 2

α2+2

and F is a 1
α2−ism that we have

||Jρ(I − ρ(F + βnI))Trx− Jρ(I − ρ(F + βnI))Try||2

≤ ||(I − ρ(F + βnI))Trx− (I − ρ(F + βnI))Try||2

≤ ||(1− ρβn)(Trx− Try)− ρ(FTrx− FTry)||2

≤ (1− ρβn)
2||Trx− Try∥2 − 2(1− ρβn)ρ⟨Trx− Try, FTrx− FTry⟩

+ ρ2∥FTrx− FTry||2

≤ (1− ρβn)
2||Trnx− Trny∥2 −

2

α2
(1− ρβn)ρ∥FTrx− FTry∥2 + ρ2∥FTrx− FTry||2

≤ (1− ρβn)
2||Trx− Try∥2 − ρ

( 2

α2
(1− ρ)− ρ

)
∥FTrx− FTry∥2

≤ (1− ρβn)
2||Trx− Try∥2

≤ (1− ρβn)
2||x− y∥2.

(3.1)

Let x̄ ∈ (F +B)−10
∩

G−10. It follows from Lemma 2.10(ii), we have

x̄ = Jρ(I − ρF )x̄ and x̄ = Trx̄.(3.2)

Let un = Trxn. For each n ∈ N, we have from (3.1), and (3.1) that

||xn+1 − x̄|| = ||Jρ(I − ρ(F + βnI))Trxn − Jρ(I − ρF )Trx̄||
≤ ||Jρ(I − ρ(F + βnI))Trxn − Jρ(I − ρ(F + βnI))Trx̄||

+ ||Jρ(I − ρ(F + βnI))Trx̄− Jρ(I − ρF )Trx̄||
≤ (1− ρβn)||xn − x̄∥+ ρβn∥x̄||
≤ max{∥xn − x̄∥, ∥x̄||}.

(3.3)

By induction, we deduce

||xn − x̄|| ≤ max{∥x1 − x̄∥, ∥x̄||}.(3.4)

This indicates that the sequence {xn} is bounded. Furthermore, {un} is bounded.
Since F be a 1

α2−ism, and βn ∈ R, it follows from Lemma 2.11 that ρF is 1
ρα2−ism

and I − ρF is ρα2

2 −averaged. That is,

I − ρF =
(
1− ρα2

2

)
I +

ρα2

2
T

for some nonexpansive mapping T . Since Jρ is 1/2 averaged, Jρ = (I + S)/2 for
some nonexpansive mapping S, Tr is also 1/2 averaged, Tr = (I + A)/2 for some
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nonexpansive mapping A. Then, we can rewrite xn+1 as

xn+1 =
2− ρα2

8
xn +

6 + ρα2

8
yn,

where

yn =
8

6 + ρα2

(
2− ρα2

8
Axn +

ρα2

4
TTrxn −

1

2
ρβnTrxn +

1

2
S(I − ρ(F + βnI))Trxn

)
.

Hence, we have that

∥yn+1 − yn∥ =

∥∥∥∥ 8

6 + ρα2

(
2− ρα2

8
Axn+1 +

ρα2

4
TTrxn+1

−1

2
ρβn+1Trxn+1 +

1

2
S(I − ρ(F + βn+1I))Trxn+1

)
− 8

6 + ρα2

(
2− ρα2

8
Axn +

ρα2

4
TTrxn − 1

2
ρβnTrxn

+
1

2
S(I − ρ(F + βnI))Trxn

)∥∥∥∥
≤ 8

6 + ρα2

(
2− ρα2

8
∥Axn+1 −Axn∥+

∥∥∥ρα2

4
TTrxn+1 −

ρα2

4
TTrxn

∥∥∥
+
1

2
ρβn+1∥Trxn+1∥+

1

2
ρβn∥Trxn∥

)
+

4

6 + ρα2
∥(I − ρ(F + βn+1I))Trxn+1 − (I − ρ(F + βnI))Trxn∥.

Now, we choose a constant M such that

sup
n

{
∥xn∥, ∥Trxn∥

}
≤ M.

We have the following estimates:

2− ρα2

8
∥Axn+1 −Axn∥ ≤ 2− ρα2

8
∥xn+1 − xn∥,

∥∥∥∥ρα2

4
TTrxn+1 −

ρα2

4
TTrxn

∥∥∥∥≤ ρα2

4
∥TTrxn+1 − TTrxn∥ ≤ ρα2

4
∥xn+1 − xn∥,

and

∥(I − ρ(F + βn+1I))Trxn+1 − (I − ρ(F + βnI))Trxn∥
≤ ∥(I − ρF )Trxn+1)− (I − ρF )Trxn)∥+ ρβn+1∥Trxn+1∥+ ρβn∥Trxn∥
≤ ∥xn+1 − xn∥+ (ρβn+1 + ρβn)M.
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Thus, we deduce that

∥yn+1 − yn∥ ≤ 2− ρα2

6 + ρα2
∥xn+1 − xn∥+

2ρα2

6 + ρα2
∥xn+1 − xn∥

+
4

6 + ρα2
(∥xn+1 − xn∥+ 2(ρβn+1 + ρβn)M)

= ∥xn+1 − xn∥+
8

6 + ρα2
(ρβn+1 + ρβn)M.

(3.5)

By (3.5) and assumption,

(3.6) lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

By (3.6) and Lemma 2.9,

lim
n→∞

∥yn − xn∥ = 0.

Consequently,

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

6 + ρα2

8
||xn − yn|| = 0.(3.7)

Since {xn} is bounded, there exist a subsequence {xnj} of {xn} such that xnj ⇀
ŵ. Next, we have∥∥xnj − Jρ(I − ρF )Trxnj

∥∥≤∥∥xnj − xnj+1

∥∥+∥∥xnj+1 − Jρ(I − ρF )Trxnj

∥∥
=
∥∥Jρ(I − ρ(F + βnjI))Trxnj − Jρ(I − ρF )Trxnj

∥∥
+ ∥xnj − xnj+1

∥∥
≤βnjρ

∥∥xnj

∥∥+∥∥xnj − xnj+1

∥∥.
(3.8)

By (3.7), (3.8), and assumptions,

(3.9) lim
nj→∞

∥xnj − Jρ(I − ρF )Trxnj

∥∥= 0.

Since Jρ(I−ρF )Tr is nonexpansive, it follows from Lemma 2.8 that ŵ ∈ Fix(Jρ(I−
ρF )Tr). From (3.2), we have

(3.10) Fix(Jρ(I − ρF ))
∩

Fix(Tr) ̸= ∅.

Since Jρ(I − ρF ) and Tr are averaged, it follows from (3.10) and Lemma 2.11 that
ŵ ∈ Fix(Jρ(I−ρF )Tr) = Fix(Jρ(I−ρF ))

∩
Fix(Tr). Hence, it follows from Lemma

2.10(ii), we have w̄ ∈ (F +B)−10
∩

G−10.
Let x̂ be the minimum norm solution of Ω. That is, x̂ = PΩ0, where Ω =

(F + B)−10
∩

G−10. Since {xn} is bounded, there exists a subsequence {xnj} of
{xn} such that xnj ⇀ z and

lim sup
n→∞

⟨−x̂, xn − x̂⟩ = lim
j→∞

⟨−x̂, xnj − x̂⟩.

As the above proof, we know that z ∈ Ω. Hence,

lim sup
n→∞

⟨−x̂, xn − x̂⟩ = lim
j→∞

⟨−x̂, xnj − x̂⟩ = ⟨−x̂, z − x̂⟩ ≤ 0.(3.11)
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Since Jρ be a firmly nonexpansive, and by Lemma 2.2, we have the following:

||xn+1 − x̂||2 = ||Jρ(I − ρ(F + βnI))Trxn − Jρ(I − ρF )Trx̂||2

≤ ⟨(I − ρ(F + βnI))Trxn − (I − ρF )Trx̂, xn+1 − x̂⟩
≤ ⟨(I − ρ(F + βnI))Trxn − (I − ρ(F + βnI))Trx̂, xn+1 − x̂⟩

+ ρβn⟨−Trx̂, xn+1 − x̂⟩
≤ ∥(I − ρ(F + βnI))Trxn − (I − ρ(F + βnI))Trx̂∥ · ∥xn+1 − x̂∥

+ βnρ⟨−Trx̂, xn+1 − x̂⟩
≤ (1− ρβn)||xn − x̂∥ · ∥xn+1 − x̂∥+ βnρ⟨−x̂, xn+1 − x̂⟩

≤ (1− ρβn)

2
||xn − x̂∥2 + 1

2
∥xn+1 − x̂∥2 + βnρ⟨−x̂, xn+1 − x̂⟩.

(3.12)

It follows that

(3.13) ∥xn+1 − x̂∥2 ≤ (1− βnρ)∥xn − x̂∥2 + 2βnρ⟨−x̂, xn+1 − x̂⟩.
By assumptions, (3.11), (3.13), and Lemma 2.12, we know that xn → x̂. Therefore,
the proof is completed. �

Let C1 and Q be nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively. Let F1 be a firmly nonexpansive mapping of H2 into H2. Let B be
a maximal monotone mapping on H1 and let G be a maximal monotone mapping on
H1 such that the domains of B and G are included in C1. Let Jλ = (I+λB)−1 and
Tr = (I + rG)−1 for each λ > 0 and r > 0. Let A : H1 → H2 be a bounded linear
operator, and let A∗ be the adjoint of A. Now, we recall the following problem:

(GSFPFF) Find x̄ ∈ H1 such that x̄ ∈ Fix(Jλ)
∩

Fix(Tr) and Ax̄ ∈ Fix(F1).

In order to to study the convergence theorems for the solution set of generalized
split feasibility problem (GSFPFF), we must give an essential result in this paper.

Theorem 3.2. Given any x̄ ∈ H1.

(i) If x̄ is a solution of (GSFPFF), then Jλ(I − ρA∗(I − F1)A)Trx̄) = x̄.
(ii) Suppose that Jλ(I − ρA∗(I − F1)A)Trx̄) = x̄ with 0 < ρ < 2

∥A∥2+2
and the

solution set of (GSFPFF) is nonempty. Then x̄ is a solution of (GSFPFF).

Proof. (i) Suppose that x̄ ∈ H1 is a solution of (GSFPFF). Then x̄ ∈ Fix(Jλ)
∩

Fix(Tr) and Ax̄ ∈ Fix(F1). It is easy to see that

Jλ(I − ρA∗(I − F1)A)Trx̄ = Jλ(x̄− ρA∗(I − F1)Ax̄) = Jλx̄ = x̄.

(ii)Suppose that Jλ(I − ρA∗(I − F1)A)Trx̄) = x̄ with 0 < ρ < 2
∥A∥2+2

and the

solution set of (GSFPFF) is nonempty.
Since the solution set of (GSFPFF) is nonempty, there exists w̄ ∈ H1 such that

w̄ ∈ Fix(Jλ)
∩

Fix(Tr) and Aw̄ ∈ Fix(F1). So,

(3.14) w̄ ∈ Fix(Jλ)
∩

Fix(I − ρA∗(I − F1)A))
∩

Fix(Tr) ̸= ∅.

By Lemma 2.3, we have that

(3.15) A∗(I − F1)A is
1

∥A∥2
− ism.
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By (3.15), 0 < ρ < 2
∥A∥2+2

, and lemma 2.11(ii),(iii), we know that

(3.16) I − ρA∗(I − F1)A is averaged.

On the other hand, since Jλ, and Tr are firmly nonexpansive mappings, it is easy
to see that

(3.17) Jλ and Tr are
1

2
avereged.

Hence, by (3.14), (3.16), (3.17) and Lemma 2.11(v), we have that

x̄ ∈ Jλ(I − ρA∗(I − F1)A)Trx̄) = Fix(Jλ)
∩

Fix(I − ρA∗(I − F1)A))
∩

Fix(Tr).

By Lemma 2.4,

⟨(x̄− ρA∗(I − F1)Ax̄)− x̄, x̄− w⟩ ≥ 0 for each

w ∈ Fix(Jλ)
∩

Fix(Tr) and Aw ∈ Fix(F1).

That is,
(3.18)

⟨A∗(I − F1)Ax̄, x̄− w⟩ ≤ 0 for each w ∈ Fix(Jλ)
∩

Fix(Tr) and Aw ∈ Fix(F1).

By (3.18) and A∗ is the adjoint of A,
(3.19)

⟨Ax̄− F1Ax̄,Ax̄−Aw⟩ ≤ 0 for each w ∈ Fix(Jλ)
∩

Fix(Tr) and Aw ∈ Fix(F1).

On the other hand, by Lemma 2.4 again,

(3.20) ⟨Ax̄− F1Ax̄, v − F1Ax̄⟩ ≤ 0 for each v ∈ Fix(F1).

By (3.19) and (3.20),

(3.21) ⟨Ax̄− F1Ax̄, v − F1Ax̄+Ax̄−Aw⟩ ≤ 0

for each w ∈ Fix(Jλ)
∩

Fix(Tr) and Aw ∈ Fix(F1) and each v ∈ Fix(F1). That is,

(3.22) ||Ax̄− F1Ax̄||2 ≤ ⟨Ax̄− F1Ax̄,Aw − v⟩
for each w ∈ Fix(Jλ)

∩
Fix(Tr) and Aw ∈ Fix(F1) and each v ∈ Fix(F1). Since

w̄ is a solution of generalized split feasibility problem (GSFPFF), we know that
w̄ ∈ Fix(Jλ)

∩
Fix(Tr) and Aw̄ ∈ Fix(F1). So, it follows from (3.22) that Ax̄ =

Fix(F1). Further, x̄ ∈ Fix(Jλ) and x̄ ∈ Fix(Tr) . Therefore, x̄ is a solution of
(GSFPFF). �

Apply Theorem 3.1, and Theorem 3.2, we can find the solution of (GSFPFF).

Theorem 3.3. Let C1 and C2 be two nonempty closed convex subsets of real Hilbert
spaces H1 and H2, respectively. Let F1 be a firmly nonexpansive mapping of H2

into H2. Let B be a maximal monotone mapping on H1 and let G be a maximal
monotone mapping on H1 such that the domains of B and G are included in C1. Let
Jλ = (I+λB)−1 and Tr = (I+rG)−1 for each λ > 0 and r > 0. Let A : C1 → H2 be
a bounded linear operator, and let A∗ be the adjoint of A. Suppose that the solution
set of (GSFPFF) is nonempty. Let {xn} ⊂ H be defined by

(3.2)

{
x1 ∈ H chosen arbitrarily,
xn+1 := Jρ((1− βnρ)I − ρA∗(I − F1)A)Trxn
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for each n ∈ N, ρ ∈ (0,∞), βn ∈ (0, 1), and r ∈ (0,∞). Assume that:

(i) 0 < a ≤ ρ < 2
∥A∥2+2

;

(ii) limn→∞ βn = 0 and Σ∞
n=1βn = ∞.

Then lim
n→∞

xn = x̄, where x̄ is a solution of (GSFPFF).

Proof. Since F1 is a firmly nonexpansive, it follow from Lemma 2.3 that we have
that A∗(I − F1)A : C1 → H1 is 1

∥A∥2−ism. Put F = A∗(I − F1)A in Theorem

3.1. Then algorithm (3.1) in Theorem 3.1 follows immediately from algorithm (3.2)
in Theorem 3.3. Since the solution set of (GSFPFF) is nonempty, there exist
w ∈ C1, such that w ∈ Fix(Jλ)

∩
Fix(Tr) and Aw ∈ Fix(F1). Hence, we have that

w ∈ Fix(Jρ(I − ρA∗(I − F1)A)Tr) = Fix(Jρ(I − ρF )Tr). Therefore, we have that
w ∈ (F + B)−10

∩
G−10 ̸= ∅. It follow from Theorem 3.1 that lim

n→∞
xn = x̄, where

x̄ = P(F+B)−10
∩

G−10(0). that is,

(3.23) x̄ = Jρ(I − ρF )Trx̄ = Jρ(I − ρA∗(I − F1)A)Trx̄.

By assumptions, (3.23), and Theorem 3.2(ii), we know that x̄ is a solution of
(GSFPFF). Therefore, the proof is completed. �
Remark 3.4. In Theorem 3.3, we establish a strongly convergence theorem of
generalized split feasibility problem (GSFPFF) without calculating the inverse of
the operator we consider.

4. Application

Takahashi, Takahashi and Toyoda [22] showed the following lemma.

Lemma 4.1 ([22]). Let C be a nonempty closed convex subset of a Hilbert space H
and let g : C × C → R be a bifunction satisfying the conditions (A1)-(A4). Define
Ag as follows:

(4.1) Agx =

{
{z ∈ H : g(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, ∀x ∈ C
∅, ∀x /∈ C

Then, EP (g) = A−1
g 0 and Ag is a maximal monotone operator with the domain

of Ag ⊂ C. Furthermore, for any x ∈ H and r > 0, the resolvent T g
r of g coincides

with the resolvent of Ag, i.e., T
g
r x = (I + rAg)

−1x.

Now, we recall the following problem:

(GSFPEE) Find x̄ ∈ H1 such that x̄ ∈ EP (g1)
∩

EP (g2) and Ax̄ ∈ EP (g3).

Apply Theorems 1.4, and 3.3, Lemma 4.1, we get the following result.

Theorem 4.2. Let C1, C2 and Q be three nonempty closed convex subsets of three
Hilbert spaces H1,H1 and H2, respectively. Let g1 : C1×C1 → R, g2 : C2×C2 → R
and g3 : Q ×Q → R with conditions (A1)-(A4), and let T gi

ρi the resolvent of gi for
ρi > 0, i = 1, 2, 3. Let A : H1 → H2 be a bounded linear operator, and let A∗ denote
the adjoint of A. Suppose that the solution set of (GSFPEE) is nonempty. Let
{xn} be defined by

(4.2)

{
x1 ∈ H1 chosen arbitrarily,
xn+1 := T g1

ρ1 ((1− βnρ1)I − ρ1A
∗(I − T g3

ρ3 )A)T
g2
ρ2 xn
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for each n ∈ N, ρi ⊂ (0,∞), i = 1, 2, 3, and βn ⊂ (0, 1). Assume that:

(i) 0 < a ≤ ρ1 <
2

∥A∥2+2
;

(ii) limn→∞ βn = 0 and Σ∞
n=1βn = ∞.

Then the sequence {xn} converges strongly to x̂, where x̂ is an element of the solution
set of (GSFPEE).

Proof. Define Ag as (4.1). By Lemma 4.1, we know that EP (g) = A−1
g 0 and Ag is

a maximal monotone operator with the domain of Ag ⊂ C. Furthermore, for any
x ∈ H and r > 0, the resolvent T g

r of g coincides with the resolvent of Ag, i.e.,

T g
r x = (I + rAg)

−1x.

By Theorem 1.4, T g3
ρ3 is a firmly nonexpansive mapping.

Put B = Ag1 , G = Ag2 and F1 = T g3
ρ3 in Theorem 3.3. Then Jρ1x = (I +

ρ1Ag1)
−1x = T g1

ρ1 x, Tρ2x = (I + ρ2Ag2)
−1x = T g2

ρ2 x. By Theorem 1.4, we have that
Fix(Jρ1) = Fix(T g1

ρ1 ) = EP (g1), Fix(Tρ2) = Fix(T g2
ρ2 ) = EP (g2) and Fix(F1) =

Fix(T g3
λ ) = EP (g3). So, we have that the solution set of (GSFPEE) coincides with

the solution set of (GSFPFF) , we get the result. �
Now, we recall the following problem:

(SFPEE) Find x̄ ∈ C1 such that x̄ ∈ EP (g1) and Ax̄ ∈ EP (g3).

Apply Theorem 4.2, we can finding the solution of (SFPEE).

Theorem 4.3. Let C1 and Q be three nonempty closed convex subsets of H1, H1

and H2, respectively. Let g1 : C1 × C1 → R and g3 : Q × Q → R with conditions
(A1)-(A4), and let T gi

ρi the resolvent of gi for ρi > 0, i = 1, 3. Let A : H1 → H2 be
a bounded linear operator, and let A∗ denote the adjoint of A. Suppose that the
solution set of (SFPEE) is nonempty. Let {xn} be defined by by

(4.3)

{
x1 ∈ C1 chosen arbitrarily,
xn+1 := T g1

ρ1 ((1− βnρ1)I − ρ1A
∗(I − T g3

ρ3 )A)xn.

for each n ∈ N, ρi ∈ (0,∞), i = 1, 2, 3, and βn ∈ (0, 1). Assume that:

(i) 0 < a ≤ ρ1 <
2

∥A∥2+2
;

(ii) limn→∞ βn = 0 and Σ∞
n=1βn = ∞.

Then the sequence {xn} converges strongly to x̂, where x̂ is an element of the
solution set of (SFPEE).

Proof. Put g2(x, y) = 0, ∀x, y ∈ C1 and C1 = C2 in Theorem 4.2, Then T g2
ρ2 x =

PC1x. By Theorem 4.2, we get the result. �
Now, we recall the following problem:

(GSFPCE) Find x̄ ∈ H1 such that x̄ ∈ C1
∩

C3 and Ax̄ ∈ EP (g3).

Apply Theorem 4.2, we can find the solution of (GSFPCE).

Theorem 4.4. Let C1, C2 and Q be three nonempty closed convex subsets of H1,
H1 and H2, respectively. Let g3 : Q × Q → R with conditions (A1)-(A4), and let
T g3
ρ3 the resolvent of g3 for ρ3 > 0. Let A : H1 → H2 be a bounded linear operator,

and let A∗ denote the adjoint of A. Suppose that the solution set of (GSFPCE) is
nonempty. Let {xn} be defined by by
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(4.4)

{
x1 ∈ H1 chosen arbitrarily,
xn+1 := PC1((1− βnρ1)I − ρ1A

∗(I − T g3
ρ3 )A)PC2xn

for each n ∈ N, ρi ∈ (0,∞), i = 1, 2, 3, and βn ∈ (0, 1). Assume that:

(i) 0 < a ≤ ρ1 <
2

∥A∥2+2
;

(ii) limn→∞ βn = 0 and Σ∞
n=1βn = ∞.

Then the sequence {xn} converges strongly to x̂, where x̂ is an element of the solution
set of (GSFPCE).

Proof. Put g1(x, y) = 0, ∀x, y ∈ C1 and g2(x, y) = 0, ∀x, y ∈ C2 in Theorem 4.2,
Then T g1

ρ1 x = PC1x. and T g2
ρ2 x = PC2x. By Theorem 4.2, we get the result. �

Now, we recall the following problem:

(GSFPCQ) Find x̄ ∈ H1 such that x̄ ∈ C1
∩

C2 and Ax̄ ∈ Q.

Apply Theorem 4.2, we can find the solution of (GSFPCQ).

Theorem 4.5. Let C1, C2 and Q be three nonempty closed convex subsets of H1,
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator, and let A∗

denote the adjoint of A. Suppose that the solution set of (GSFPCQ) is nonempty.
Let {xn} be defined by by

(4.4)

{
x1 ∈ H1 chosen arbitrarily,
xn+1 := PC1((1− βnρ1)I − ρ1A

∗(I − PQ)A)PC2xn

for each n ∈ N, ρ1 ∈ (0,∞), and βn ∈ (0, 1). Assume that:

(i) 0 < a ≤ ρ1 <
2

∥A∥2+2
;

(ii) limn→∞ βn = 0 and Σ∞
n=1βn = ∞.

Then the sequence {xn} converges strongly to x̂, where x̂ is an element of the solution
set of (GSFPCQ).

Proof. Put g1(x, y) = 0, ∀x, y ∈ C1, g2(x, y) = 0, ∀x, y ∈ C2 and g3(x, y) = 0, ∀x, y ∈
Q in Theorem 4.2, Then T g1

ρ1 x = PC1x , T g2
ρ2 x = PC2x and T g3

ρ3 x = PQx. By Theorem
4.2, we get the result. �

Now, we recall the following problem:

(SFPCQ) Find x̄ ∈ H1 such that x̄ ∈ C1 and Ax̄ ∈ Q.

Apply Theorem 4.2, we can find the solution of (SFPCQ).

Theorem 4.6. Let C1 and Q be three nonempty closed convex subsets of H1 and
H2, respectively. Let A : H1 → H2 be a linear and bounded operator, and let A∗

denote the adjoint of A. Suppose that the solution set of (GSFPCQ) is nonempty.
Let {xn} be defined by by

(4.5)

{
x1 ∈ C1 chosen arbitrarily,
xn+1 := PC1((1− βnρ1)I − ρ1A

∗(I − PQ)A)xn

for each n ∈ N, ρ1 ∈ (0,∞), and βn ∈ (0, 1). Assume that:

(i) 0 < a ≤ ρ1 <
2

∥A∥2+2
;

(ii) limn→∞ βn = 0 and Σ∞
n=1βn = ∞.

Then the sequence {xn} converges strongly to x̂, where x̂ is an element of the solution
set of (GSFPCQ).
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Proof. Put g1(x, y) = 0, ∀x, y ∈ C1, g2(x, y) = 0, ∀x, y ∈ C2 , g3(x, y) = 0, ∀x, y ∈ Q
and C1 = C2 in Theorem 4.2, Then T g1

ρ1 = PC1 , T
g2
ρ2 = PC2 and T g3

ρ3 = PQ. By
Theorem 4.2, we get the result. �

Remark 4.7. (i) Theorem 4.6 is different CQ method; (ii) Theorem 4.6 give a
strongly convergent theorem, but Theorem 3.7 in [26] only study weak convergence
theorem of the split feasibility problem. (iii) Theorem 4.6 also different from The-
orem 3.7 in [26].

References

[1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points
of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007),
2350–2360.

[2] H. H. Bauschke and P. L. Combettes, A weak-to strong convergence principle for Fejer-
monotone methods in Hilbert spaces, Math. Oper. Res. 26 (2001), 248–264.

[3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,
Mathematics student 63 (1994), 123–146.

[4] F. E. Browder, Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Nat.
Acad. Sci. USA 53 (1965), 1272–1276.

[5] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse
Problems 18 (2002), 441–453.

[6] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image
reconstruction, Inverse Problems 20 (2004), 103–120.

[7] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projection in a product
space, J. Numer. Algorithm. 8 (1994), 221–239.

[8] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems
in intensitymodulated radiation therapy, Phys. Med. Biol. 51 (2003), 2353–2365.

[9] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear
Convex Anal. 6 (2005), 117–136.

[10] P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged
operators, Optimization 53 (2004) 475–504.

[11] Y. Dang and Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility
problem, Inverse Problems 27 (2011), 015007.

[12] B. Eicke, Iteration methods for convexly constrained ill-posed problems in Hilbert space, Nu-
merical Funct. Anal. Optim. 13 (1992), 413–429.

[13] B. Halpern, Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73 (1967), 957–961.
[14] Z. He and W. S. Du, On hybrid split problem and its nonlinear algorithms, Fixed Point Theory

Appl., 2013 (2013), 47.
[15] L.J. Lin and W. Takahashi, Strong convergence theorems with strongly monotone and Lip-

schitzian continuous operators in Hilbert spaces and applications, in Proceedings of the 7th
International Conference on Nonlinear Analysis and Convex Analysis -II- (Busan, Korea,
Yokohama Pub. Yokohama, 2011, pp. 1–21.
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