A UNIFIED STUDY OF THE SPLIT FEASIBLE PROBLEMS WITH APPLICATIONS

ZENN-TSUN YU, LAI-JIU LIN, AND CHIH-SHENG CHUANG

Abstract

Split feasibility problem has received a lot of attention due to its diverse applications in signal processing, image reconstruction, with particular progress in intensity-modulated radiation therapy, approximation theory, control theory, biomedical engineering, communications, and geophysics. In this paper, we first prove some properties of firmly nonexpansive mappings. Then we apply these properties to establish a strong convergence theorem with a Regularized-like method to find an element of the solutions set of a monotone inclusion problem in a Hilbert space. Using this result, we also prove a strong convergence theorem for finding an element of the solutions set of generalized split feasibility problem $\left(\right.$ GSFP $\left._{\text {FF }}\right)$. As applications, we study the solutions and algorithms for the convex feasibility problems, split feasibility problems. To be the best of our knowledge, there are no researchers consider generalized split feasibility problem (GSFP ${ }_{\text {FF }}$) by using these methods in the infinite dimensional real Hilbert spaces and finite dimensional Euclidean spaces.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T: C \rightarrow$ H be mapping, and let $\operatorname{Fix}(T):=\{x \in C: T x=x\}$ denote the set of fixed points of T. A mapping $T: C \rightarrow H$ is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C ; T$ is said to be quasi-nonexpansive mapping if $F i x(T) \neq \emptyset$ and $\|T x-y\| \leq\|x-y\|$ for all $x \in C$ and $y \in \operatorname{Fix}(T)$. For $\alpha>0$, a mapping $A: H \rightarrow H$ is called α-inverse-strongly monotone (α-ism) if

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}, \forall x, y \in H
$$

If $0<\lambda \leq 2 \alpha, A: H \rightarrow H$ is a α-inverse-strongly monotone mapping, then $I-\lambda A: H \rightarrow H$ is nonexpansive. A mapping $T: C \rightarrow H$ is said to be a firmly nonexpansive mapping if

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|(I-T) x-(I-T) y\|^{2}
$$

for every $x, y \in C$.
A mapping $g: H \rightarrow H$ is a contraction if there exists $k \in(0,1)$ such that $\|g(x)-g(y)\| \leq k\|x-y\|$, for all $x, y \in H$. We call such a mapping g a k-contraction. A nonlinear operator $V: H \rightarrow H$ is called strongly monotone if there exists $\bar{\gamma}>0$ such that $\langle x-y, V x-V y\rangle \geq \bar{\gamma}\|x-y\|^{2}$ for all $x, y \in H$. Such V is also called $\bar{\gamma}$-strongly monotone. A nonlinear operator $V: H \rightarrow H$ is called Lipschitzian

2010 Mathematics Subject Classification. 47J20, 47J25, 47H05, 47H09.
Key words and phrases. Firmly nonexpansive mapping; generalized split feasibility problem; regular- like method; split feasibility problem, maximum monotone operator,convex feasibility problem, equilibrium problem, zero point of an operator.
continuous if there exists $L>0$ such that $\|V x-V y\| \leq L\|x-y\|$ for all $x, y \in H$. Such V is also called L-Lipschitzian continuous.

Let $B: H \multimap H$ be a multivalued mapping. The effective domain of B is denoted by $D(B)$, that is, $D(B)=\{x \in H: B x \neq \emptyset\}$. A multivalued mapping B is said to be a monotone operator on H if $\langle x-y, u-v\rangle \geq 0$ for all $x, y \in D(B), u \in B x$, and $v \in B y$. A monotone operator B on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H. For a maximal monotone operator B on H and $r>0$, we may define a single-valued operator $J_{r}=(I+r B)^{-1}: H \rightarrow D(B)$, which is called the resolvent of B for r, and define the set $B^{-1} 0$ as $B^{-1} 0=\{x \in H: 0 \in B x\}$.

In 2011, Lin and Takahashi [15] proved the following strong convergence theorem.
Theorem 1.1. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha>0$ and let F be a α-inverse-strongly monotone mapping of C into H. Let B be a maximal monotone mapping on H and let G be a maximal monotone mapping on H such that the domain of G is included in C. Let $J_{\lambda}=$ $(I+\lambda B)^{-1}$ and $T_{r}=(I+r G)^{-1}$ for each $\lambda>0$ and $r>0$. Let $0<k<1$ and let g be a k-contraction of H into itself. Let V be a $\bar{\gamma}$ - strongly monotone and L-Lipschitzian continuous operator with $\bar{\gamma}>0$ and $L>0$. Soppose that $(A+B)^{-1} 0 \bigcap G^{-1} 0 \neq \emptyset$. Take $\mu, \gamma \in \mathbb{R}$ as follows:

$$
0<\mu<\frac{2 \bar{\gamma}}{L^{2}}, 0<\gamma<\frac{\bar{\gamma}-\frac{L^{2} \mu}{2}}{k}
$$

Let $x_{1}=x \in H$ and let $\left\{x_{n}\right\} \subset H$ be defined by

$$
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right)\left(\beta_{n} \gamma f\left(x_{n}\right)+\left(1-\beta_{n} V\right) J_{\lambda_{n}}\left(I-\lambda_{n} F\right) T_{r_{n}} x_{n}\right)
$$

for each $n \in \mathbb{N}, \lambda_{n} \subset(0, \infty)$, $\alpha_{n} \subset(0,1)$, $\beta_{n} \subset(0,1)$, and $r_{n} \subset(0, \infty)$. Assume that:
(i) $0<\liminf _{n \rightarrow \infty} \alpha_{n} \leq \limsup \operatorname{sum}_{n \rightarrow \infty} \alpha_{n}<1$;
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$, and $\sum_{n=1}^{\infty} \beta_{n}=\infty$;
(iii) $0<a \leq \lambda_{n} \leq b<2 \alpha$, and $\liminf _{n \rightarrow \infty} r_{n}>0$.

Then $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$, where $\bar{x}=P_{(F+B)^{-1} 0 \bigcap G^{-1} 0}(I-V+\gamma g) \bar{x}$.
On the other hand, the split feasibility problem can be formulated as the following problem:
(SFP) Find $\bar{x} \in H_{1}$ such that $\bar{x} \in C$ and $A \bar{x} \in Q$,
where C and Q are nonempty closed convex subsets of Hilbert spaces H_{1} and H_{2}, respectively, and $A: H_{1} \rightarrow H_{2}$ is an operator.

The split feasibility problem (SFP) in finite dimensional Hilbert spaces was first introduced by Censor and Elfving [7] for modeling inverse problems which arise from medical image reconstruction. Since then, the split feasibility problem (SFP) has received much attention due to its applications in signal processing, image reconstruction, with particular progress in intensity-modulated radiation therapy, approximation theory, control theory, biomedical engineering, communications, and geophysics. For examples, one can refer to $[5,7,8,16,20]$ and related literatures. Since then, many researchers study (SFP) in finite dimensional or infinite dimensional Hilbert spaces. For examples, one can see $[5,6,11,18,19,25,27,26,28,29,30]$.

A special case of problem (SFP) is the convexly constrained linear inverse problem in the finite dimensional Hilbert space [12]:

$$
(\mathbf{C L I P}) \text { Find } \bar{x} \in C \text { such that } A \bar{x}=b, \quad \text { where } b \in H_{2}
$$

which has extensively been investigated by using the Landweber iterative method [17]:

$$
x_{n+1}:=x_{n}+\gamma A^{T}\left(b-A x_{n}\right), n \in \mathbb{N} .
$$

In 2002, Byrne [5] first introduced the so-called CQ algorithm which generates a sequence $\left\{x_{n}\right\}$ by the following recursive procedure:

$$
\begin{equation*}
x_{n+1}=P_{C}\left(x_{n}-\rho_{n} A^{*}\left(I-P_{Q}\right) A x_{n}\right) \tag{1.1}
\end{equation*}
$$

where the stepsize ρ_{n} is chosen in the interval $\left(0,2 /\|A\|^{2}\right)$, and P_{C} and P_{Q} are the metric projections onto $C \subseteq \mathbb{R}^{n}$ and $Q \subseteq \mathbb{R}^{m}$, respectively. Compared with Censor and Elfving's algorithm [7] where the matrix inverse A is involved, the CQ algorithm (1.1) seems more easily executed since it only deals with metric projections with no need to compute matrix inverses.

In 2010, Xu [26] modified Byrne's CQ algorithm and proved the following weak convergence theorem in infinite Hilbert spaces for their modified algorithm.

Theorem 1.2 ([26]). Suppose that the solution set of (SFP) is nonempty. Let $\left\{x_{n}\right\} \subset H$ be defined by

$$
\begin{equation*}
x_{n+1}=P_{C}\left(\left(1-\rho \epsilon_{n}\right) x_{n}-\rho A^{*}\left(I-P_{Q}\right) A x_{n}\right) \tag{1.2}
\end{equation*}
$$

for each $n \in \mathbb{N}$ and $\varepsilon_{n} \subset(0,1)$. Assume that $0<\rho<\frac{2}{\|A\|^{2}}$ and $\sum_{n=1}^{\infty} \varepsilon_{n}<\infty$. Then $\left\{x_{n}\right\}$ converges weakly to a solution of (SFP).

Besides, we know that the equilibrium problem is to find $z \in C$ such that

$$
(\mathbf{E P}) g(z, y) \geq 0 \text { for each } y \in C
$$

where $g: C \times C \rightarrow \mathbb{R}$ is a bifunction.
This problem includes fixed point problems, optimization problems, variational inequality problems, Nash equilibrium problems, minimax inequalities, and saddle point problems as special cases. (For examples, one can see [3] and related literatures.)

The solution set of equilibrium problem (EP) is denoted by $E P(g)$. For solving the equilibrium problem, let us assume that the bifunction $g: C \times C \rightarrow \mathbb{R}$ satisfies the following conditions:
(A1) $g(x, x)=0$ for each $x \in C$;
(A2) g is monotone, i.e., $g(x, y)+g(y, x) \leq 0$ for any $x, y \in C$;
(A3) for each $x, y, z \in C, \lim _{t \downarrow 0} g(t z+(1-t) x, y) \leq g(x, y)$;
(A4) for each $x \in C$, the scalar function $y \rightarrow g(x, y)$ is convex and lower semicontinuous.

We have the following result from Blum and Oettli [3].

Theorem 1.3 ([3]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $g: C \times C \rightarrow \mathbb{R}$ be a bifunction which satisfies conditions (A1)-(A4). Then for each $r>0$ and each $x \in H$, there exists $z \in C$ such that

$$
g(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0
$$

for all $y \in C$.
In 2005, Combettes and Hirstoaga [9] estabilshed the following important properties of resolvent operator.

Theorem 1.4 ([9]). Let C be a nonempty closed convex subset of a real Hilbert space H and let $g: C \times C \rightarrow \mathbb{R}$ be a function satisfying conditions (A1)-(A4). For $r>0$, define $T_{r}^{g}: H \rightarrow C$ by

$$
T_{r}^{g} x=\left\{z \in C: g(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in H$. Then the following hold:
(i) T_{r}^{g} is single-valued;
(ii) T_{r}^{g} is firmly nonexpansive, that is, $\left\|T_{r}^{g} x-T_{r}^{g} y\right\|^{2} \leq\left\langle x-y, T_{r}^{g} x-T_{r}^{g} y\right\rangle$ for all $x, y \in H$
(iii) $\left\{x \in H: T_{r}^{g} x=x\right\}=\{x \in C: g(x, y) \geq 0, \forall y \in C\}$;
(iv) $\{x \in C: g(x, y) \geq 0, \forall y \in C\}$ is a closed and convex subset of C.

We call such T_{r}^{g} the resolvent of g for $r>0$.
Motivated by Theorem 1.1 and Theorem 1.2, we first consider the following algorithm for finding a point $\bar{x}=P_{(F+B)^{-1} 0} \cap G^{-1} 0(0)$:

Let J_{ρ}, T_{r} and F be defined as Theorem 1.1. Suppose that $(F+B)^{-1} 0 \bigcap G^{-1} 0 \neq$ \emptyset. Let $\left\{x_{n}\right\} \subset H$ be defined by

$$
\left\{\begin{array}{l}
x_{1} \in C \text { chosen arbitrarily, } \\
x_{n+1}=J_{\rho}\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}
\end{array}\right.
$$

for each $n \in \mathbb{N}, \rho \subset(0, \infty), \beta_{n} \subset(0,1)$, and $r \subset(0, \infty)$. Assume that:
(i) $0<a \leq \rho<\frac{2}{\alpha^{2}+2}$;
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\Sigma_{n=1}^{\infty} \beta_{n}=\infty$.

Then $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$, where $\bar{x}=P_{(F+B)^{-1} 0 \cap G^{-1} 0}(0)$.
Let C_{1}, C_{2} and Q be nonempty closed convex subsets of Hilbert spaces H_{1}, H_{1} and H_{2}, respectively. Let $g_{1}: C_{1} \times C_{1} \rightarrow \mathbb{R}, g_{2}: C_{2} \times C_{2} \rightarrow \mathbb{R}$ and $g_{3}: Q \times Q \rightarrow \mathbb{R}$ be three bifunctions which satisfies conditions (A1)-(A4). Let F_{1} be a firmly nonexpansive mapping of H_{2} into H_{2}. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Then we apply a strong convergence theorem for finding a element of the solutions set of a monotone inclusion problem in a Hilbert space to prove a strongly convergence theorem for the following generalized feasibility problem :
$\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in \operatorname{Fix}\left(J_{\lambda}\right) \bigcap F i x\left(T_{r}\right)$ and $A \bar{x} \in F i x\left(F_{1}\right)$.
The generalized split feasibility problem ($\mathbf{G S F P}_{\mathbf{F F}}$) contains many important problems as special cases.
(i) If $J_{\rho_{1}}=T_{\rho_{1}}^{g_{1}}, T_{\rho_{2}}=T_{\rho_{2}}^{g_{2}}$ and $F_{1}=T_{\rho_{3}}^{g_{3}}$, then $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$ is reduced to generalized split feasibility equilibrium problem: (GSFP $\left.\mathbf{E E E}^{\mathbf{E}}\right)$.
$\left(\mathbf{G S F P}_{\mathbf{E E}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in E P\left(g_{1}\right) \bigcap E P\left(g_{2}\right)$ and $A \bar{x} \in E P\left(g_{3}\right)$.
(ii) If $C_{1}=C_{2}, g_{2}(x, y)=0$ for each $(x, y) \in C_{1} \times C_{1}$, then (GSFP $\mathbf{G E E}$) is reduced to the split equilibrium problem ($\mathbf{S F P}_{\mathbf{E E}}$):
$\left(\mathbf{S F P}_{\mathbf{E E}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in E P\left(g_{1}\right)$ and $A \bar{x} \in E P\left(g_{3}\right)$.
(iii) If $g_{1}(x, y)=0$, and $g_{2}(u, v)=0$ for each $(x, y) \in C_{1} \times C_{1}$ and each $(u, v) \in$ $C_{2} \times C_{2}$, then $\left(\mathbf{G S F P}_{\mathbf{E E}}\right)$ is reduced to $\left(\mathbf{G S F P}_{\mathbf{C E}}\right)$:
$\left(\mathbf{G S F P}_{\mathbf{C E}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in C_{1} \bigcap C_{2}$ and $A \bar{x} \in E P\left(g_{3}\right)$.
(iv) If $g_{3}(x, y)=0$ for each $(x, y) \in Q \times Q$, then $\left(\mathbf{G S F P}_{\mathbf{C E}}\right)$ is reduced to (GSFP ${ }_{\mathbf{C Q}}$):
$\left(\mathbf{G S F P}_{\mathbf{C Q}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in C_{1} \bigcap C_{2}$ and $A \bar{x} \in Q$.
(v) If $C_{1}=C_{2}$, then $\left(\mathbf{G S F P}_{\mathbf{C Q}}\right)$ is reduced to split feasibility problem $\left(\mathbf{S F P}_{\mathbf{C Q}}\right)$: $\left(\mathbf{S F P}_{\mathbf{C Q}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in C_{1}$ and $A \bar{x} \in Q$.
In this paper, we first establish a strong convergence theorem with a Regularizedlike method to find a element of the solutions set of a monotone inclusion problem in a Hilbert space. Using this result, we also prove a strong convergence theorem for finding a element of the solutions set of generalized split feasibility problem (GSFP $\mathbf{F F}_{\mathbf{F F}}$). As applications, we study the solutions and algorithms for the convex feasibility problems, split feasibility problems. To be the best of our knowledge, there are no researchers consider generalized split feasibility problem ($\mathbf{G S F P}_{\mathbf{F F}}$) by using these methods in the infinite dimensional real Hilbert spaces and finite dimensional Euclidean spaces.

2. Preliminaries

Throughout this paper, let \mathbb{N} be the set of positive integers and let \mathbb{R} be the set of real numbers. Let H be a (real) Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, respectively. We denote the strongly convergence and the weak convergence of $\left\{x_{n}\right\}$ to $x \in H$ by $x_{n} \rightarrow x$ and $x_{n} \rightharpoonup x$, respectively. From [24], for each $x, y \in H$ and $\lambda \in[0,1]$, we have

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}
$$

Hence, we also have

$$
\begin{equation*}
2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2} \tag{2.1}
\end{equation*}
$$

for all $x, y, u, v \in H$.
Let C be a nonempty subset of a real Hilbert space H, and let $T: C \rightarrow H$ is said to be a firmly nonexpansive mapping if

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|(I-T) x-(I-T) y\|^{2}
$$

for every $x, y \in C$, that is,

$$
\|T x-T y\|^{2} \leq\langle x-y, T x-T y\rangle
$$

for every $x, y \in C$. The following results are needed in this paper.
Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\alpha>0, F$ is a $\frac{1}{\alpha^{2}}$-inverse-strong-monotone mapping of C into H, and $\gamma \in \mathbb{R}$, then $F+\gamma I$ is a $\frac{1}{\gamma+\alpha^{2}}$-inverse-strong-monotone mapping.

Proof. Since F is a $\frac{1}{\alpha^{2}}$-inverse-strong-monotone mapping, we have

$$
\langle F x-F y, x-y\rangle \geq \frac{1}{\alpha^{2}}\|F x-F y\|^{2} .
$$

for all $x, y \in C$. This implies that

$$
\begin{align*}
& \left(\gamma+\alpha^{2}\right)\langle(F+\gamma I) x-(F+\gamma I) y, x-y\rangle \\
= & \left(\gamma+\alpha^{2}\right)\left[\gamma\|x-y\|^{2}+\langle F x-F y, x-y\rangle\right] \\
= & \gamma^{2}\|x-y\|^{2}+\gamma\langle F x-F y, x-y\rangle+\gamma \alpha^{2}\|x-y\|^{2}+\alpha^{2}\langle F x-F y, x-y\rangle \tag{2.2}\\
\geq & \gamma^{2}\|x-y\|^{2}+2 \gamma\langle F x-F y, x-y\rangle+\|F x-F y\|^{2} \\
= & \|\gamma(x-y)+F x-F y\|^{2}=\|(F+\gamma I) x-(F+\gamma I) y\|^{2} .
\end{align*}
$$

Thus, we obtain that $F+\gamma I$ be a $\frac{1}{\gamma+\alpha^{2}}$-inverse-strong-monotone mapping.
Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\alpha>0, F$ is a $\frac{1}{\alpha^{2}}$-inverse-strong-monotone mapping of C into $H, \gamma \in \mathbb{R}, \lambda \in$ $(0,1)$ and $0<\lambda \leq \frac{2}{\alpha^{2}+2 \gamma}$, then $I-\lambda(F+\gamma I)$ is a contractive mapping with coefficient ($1-\lambda \gamma$).

Proof. Since F is a $\frac{1}{\alpha^{2}}$-inverse-strong-monotone mapping, we have

$$
\langle F x-F y, x-y\rangle \geq \frac{1}{\alpha^{2}}\|F x-F y\|^{2} .
$$

This implies that

$$
\begin{align*}
& \|(I-\lambda(F+\gamma I)) x-(I-\lambda(F+\gamma I)) y\|^{2} \\
\leq & \|(1-\lambda \gamma)(x-y)-\lambda(F x-F y)\|^{2} \\
\leq & (1-\lambda \gamma)^{2}\|x-y\|^{2}-2(1-\lambda \gamma) \lambda\langle x-y, F x-F y\rangle+\lambda^{2}\|F x-F y\|^{2} \\
\leq & (1-\lambda \gamma)^{2}\|x-y\|^{2}-\frac{2}{\alpha^{2}}(1-\lambda \gamma) \lambda\|F x-F y\|^{2}+\lambda^{2}\|F x-F y\|^{2} \tag{2.3}\\
\leq & (1-\lambda \gamma)^{2}\|x-y\|^{2}-\lambda\left(\frac{2(1-\lambda \gamma)}{\alpha^{2}}-\lambda\right)\|F x-F y\|^{2} \\
\leq & (1-\lambda \gamma)^{2}\|x-y\|^{2} . \\
\leq & (1-\lambda \gamma)^{2}\|x-y\|^{2} .
\end{align*}
$$

So, $I-\lambda(F+\gamma I)$ is a contractive mapping with coefficient $(I-\lambda \gamma)$.
Lemma 2.3. Let H_{1} and H_{2} be two real Hilbert spaces, $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator, and A^{*} be the adjoint of A. Let C be a nonempty closed convex subset of H_{2}, and let $G: H_{2} \rightarrow H_{2}$ be a firmly nonexpansive mapping. Then $A^{*}(I-G) A$ is a $\frac{1}{\|A\|^{2}}-$ ism, that is,

$$
\frac{1}{\|A\|^{2}}\left\|A^{*}(I-G) A x-A^{*}(I-G) A y\right\|^{2} \leq\left\langle x-y, A^{*}(I-G) A x-A^{*}(I-G) A y\right\rangle
$$

for all $x, y \in H_{1}$.

Proof. Since G is a firmly nonexpansive mapping. Hence,

$$
\begin{aligned}
& \left\|A^{*}(I-G) A x-A^{*}(I-G) A y\right\|^{2} \\
\leq & \|A\|^{2}\|(I-G) A x-(I-G) A y\|^{2} \\
= & \|A\|^{2}\left(\|A x-A y\|^{2}+\|G A x-G A y\|^{2}-2\langle A x-A y, G A x-G A y\rangle\right) \\
\leq & \|A\|^{2}\left(\|A x-A y\|^{2}-\langle A x-A y, G A x-G A y\rangle\right) \\
= & \|A\|^{2}(\langle A x-A y,(I-G) A x-(I-G) A y\rangle) \\
= & \|A\|^{2}\left(\left\langle x-y, A^{*}(I-G) A x-A^{*}(I-G) A y\right\rangle\right)
\end{aligned}
$$

for all $x, y \in H$. Therefore, $A^{*}(I-G) A$ is $\frac{1}{\|A\|^{2}}$ - ism.
Lemma 2.4 ([2]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $G: H \rightarrow H$ be a firmly nonexpansive mapping. Suppose that $F(G) \neq \emptyset$. Then $\langle x-G x, G x-w\rangle \geq 0$ for each $x \in H$ and each $w \in \operatorname{Fix}(G)$.
Lemma 2.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $G: H \rightarrow H$ be a firmly nonexpansive mapping. Suppose that Fix $(G) \neq \emptyset$. Then $\|x-G x\|^{2}+\|G x-w\|^{2} \leq\|x-w\|^{2}$ for each $x \in H$ and each $w \in F i x(G)$.
Proof. By Lemma 2.4, we have

$$
\langle x-G x, G x-w\rangle \geq 0
$$

for each $x \in H$ and each $w \in \operatorname{Fix}(G)$. Using (2.1), we have that

$$
2\langle x-G x, G x-w\rangle=-\|x-G x\|^{2}+\|x-w\|^{2}-\|G x-w\|^{2} \geq 0
$$

for each $x \in H$ and each $w \in \operatorname{Fix}(G)$. Hence, we have that

$$
\|x-G x\|^{2}+\|G x-w\|^{2} \leq\|x-w\|^{2}
$$

for each $x \in H$ and each $w \in \operatorname{Fix}(G)$.
We also know that the metric projection from H onto C is the mapping P_{C} : $H \rightarrow C$ which assigns to each point $x \in H$ the unique point $P_{C} x$ satisfying the property $\left\|x-P_{C} x\right\|=\inf _{y \in C}\|x-y\|$. The following Lemma is a special case of Lemma 2.4.

Lemma 2.6 ([23]). Let C be a nonempty closed convex subset of a Hilbert space H. Let P_{C} be the metric projection from H onto C. Then for each $x \in H,\langle x-$ $\left.P_{C} x, P_{C} x-y\right\rangle \geq 0$ for all $y \in C$.
Proof. Since P_{C} is a firmly nonexpansive mapping. It is easy to see that $F i x\left(P_{C}\right)=$ C. Put $G x=P_{C} x$ in Lemma 2.4, for all $x \in H$. Then Lemma 2.6 follows from Lemma 2.4.

In 2013, He and Du [14] gave the following result which is an special case of Lemma 2.5.

Lemma 2.7 ([14]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $G: C \times C \rightarrow \mathbb{R}$ be a bifunction which satisfies conditions (A1)-(A4). Take any $\alpha>0$ and let α be fixed. Suppose that $E P(G) \neq \emptyset$. Then $\left\|x-T_{\alpha}^{G} x\right\|^{2}+\| T_{\alpha}^{G} x-$ $\bar{x}\left\|^{2} \leq\right\| x-\bar{x} \|^{2}$ for each $x \in H$ and each $\bar{x} \in E P(G)$.

Proof. Lemma 2.7 follows immediately from Lemma 2.5 and Theorem 1.3.
Lemma 2.8 ([4]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a nonexpansive mapping of C into itself, and let $\left\{x_{n}\right\}$ be a sequence in C. If $x_{n} \rightharpoonup w$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$, then $T w=w$.
Lemma 2.9 ([21]). Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space X, and let $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \alpha_{n} \leq \limsup _{n \rightarrow \infty} \alpha_{n}<1$. Suppose that $x_{n+1}=\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) x_{n}$ for each $n \in \mathbb{N}$, and $\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\| x_{n+1}-\right.$ $\left.x_{n} \|\right) \leq 0$. Then $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

We also know the following lemma from [23].
Lemma 2.10 ([23]). Let H be a Hilbert space and B be a maximal monotone mapping on H. Let J_{r} is the resolvent of B defined by $J_{r}=(I+r B)^{-1}$ for each $r>0$.
(i) For each $r>0, J_{\beta}$ is single-valued and firmly nonexpansive;
(ii) $\mathcal{D}\left(J_{\beta}\right)=H$ and $\operatorname{Fix}\left(J_{\beta}\right)=\{x \in \mathcal{D}(A): 0 \in A x\}$.

Lemma 2.11 ([10, 26]). Let C be a nonempty closed convex subset of a real Hilbert space H, and let $T: C \rightarrow C$ be a mapping. Then the following satisfied:
(i) T is nonexpansive if and only if the complement $(I-T)$ is 1/2-ism.
(ii) If S is v-ism, then for $\gamma>0, \gamma S$ is v / γ-ism.
(iii) S is averaged if and only if the complement $I-S$ is v-ism for some $v>1 / 2$.
(iv) If S and T are both averaged, then the product (composite) $S T$ is averaged.
(v) If the mappings $\left\{T_{i}\right\}_{i=1}^{n}$ are averaged and have a common fixed point, then $\bigcap_{i=1}^{n} \operatorname{Fix}\left(T_{i}\right)=\operatorname{Fix}\left(T_{1} \cdots T_{n}\right)$. The notation $\operatorname{Fix}(T)$ denotes the set of all fixed points of the mapping T, that is, $F i x(T)=\{x \in H: T x=x\}$.
Lemma 2.12 ([1]). Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of nonnegative real numbers, $\left\{\alpha_{n}\right\}$ a sequence of real numbers in $[0,1]$ with $\sum_{n=1}^{\infty} \alpha_{n}=\infty,\left\{u_{n}\right\}$ a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} u_{n}<\infty,\left\{t_{n}\right\}$ a sequence of real numbers with $\limsup t_{n} \leq 0$. Suppose that $a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} t_{n}+u_{n}$ for each $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.

3. MAIN RESULTS

In this section, we first establish a strong convergence theorem with a Regularizedlike method to find an element of the set of solutions for a monotone inclusion problem in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha>0, F$ is a $\frac{1}{\alpha^{2}}$-inverse-strongly monotone mapping of C into H. Let B be a maximal monotone mapping on H and let G be a maximal monotone mapping on H such that the domains of B and G are included in C. Let $J_{\rho}=(I+\rho B)^{-1}$ and $T_{r}=(I+r G)^{-1}$ for each $\rho>0$ and $r>0$. Suppose that $(F+B)^{-1} 0 \bigcap G^{-1} 0 \neq \emptyset$. Let $\left\{x_{n}\right\} \subset H$ be defined by

$$
\left\{\begin{array}{l}
x_{1} \in C \text { chosen arbitrarily, } \tag{3.1}\\
x_{n+1}=J_{\rho}\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}
\end{array}\right.
$$

for each $n \in \mathbb{N}, \rho \in(0, \infty), \beta_{n} \in(0,1)$, and $r \in(0, \infty)$. Assume that:
(i) $0<a \leq \rho<\frac{2}{\alpha^{2}+2}$;
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\Sigma_{n=1}^{\infty} \beta_{n}=\infty$.

Then $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$, where $\bar{x}=P_{(F+B)^{-1} 0 \cap G^{-1} 0}(0)$.
Proof. By Lemma 2.10, we know that $J_{\rho}=(I+\rho B)^{-1}$ and $T_{r}=(I+r G)^{-1}$ are firmly nonexpansive mappings, for each $\rho>0$ and $r>0$. It follows from $0<a \leq \rho<\frac{2}{\alpha^{2}+2}$ and F is a $\frac{1}{\alpha^{2}}$-ism that we have

$$
\begin{align*}
& \left\|J_{\rho}\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x-J_{\rho}\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} y\right\|^{2} \tag{3.1}\\
\leq & \left\|\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x-\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} y\right\|^{2} \\
\leq & \left\|\left(1-\rho \beta_{n}\right)\left(T_{r} x-T_{r} y\right)-\rho\left(F T_{r} x-F T_{r} y\right)\right\|^{2} \\
\leq & \left(1-\rho \beta_{n}\right)^{2}\left\|T_{r} x-T_{r} y\right\|^{2}-2\left(1-\rho \beta_{n}\right) \rho\left\langle T_{r} x-T_{r} y, F T_{r} x-F T_{r} y\right\rangle \\
& +\rho^{2}\left\|F T_{r} x-F T_{r} y\right\|^{2} \\
\leq & \left(1-\rho \beta_{n}\right)^{2}\left\|T_{r_{n}} x-T_{r_{n}} y\right\|^{2}-\frac{2}{\alpha^{2}}\left(1-\rho \beta_{n}\right) \rho\left\|F T_{r} x-F T_{r} y\right\|^{2}+\rho^{2}\left\|F T_{r} x-F T_{r} y\right\|^{2} \\
\leq & \left(1-\rho \beta_{n}\right)^{2}\left\|T_{r} x-T_{r} y\right\|^{2}-\rho\left(\frac{2}{\alpha^{2}}(1-\rho)-\rho\right)\left\|F T_{r} x-F T_{r} y\right\|^{2} \\
\leq & \left(1-\rho \beta_{n}\right)^{2}\left\|T_{r} x-T_{r} y\right\|^{2} \\
\leq & \left(1-\rho \beta_{n}\right)^{2}\|x-y\|^{2} .
\end{align*}
$$

Let $\bar{x} \in(F+B)^{-1} 0 \bigcap G^{-1} 0$. It follows from Lemma 2.10(ii), we have

$$
\begin{equation*}
\bar{x}=J_{\rho}(I-\rho F) \bar{x} \text { and } \bar{x}=T_{r} \bar{x} \tag{3.2}
\end{equation*}
$$

Let $u_{n}=T_{r} x_{n}$. For each $n \in \mathbb{N}$, we have from (3.1), and (3.1) that

$$
\begin{aligned}
\left\|x_{n+1}-\bar{x}\right\|= & \left\|J_{\rho}\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}-J_{\rho}(I-\rho F) T_{r} \bar{x}\right\| \\
\leq & \left\|J_{\rho}\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}-J_{\rho}\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} \bar{x}\right\| \\
& \quad+\left\|J_{\rho}\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} \bar{x}-J_{\rho}(I-\rho F) T_{r} \bar{x}\right\| \\
\leq & \left(1-\rho \beta_{n}\right)\left\|x_{n}-\bar{x}\right\|+\rho \beta_{n}\|\bar{x}\| \\
\leq & \max \left\{\left\|x_{n}-\bar{x}\right\|,\|\bar{x}\|\right\} .
\end{aligned}
$$

By induction, we deduce

$$
\begin{equation*}
\left\|x_{n}-\bar{x}\right\| \leq \max \left\{\left\|x_{1}-\bar{x}\right\|,\|\bar{x}\|\right\} \tag{3.4}
\end{equation*}
$$

This indicates that the sequence $\left\{x_{n}\right\}$ is bounded. Furthermore, $\left\{u_{n}\right\}$ is bounded.
Since F be a $\frac{1}{\alpha^{2}}$-ism, and $\beta_{n} \in \mathbb{R}$, it follows from Lemma 2.11 that ρF is $\frac{1}{\rho \alpha^{2}}-$ ism and $I-\rho F$ is $\frac{\rho \alpha^{2}}{2}$-averaged. That is,

$$
I-\rho F=\left(1-\frac{\rho \alpha^{2}}{2}\right) I+\frac{\rho \alpha^{2}}{2} T
$$

for some nonexpansive mapping T. Since J_{ρ} is $1 / 2$ averaged, $J_{\rho}=(I+S) / 2$ for some nonexpansive mapping S, T_{r} is also $1 / 2$ averaged, $T_{r}=(I+A) / 2$ for some
nonexpansive mapping A. Then, we can rewrite x_{n+1} as

$$
x_{n+1}=\frac{2-\rho \alpha^{2}}{8} x_{n}+\frac{6+\rho \alpha^{2}}{8} y_{n}
$$

where
$y_{n}=\frac{8}{6+\rho \alpha^{2}}\left(\frac{2-\rho \alpha^{2}}{8} A x_{n}+\frac{\rho \alpha^{2}}{4} T T_{r} x_{n}-\frac{1}{2} \rho \beta_{n} T_{r} x_{n}+\frac{1}{2} S\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}\right)$.
Hence, we have that

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\|= & \| \frac{8}{6+\rho \alpha^{2}}\left(\frac{2-\rho \alpha^{2}}{8} A x_{n+1}+\frac{\rho \alpha^{2}}{4} T T_{r} x_{n+1}\right. \\
& \left.-\frac{1}{2} \rho \beta_{n+1} T_{r} x_{n+1}+\frac{1}{2} S\left(I-\rho\left(F+\beta_{n+1} I\right)\right) T_{r} x_{n+1}\right) \\
& -\frac{8}{6+\rho \alpha^{2}}\left(\frac{2-\rho \alpha^{2}}{8} A x_{n}+\frac{\rho \alpha^{2}}{4} T T_{r} x_{n}-\frac{1}{2} \rho \beta_{n} T_{r} x_{n}\right. \\
& \left.+\frac{1}{2} S\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}\right) \| \\
\leq & \frac{8}{6+\rho \alpha^{2}}\left(\frac{2-\rho \alpha^{2}}{8}\left\|A x_{n+1}-A x_{n}\right\|+\left\|\frac{\rho \alpha^{2}}{4} T T_{r} x_{n+1}-\frac{\rho \alpha^{2}}{4} T T_{r} x_{n}\right\|\right. \\
& \left.+\frac{1}{2} \rho \beta_{n+1}\left\|T_{r} x_{n+1}\right\|+\frac{1}{2} \rho \beta_{n}\left\|T_{r} x_{n}\right\|\right) \\
& +\frac{4}{6+\rho \alpha^{2}}\left\|\left(I-\rho\left(F+\beta_{n+1} I\right)\right) T_{r} x_{n+1}-\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}\right\| .
\end{aligned}
$$

Now, we choose a constant M such that

$$
\sup _{n}\left\{\left\|x_{n}\right\|,\left\|T_{r} x_{n}\right\|\right\} \leq M
$$

We have the following estimates:

$$
\begin{gathered}
\frac{2-\rho \alpha^{2}}{8}\left\|A x_{n+1}-A x_{n}\right\| \leq \frac{2-\rho \alpha^{2}}{8}\left\|x_{n+1}-x_{n}\right\| \\
\left\|\frac{\rho \alpha^{2}}{4} T T_{r} x_{n+1}-\frac{\rho \alpha^{2}}{4} T T_{r} x_{n}\right\| \leq \frac{\rho \alpha^{2}}{4}\left\|T T_{r} x_{n+1}-T T_{r} x_{n}\right\| \leq \frac{\rho \alpha^{2}}{4}\left\|x_{n+1}-x_{n}\right\|,
\end{gathered}
$$

and

$$
\begin{aligned}
& \left\|\left(I-\rho\left(F+\beta_{n+1} I\right)\right) T_{r} x_{n+1}-\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}\right\| \\
\leq & \left.\left.\|(I-\rho F) T_{r} x_{n+1}\right)-(I-\rho F) T_{r} x_{n}\right)\left\|+\rho \beta_{n+1}\right\| T_{r} x_{n+1}\left\|+\rho \beta_{n}\right\| T_{r} x_{n} \| \\
\leq & \left\|x_{n+1}-x_{n}\right\|+\left(\rho \beta_{n+1}+\rho \beta_{n}\right) M .
\end{aligned}
$$

Thus, we deduce that

$$
\begin{align*}
\left\|y_{n+1}-y_{n}\right\| & \leq \frac{2-\rho \alpha^{2}}{6+\rho \alpha^{2}}\left\|x_{n+1}-x_{n}\right\|+\frac{2 \rho \alpha^{2}}{6+\rho \alpha^{2}}\left\|x_{n+1}-x_{n}\right\| \\
& +\frac{4}{6+\rho \alpha^{2}}\left(\left\|x_{n+1}-x_{n}\right\|+2\left(\rho \beta_{n+1}+\rho \beta_{n}\right) M\right) \tag{3.5}\\
& =\left\|x_{n+1}-x_{n}\right\|+\frac{8}{6+\rho \alpha^{2}}\left(\rho \beta_{n+1}+\rho \beta_{n}\right) M .
\end{align*}
$$

By (3.5) and assumption,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0 \tag{3.6}
\end{equation*}
$$

By (3.6) and Lemma 2.9,

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0
$$

Consequently,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty} \frac{6+\rho \alpha^{2}}{8}\left\|x_{n}-y_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is bounded, there exist a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{j}} \rightharpoonup$ \hat{w}. Next, we have

$$
\begin{align*}
\left\|x_{n_{j}}-J_{\rho}(I-\rho F) T_{r} x_{n_{j}}\right\| \leq & \left\|x_{n_{j}}-x_{n_{j}+1}\right\|+\left\|x_{n_{j}+1}-J_{\rho}(I-\rho F) T_{r} x_{n_{j}}\right\| \\
= & \left\|J_{\rho}\left(I-\rho\left(F+\beta_{n_{j}} I\right)\right) T_{r} x_{n_{j}}-J_{\rho}(I-\rho F) T_{r} x_{n_{j}}\right\| \\
& +\left\|x_{n_{j}}-x_{n_{j}+1}\right\| \tag{3.8}\\
\leq & \beta_{n_{j}} \rho\left\|x_{n_{j}}\right\|+\left\|x_{n_{j}}-x_{n_{j}+1}\right\| .
\end{align*}
$$

By (3.7), (3.8), and assumptions,

$$
\begin{equation*}
\lim _{n_{j} \rightarrow \infty}\left\|x_{n_{j}}-J_{\rho}(I-\rho F) T_{r} x_{n_{j}}\right\|=0 \tag{3.9}
\end{equation*}
$$

Since $J_{\rho}(I-\rho F) T_{r}$ is nonexpansive, it follows from Lemma 2.8 that $\hat{w} \in \operatorname{Fix}\left(J_{\rho}(I-\right.$ $\rho F) T_{r}$). From (3.2), we have

$$
\begin{equation*}
F i x\left(J_{\rho}(I-\rho F)\right) \bigcap F i x\left(T_{r}\right) \neq \emptyset \tag{3.10}
\end{equation*}
$$

Since $J_{\rho}(I-\rho F)$ and T_{r} are averaged, it follows from (3.10) and Lemma 2.11 that $\hat{w} \in \operatorname{Fix}\left(J_{\rho}(I-\rho F) T_{r}\right)=\operatorname{Fix}\left(J_{\rho}(I-\rho F)\right) \bigcap \operatorname{Fix}\left(T_{r}\right)$. Hence, it follows from Lemma 2.10(ii), we have $\bar{w} \in(F+B)^{-1} 0 \bigcap G^{-1} 0$.

Let \hat{x} be the minimum norm solution of Ω. That is, $\hat{x}=P_{\Omega} 0$, where $\Omega=$ $(F+B)^{-1} 0 \bigcap G^{-1} 0$. Since $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{j}} \rightharpoonup z$ and

$$
\limsup _{n \rightarrow \infty}\left\langle-\hat{x}, x_{n}-\hat{x}\right\rangle=\lim _{j \rightarrow \infty}\left\langle-\hat{x}, x_{n_{j}}-\hat{x}\right\rangle
$$

As the above proof, we know that $z \in \Omega$. Hence,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle-\hat{x}, x_{n}-\hat{x}\right\rangle=\lim _{j \rightarrow \infty}\left\langle-\hat{x}, x_{n_{j}}-\hat{x}\right\rangle=\langle-\hat{x}, z-\hat{x}\rangle \leq 0 \tag{3.11}
\end{equation*}
$$

Since J_{ρ} be a firmly nonexpansive, and by Lemma 2.2, we have the following: (3.12)

$$
\begin{aligned}
\left\|x_{n+1}-\hat{x}\right\|^{2}= & \left\|J_{\rho}\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}-J_{\rho}(I-\rho F) T_{r} \hat{x}\right\|^{2} \\
\leq & \left\langle\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}-(I-\rho F) T_{r} \hat{x}, x_{n+1}-\hat{x}\right\rangle \\
\leq & \left\langle\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}-\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} \hat{x}, x_{n+1}-\hat{x}\right\rangle \\
& \quad+\rho \beta_{n}\left\langle-T_{r} \hat{x}, x_{n+1}-\hat{x}\right\rangle \\
\leq & \left\|\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} x_{n}-\left(I-\rho\left(F+\beta_{n} I\right)\right) T_{r} \hat{x}\right\| \cdot\left\|x_{n+1}-\hat{x}\right\| \\
& \quad+\beta_{n} \rho\left\langle-T_{r} \hat{x}, x_{n+1}-\hat{x}\right\rangle \\
\leq & \left(1-\rho \beta_{n}\right)\left\|x_{n}-\hat{x}\right\| \cdot\left\|x_{n+1}-\hat{x}\right\|+\beta_{n} \rho\left\langle-\hat{x}, x_{n+1}-\hat{x}\right\rangle \\
\leq & \frac{\left(1-\rho \beta_{n}\right)}{2}\left\|x_{n}-\hat{x}\right\|^{2}+\frac{1}{2}\left\|x_{n+1}-\hat{x}\right\|^{2}+\beta_{n} \rho\left\langle-\hat{x}, x_{n+1}-\hat{x}\right\rangle .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left\|x_{n+1}-\hat{x}\right\|^{2} \leq\left(1-\beta_{n} \rho\right)\left\|x_{n}-\hat{x}\right\|^{2}+2 \beta_{n} \rho\left\langle-\hat{x}, x_{n+1}-\hat{x}\right\rangle \tag{3.13}
\end{equation*}
$$

By assumptions, (3.11), (3.13), and Lemma 2.12, we know that $x_{n} \rightarrow \hat{x}$. Therefore, the proof is completed.

Let C_{1} and Q be nonempty closed convex subsets of real Hilbert spaces H_{1} and H_{2}, respectively. Let F_{1} be a firmly nonexpansive mapping of H_{2} into H_{2}. Let B be a maximal monotone mapping on H_{1} and let G be a maximal monotone mapping on H_{1} such that the domains of B and G are included in C_{1}. Let $J_{\lambda}=(I+\lambda B)^{-1}$ and $T_{r}=(I+r G)^{-1}$ for each $\lambda>0$ and $r>0$. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator, and let A^{*} be the adjoint of A. Now, we recall the following problem:
$\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in \operatorname{Fix}\left(J_{\lambda}\right) \bigcap F i x\left(T_{r}\right)$ and $A \bar{x} \in F i x\left(F_{1}\right)$.
In order to to study the convergence theorems for the solution set of generalized split feasibility problem ($\mathbf{G S F P}_{\mathbf{F F}}$), we must give an essential result in this paper.

Theorem 3.2. Given any $\bar{x} \in H_{1}$.
(i) If \bar{x} is a solution of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$, then $\left.J_{\lambda}\left(I-\rho A^{*}\left(I-F_{1}\right) A\right) T_{r} \bar{x}\right)=\bar{x}$.
(ii) Suppose that $\left.J_{\lambda}\left(I-\rho A^{*}\left(I-F_{1}\right) A\right) T_{r} \bar{x}\right)=\bar{x}$ with $0<\rho<\frac{2}{\|A\|^{2}+2}$ and the solution set of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$ is nonempty. Then \bar{x} is a solution of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$.
Proof. (i) Suppose that $\bar{x} \in H_{1}$ is a solution of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$. Then $\bar{x} \in F i x\left(J_{\lambda}\right) \bigcap$ $F i x\left(T_{r}\right)$ and $A \bar{x} \in F i x\left(F_{1}\right)$. It is easy to see that

$$
J_{\lambda}\left(I-\rho A^{*}\left(I-F_{1}\right) A\right) T_{r} \bar{x}=J_{\lambda}\left(\bar{x}-\rho A^{*}\left(I-F_{1}\right) A \bar{x}\right)=J_{\lambda} \bar{x}=\bar{x}
$$

(ii)Suppose that $\left.J_{\lambda}\left(I-\rho A^{*}\left(I-F_{1}\right) A\right) T_{r} \bar{x}\right)=\bar{x}$ with $0<\rho<\frac{2}{\|A\|^{2}+2}$ and the solution set of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$ is nonempty.

Since the solution set of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$ is nonempty, there exists $\bar{w} \in H_{1}$ such that $\bar{w} \in \operatorname{Fix}\left(J_{\lambda}\right) \bigcap \operatorname{Fix}\left(T_{r}\right)$ and $A \bar{w} \in \operatorname{Fix}\left(F_{1}\right)$. So,

$$
\begin{equation*}
\left.\bar{w} \in F i x\left(J_{\lambda}\right) \bigcap F i x\left(I-\rho A^{*}\left(I-F_{1}\right) A\right)\right) \bigcap F i x\left(T_{r}\right) \neq \emptyset \tag{3.14}
\end{equation*}
$$

By Lemma 2.3, we have that

$$
\begin{equation*}
A^{*}\left(I-F_{1}\right) A \text { is } \frac{1}{\|A\|^{2}}-i s m \tag{3.15}
\end{equation*}
$$

By (3.15), $0<\rho<\frac{2}{\|A\|^{2}+2}$, and lemma 2.11(ii),(iii), we know that

$$
\begin{equation*}
I-\rho A^{*}\left(I-F_{1}\right) A \text { is averaged. } \tag{3.16}
\end{equation*}
$$

On the other hand, since J_{λ}, and T_{r} are firmly nonexpansive mappings, it is easy to see that

$$
\begin{equation*}
J_{\lambda} \text { and } T_{r} \text { are } \frac{1}{2} \text { avereged. } \tag{3.17}
\end{equation*}
$$

Hence, by (3.14), (3.16), (3.17) and Lemma 2.11(v), we have that

$$
\left.\left.\bar{x} \in J_{\lambda}\left(I-\rho A^{*}\left(I-F_{1}\right) A\right) T_{r} \bar{x}\right)=F i x\left(J_{\lambda}\right) \bigcap \operatorname{Fix}\left(I-\rho A^{*}\left(I-F_{1}\right) A\right)\right) \bigcap F i x\left(T_{r}\right)
$$

By Lemma 2.4,

$$
\left\langle\left(\bar{x}-\rho A^{*}\left(I-F_{1}\right) A \bar{x}\right)-\bar{x}, \bar{x}-w\right\rangle \geq 0 \text { for each }
$$

$$
w \in F i x\left(J_{\lambda}\right) \bigcap F i x\left(T_{r}\right) \text { and } A w \in F i x\left(F_{1}\right)
$$

That is,
$\left\langle A^{*}\left(I-F_{1}\right) A \bar{x}, \bar{x}-w\right\rangle \leq 0$ for each $w \in F i x\left(J_{\lambda}\right) \bigcap F i x\left(T_{r}\right)$ and $A w \in F i x\left(F_{1}\right)$.
By (3.18) and A^{*} is the adjoint of A,
$\left\langle A \bar{x}-F_{1} A \bar{x}, A \bar{x}-A w\right\rangle \leq 0$ for each $w \in \operatorname{Fix}\left(J_{\lambda}\right) \bigcap F i x\left(T_{r}\right)$ and $A w \in F i x\left(F_{1}\right)$.
On the other hand, by Lemma 2.4 again,

$$
\begin{equation*}
\left\langle A \bar{x}-F_{1} A \bar{x}, v-F_{1} A \bar{x}\right\rangle \leq 0 \text { for each } v \in F i x\left(F_{1}\right) . \tag{3.20}
\end{equation*}
$$

By (3.19) and (3.20),

$$
\begin{equation*}
\left\langle A \bar{x}-F_{1} A \bar{x}, v-F_{1} A \bar{x}+A \bar{x}-A w\right\rangle \leq 0 \tag{3.21}
\end{equation*}
$$

for each $w \in F i x\left(J_{\lambda}\right) \bigcap F i x\left(T_{r}\right)$ and $A w \in F i x\left(F_{1}\right)$ and each $v \in F i x\left(F_{1}\right)$. That is,

$$
\begin{equation*}
\left\|A \bar{x}-F_{1} A \bar{x}\right\|^{2} \leq\left\langle A \bar{x}-F_{1} A \bar{x}, A w-v\right\rangle \tag{3.22}
\end{equation*}
$$

for each $w \in F i x\left(J_{\lambda}\right) \bigcap F i x\left(T_{r}\right)$ and $A w \in F i x\left(F_{1}\right)$ and each $v \in F i x\left(F_{1}\right)$. Since \bar{w} is a solution of generalized split feasibility problem $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$, we know that $\bar{w} \in F i x\left(J_{\lambda}\right) \bigcap F i x\left(T_{r}\right)$ and $A \bar{w} \in F i x\left(F_{1}\right)$. So, it follows from (3.22) that $A \bar{x}=$ Fix $\left(F_{1}\right)$. Further, $\bar{x} \in F i x\left(J_{\lambda}\right)$ and $\bar{x} \in \operatorname{Fix}\left(T_{r}\right)$. Therefore, \bar{x} is a solution of (GSFP $\mathbf{F F}_{\text {F }}$).

Apply Theorem 3.1, and Theorem 3.2, we can find the solution of (GSFP $\left.\mathbf{F F}_{\mathbf{F F}}\right)$.
Theorem 3.3. Let C_{1} and C_{2} be two nonempty closed convex subsets of real Hilbert spaces H_{1} and H_{2}, respectively. Let F_{1} be a firmly nonexpansive mapping of H_{2} into H_{2}. Let B be a maximal monotone mapping on H_{1} and let G be a maximal monotone mapping on H_{1} such that the domains of B and G are included in C_{1}. Let $J_{\lambda}=(I+\lambda B)^{-1}$ and $T_{r}=(I+r G)^{-1}$ for each $\lambda>0$ and $r>0$. Let $A: C_{1} \rightarrow H_{2}$ be a bounded linear operator, and let A^{*} be the adjoint of A. Suppose that the solution set of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$ is nonempty. Let $\left\{x_{n}\right\} \subset H$ be defined by
(3.2) $\left\{\begin{array}{l}x_{1} \in H \text { chosen arbitrarily, } \\ x_{n+1}:=J_{\rho}\left(\left(1-\beta_{n} \rho\right) I-\rho A^{*}\left(I-F_{1}\right) A\right) T_{r} x_{n}\end{array}\right.$
for each $n \in \mathbb{N}, \rho \in(0, \infty), \beta_{n} \in(0,1)$, and $r \in(0, \infty)$. Assume that:
(i) $0<a \leq \rho<\frac{2}{\|A\|^{2}+2}$;
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\Sigma_{n=1}^{\infty} \beta_{n}=\infty$.

Then $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$, where \bar{x} is a solution of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$.
Proof. Since F_{1} is a firmly nonexpansive, it follow from Lemma 2.3 that we have that $A^{*}\left(I-F_{1}\right) A: C_{1} \rightarrow H_{1}$ is $\frac{1}{\|A\|^{2}}-$ ism. Put $F=A^{*}\left(I-F_{1}\right) A$ in Theorem 3.1. Then algorithm (3.1) in Theorem 3.1 follows immediately from algorithm (3.2) in Theorem 3.3. Since the solution set of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$ is nonempty, there exist $w \in C_{1}$, such that $w \in \operatorname{Fix}\left(J_{\lambda}\right) \bigcap \operatorname{Fix}\left(T_{r}\right)$ and $\operatorname{Aw} \in \operatorname{Fix}\left(F_{1}\right)$. Hence, we have that $w \in \operatorname{Fix}\left(J_{\rho}\left(I-\rho A^{*}\left(I-F_{1}\right) A\right) T_{r}\right)=\operatorname{Fix}\left(J_{\rho}(I-\rho F) T_{r}\right)$. Therefore, we have that $w \in(F+B)^{-1} 0 \bigcap G^{-1} 0 \neq \emptyset$. It follow from Theorem 3.1 that $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$, where $\bar{x}=P_{(F+B)^{-1} 0} \cap G^{-1} 0(0)$. that is,

$$
\begin{equation*}
\bar{x}=J_{\rho}(I-\rho F) T_{r} \bar{x}=J_{\rho}\left(I-\rho A^{*}\left(I-F_{1}\right) A\right) T_{r} \bar{x} . \tag{3.23}
\end{equation*}
$$

By assumptions, (3.23), and Theorem 3.2(ii), we know that \bar{x} is a solution of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$. Therefore, the proof is completed.
Remark 3.4. In Theorem 3.3, we establish a strongly convergence theorem of generalized split feasibility problem ($\mathbf{G S F P}_{\mathbf{F F}}$) without calculating the inverse of the operator we consider.

4. Application

Takahashi, Takahashi and Toyoda [22] showed the following lemma.
Lemma 4.1 ([22]). Let C be a nonempty closed convex subset of a Hilbert space H and let $g: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying the conditions (A1)-(A4). Define A_{g} as follows:

$$
A_{g} x=\left\{\begin{array}{l}
\{z \in H: g(x, y) \geq\langle y-x, z\rangle, \forall y \in C\}, \forall x \in C \tag{4.1}\\
\emptyset, \forall x \notin C
\end{array}\right.
$$

Then, $E P(g)=A_{g}^{-1} 0$ and A_{g} is a maximal monotone operator with the domain of $A_{g} \subset C$. Furthermore, for any $x \in H$ and $r>0$, the resolvent T_{r}^{g} of g coincides with the resolvent of A_{g}, i.e., $T_{r}^{g} x=\left(I+r A_{g}\right)^{-1} x$.

Now, we recall the following problem:
$\left(\mathbf{G S F P}_{\mathbf{E E}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in E P\left(g_{1}\right) \bigcap E P\left(g_{2}\right)$ and $A \bar{x} \in E P\left(g_{3}\right)$.
Apply Theorems 1.4, and 3.3, Lemma 4.1, we get the following result.
Theorem 4.2. Let C_{1}, C_{2} and Q be three nonempty closed convex subsets of three Hilbert spaces H_{1}, H_{1} and H_{2}, respectively. Let $g_{1}: C_{1} \times C_{1} \rightarrow \mathbb{R}, g_{2}: C_{2} \times C_{2} \rightarrow \mathbb{R}$ and $g_{3}: Q \times Q \rightarrow \mathbb{R}$ with conditions (A1)-(A4), and let $T_{\rho_{i}}^{g_{i}}$ the resolvent of g_{i} for $\rho_{i}>0, i=1,2,3$. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator, and let A^{*} denote the adjoint of A. Suppose that the solution set of $\left(\mathbf{G S F P}_{\mathbf{E E}}\right)$ is nonempty. Let $\left\{x_{n}\right\}$ be defined by
(4.2)

$$
\left\{\begin{array}{l}
x_{1} \in H_{1} \text { chosen arbitrarily, } \\
x_{n+1}:=T_{\rho_{1}}^{g_{1}}\left(\left(1-\beta_{n} \rho_{1}\right) I-\rho_{1} A^{*}\left(I-T_{\rho_{3}}^{g_{3}}\right) A\right) T_{\rho_{2}}^{g_{2}} x_{n}
\end{array}\right.
$$

for each $n \in \mathbb{N}, \rho_{i} \subset(0, \infty), i=1,2,3$, and $\beta_{n} \subset(0,1)$. Assume that:
(i) $0<a \leq \rho_{1}<\frac{2}{\|A\|^{2}+2}$;
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\Sigma_{n=1}^{\infty} \beta_{n}=\infty$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to \hat{x}, where \hat{x} is an element of the solution set of $\left(\mathbf{G S F P}_{\mathbf{E E}}\right)$.

Proof. Define A_{g} as (4.1). By Lemma 4.1, we know that $E P(g)=A_{g}^{-1} 0$ and A_{g} is a maximal monotone operator with the domain of $A_{g} \subset C$. Furthermore, for any $x \in H$ and $r>0$, the resolvent T_{r}^{g} of g coincides with the resolvent of A_{g}, i.e.,

$$
T_{r}^{g} x=\left(I+r A_{g}\right)^{-1} x
$$

By Theorem 1.4, $T_{\rho_{3}}^{g_{3}}$ is a firmly nonexpansive mapping.
Put $B=A_{g_{1}}, G=A_{g_{2}}$ and $F_{1}=T_{\rho_{3}}^{g_{3}}$ in Theorem 3.3. Then $J_{\rho_{1}} x=(I+$ $\left.\rho_{1} A_{g_{1}}\right)^{-1} x=T_{\rho_{1}}^{g_{1}} x, T_{\rho_{2}} x=\left(I+\rho_{2} A_{g_{2}}\right)^{-1} x=T_{\rho_{2}}^{g_{2}} x$. By Theorem 1.4, we have that $\operatorname{Fix}\left(J_{\rho_{1}}\right)=\operatorname{Fix}\left(T_{\rho_{1}}^{g_{1}}\right)=\operatorname{EP}\left(g_{1}\right)$, $\operatorname{Fix}\left(T_{\rho_{2}}\right)=\operatorname{Fix}\left(T_{\rho_{2}}^{g_{2}}\right)=E P\left(g_{2}\right)$ and $\operatorname{Fix}\left(F_{1}\right)=$ Fix $\left(T_{\lambda}^{g_{3}}\right)=E P\left(g_{3}\right)$. So, we have that the solution set of $\left(\mathbf{G S F P}_{\mathbf{E E}}\right)$ coincides with the solution set of $\left(\mathbf{G S F P}_{\mathbf{F F}}\right)$, we get the result.

Now, we recall the following problem:
$\left(\mathbf{S F P}_{\mathbf{E E}}\right)$ Find $\bar{x} \in C_{1}$ such that $\bar{x} \in E P\left(g_{1}\right)$ and $A \bar{x} \in E P\left(g_{3}\right)$.
Apply Theorem 4.2, we can finding the solution of ($\mathbf{S F P}_{\mathbf{E E}}$).
Theorem 4.3. Let C_{1} and Q be three nonempty closed convex subsets of H_{1}, H_{1} and H_{2}, respectively. Let $g_{1}: C_{1} \times C_{1} \rightarrow \mathbb{R}$ and $g_{3}: Q \times Q \rightarrow \mathbb{R}$ with conditions (A1)-(A4), and let $T_{\rho_{i}}^{g_{i}}$ the resolvent of g_{i} for $\rho_{i}>0, i=1,3$. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator, and let A^{*} denote the adjoint of A. Suppose that the solution set of $\left(\mathbf{S F P}_{\mathbf{E E}}\right)$ is nonempty. Let $\left\{x_{n}\right\}$ be defined by by

$$
\left\{\begin{array}{l}
x_{1} \in C_{1} \text { chosen arbitrarily, } \tag{4.3}\\
x_{n+1}:=T_{\rho_{1}}^{g_{1}}\left(\left(1-\beta_{n} \rho_{1}\right) I-\rho_{1} A^{*}\left(I-T_{\rho_{3}}^{g_{3}}\right) A\right) x_{n}
\end{array}\right.
$$

for each $n \in \mathbb{N}, \rho_{i} \in(0, \infty), i=1,2,3$, and $\beta_{n} \in(0,1)$. Assume that:
(i) $0<a \leq \rho_{1}<\frac{2}{\|A\|^{2}+2}$;
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=1}^{\infty} \beta_{n}=\infty$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to \hat{x}, where \hat{x} is an element of the solution set of $\left(\mathbf{S F P}_{\mathbf{E E}}\right)$.
Proof. Put $g_{2}(x, y)=0, \forall x, y \in C_{1}$ and $C_{1}=C_{2}$ in Theorem 4.2, Then $T_{\rho_{2}}^{g_{2}} x=$ $P_{C_{1}} x$. By Theorem 4.2, we get the result.

Now, we recall the following problem:
$\left(\mathbf{G S F P}_{\mathbf{C E}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in C_{1} \bigcap C_{3}$ and $A \bar{x} \in E P\left(g_{3}\right)$.
Apply Theorem 4.2, we can find the solution of $\left(\mathbf{G S F P}_{\mathbf{C E}}\right)$.
Theorem 4.4. Let C_{1}, C_{2} and Q be three nonempty closed convex subsets of H_{1}, H_{1} and H_{2}, respectively. Let $g_{3}: Q \times Q \rightarrow \mathbb{R}$ with conditions (A1)-(A4), and let $T_{\rho_{3}}^{g_{3}}$ the resolvent of g_{3} for $\rho_{3}>0$. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator, and let A^{*} denote the adjoint of A. Suppose that the solution set of $\left(\mathbf{G S F P}_{\mathbf{C E}}\right)$ is nonempty. Let $\left\{x_{n}\right\}$ be defined by by

$$
\left\{\begin{array}{l}
x_{1} \in H_{1} \text { chosen arbitrarily, } \tag{4.4}\\
x_{n+1}:=P_{C_{1}}\left(\left(1-\beta_{n} \rho_{1}\right) I-\rho_{1} A^{*}\left(I-T_{\rho_{3}}^{g_{3}}\right) A\right) P_{C_{2}} x_{n}
\end{array}\right.
$$

for each $n \in \mathbb{N}, \rho_{i} \in(0, \infty), i=1,2,3$, and $\beta_{n} \in(0,1)$. Assume that:
(i) $0<a \leq \rho_{1}<\frac{2}{\|A\|^{2}+2}$;
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\Sigma_{n=1}^{\infty} \beta_{n}=\infty$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to \hat{x}, where \hat{x} is an element of the solution set of $\left.\mathbf{G S F P}_{\mathbf{C E}}\right)$.

Proof. Put $g_{1}(x, y)=0, \forall x, y \in C_{1}$ and $g_{2}(x, y)=0, \forall x, y \in C_{2}$ in Theorem 4.2, Then $T_{\rho_{1}}^{g_{1}} x=P_{C_{1}} x$. and $T_{\rho_{2}}^{g_{2}} x=P_{C_{2}} x$. By Theorem 4.2, we get the result.

Now, we recall the following problem:
$\left(\mathbf{G S F P}_{\mathbf{C Q}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in C_{1} \bigcap C_{2}$ and $A \bar{x} \in Q$.
Apply Theorem 4.2, we can find the solution of ($\mathbf{G S F P}_{\mathbf{C Q}}$).
Theorem 4.5. Let C_{1}, C_{2} and Q be three nonempty closed convex subsets of H_{1}, H_{1} and H_{2}, respectively. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator, and let A^{*} denote the adjoint of A. Suppose that the solution set of $\left(\mathbf{G S F P}_{\mathbf{C Q}}\right)$ is nonempty. Let $\left\{x_{n}\right\}$ be defined by by
(4.4) $\left\{\begin{array}{l}x_{1} \in H_{1} \text { chosen arbitrarily, } \\ x_{n+1}:=P_{C_{1}}\left(\left(1-\beta_{n} \rho_{1}\right) I-\rho_{1} A^{*}\left(I-P_{Q}\right) A\right) P_{C_{2}} x_{n}\end{array}\right.$
for each $n \in \mathbb{N}, \rho_{1} \in(0, \infty)$, and $\beta_{n} \in(0,1)$. Assume that:
(i) $0<a \leq \rho_{1}<\frac{2}{\|A\|^{2}+2}$;
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\Sigma_{n=1}^{\infty} \beta_{n}=\infty$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to \hat{x}, where \hat{x} is an element of the solution set of $\left(\mathbf{G S F P}_{\mathbf{C Q}}\right)$.

Proof. Put $g_{1}(x, y)=0, \forall x, y \in C_{1}, g_{2}(x, y)=0, \forall x, y \in C_{2}$ and $g_{3}(x, y)=0, \forall x, y \in$ Q in Theorem 4.2, Then $T_{\rho_{1}}^{g_{1}} x=P_{C_{1}} x, T_{\rho_{2}}^{g_{2}} x=P_{C_{2}} x$ and $T_{\rho_{3}}^{g_{3}} x=P_{Q} x$. By Theorem 4.2 , we get the result.

Now, we recall the following problem:
$\left(\mathbf{S F P}_{\mathbf{C Q}}\right)$ Find $\bar{x} \in H_{1}$ such that $\bar{x} \in C_{1}$ and $A \bar{x} \in Q$.
Apply Theorem 4.2, we can find the solution of ($\mathbf{S F P}_{\mathbf{C Q}}$).
Theorem 4.6. Let C_{1} and Q be three nonempty closed convex subsets of H_{1} and H_{2}, respectively. Let $A: H_{1} \rightarrow H_{2}$ be a linear and bounded operator, and let A^{*} denote the adjoint of A. Suppose that the solution set of $\left(\mathbf{G S F P}_{\mathbf{C Q}}\right)$ is nonempty. Let $\left\{x_{n}\right\}$ be defined by by
(4.5) $\left\{\begin{array}{l}x_{1} \in C_{1} \text { chosen arbitrarily, } \\ x_{n+1}:=P_{C_{1}}\left(\left(1-\beta_{n} \rho_{1}\right) I-\rho_{1} A^{*}\left(I-P_{Q}\right) A\right) x_{n}\end{array}\right.$
for each $n \in \mathbb{N}, \rho_{1} \in(0, \infty)$, and $\beta_{n} \in(0,1)$. Assume that:
(i) $0<a \leq \rho_{1}<\frac{2}{\|A\|^{2}+2}$;
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\Sigma_{n=1}^{\infty} \beta_{n}=\infty$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to \hat{x}, where \hat{x} is an element of the solution set of ($\mathbf{G S F P}_{\mathbf{C Q}}$).

Proof. Put $g_{1}(x, y)=0, \forall x, y \in C_{1}, g_{2}(x, y)=0, \forall x, y \in C_{2}, g_{3}(x, y)=0, \forall x, y \in Q$ and $C_{1}=C_{2}$ in Theorem 4.2, Then $T_{\rho_{1}}^{g_{1}}=P_{C_{1}}, T_{\rho_{2}}^{g_{2}}=P_{C_{2}}$ and $T_{\rho_{3}}^{g_{3}}=P_{Q}$. By Theorem 4.2, we get the result.

Remark 4.7. (i) Theorem 4.6 is different $C Q$ method; (ii) Theorem 4.6 give a strongly convergent theorem, but Theorem 3.7 in [26] only study weak convergence theorem of the split feasibility problem. (iii) Theorem 4.6 also different from Theorem 3.7 in [26].

References

[1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350-2360.
[2] H. H. Bauschke and P. L. Combettes, A weak-to strong convergence principle for Fejermonotone methods in Hilbert spaces, Math. Oper. Res. 26 (2001), 248-264.
[3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Mathematics student 63 (1994), 123-146.
[4] F. E. Browder, Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Nat. Acad. Sci. USA 53 (1965), 1272-1276.
[5] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems 18 (2002), 441-453.
[6] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems 20 (2004), 103-120.
[7] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projection in a product space, J. Numer. Algorithm. 8 (1994), 221-239.
[8] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensitymodulated radiation therapy, Phys. Med. Biol. 51 (2003), 2353-2365.
[9] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117-136.
[10] P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization 53 (2004) 475-504.
[11] Y. Dang and Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Problems 27 (2011), 015007.
[12] B. Eicke, Iteration methods for convexly constrained ill-posed problems in Hilbert space, Numerical Funct. Anal. Optim. 13 (1992), 413-429.
[13] B. Halpern, Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73 (1967), 957-961.
[14] Z. He and W. S. Du, On hybrid split problem and its nonlinear algorithms, Fixed Point Theory Appl., 2013 (2013), 47.
[15] L.J. Lin and W. Takahashi, Strong convergence theorems with strongly monotone and Lipschitzian continuous operators in Hilbert spaces and applications, in Proceedings of the 7th International Conference on Nonlinear Analysis and Convex Analysis -II- (Busan, Korea, Yokohama Pub. Yokohama, 2011, pp. 1-21.
[16] G. López, V. Martín-Márquez and H. K. Xu, Iterative algorithms for the multiple-sets split feasibility problem in Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, Y Censor, M. Jiang and G. Wang (eds), Medical Physics Publishing, Madison, WI, 2010, pp 243-279.
[17] L. Landweber, An iteration formula for Fredholm integral equations of the first kind, Amer. J. Math. 73 (1951), 615-624.
[18] E. Masad and S. Reich, A note on the multiple-set split convex feasibility problem in Hilbert space, J. Nonlnear Convex Anal. 8 (2008),367-371.
[19] B. Qu and N. Xiu, A note on the $C Q$ algorithm for the split feasibility problem, Inverse Problems 21 (2005), 1655-1665.
[20] H. Stark, Image Recovery: Theory and Applications, Academic Press, Orlando, 1987.
[21] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl. 2005 (2005), 103-123.
[22] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces,J.Optim. Theory Appl. 147 (2010), 27-41.
[23] W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and its Applications, Yokohama Publishers, Yokohama, 2000.
[24] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohoma Publishers, Yokohoma, 2009.
[25] F. Wang and H. K. Xu, Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem, J. Inequal. Appl. 2010 (2010), Article ID 102085.
[26] H. K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Problems 26 (2010), 105018(17p).
[27] H. K. Xu, A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems 22 (2006), 2021-2034.
[28] Q. Yang, The relaxed $C Q$ algorithm for solving the split feasibility problem, Inverse Problems 20 (2004), 1261-1266.
[29] Q. Yang, On variable-step relaxed projection algorithm for variational inequalities, J. Math. Anal. Appl. 302 (2005), 166-179.
[30] J. Zhao and Q. Yang, Self-adaptive projection methods for the multiple-sets split feasibility problem, Inverse Problems 27 (2011) 035009 (13p).

Manuscript received May 12, 2013 revised July 26, 2013

Zenn-Tsun Yu

Department of Electronic Engineering, Nan Kai University of Technology, Nantou 542, Taiwan E-mail address: t106@nkut.edu.tw

Lai-Jiu Lin
Department of Mathematics, National Changhua University of Education, Changhua, 50058, Taiwan

E-mail address: maljlin@cc.nkut.edu.tw
Chin-Sheng Chuang
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan E-mail address: cschuang1977@gmail.com

