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A UNIFIED STUDY OF THE SPLIT FEASIBLE PROBLEMS
WITH APPLICATIONS

ZENN-TSUN YU, LAI-JIU LIN, AND CHIH-SHENG CHUANG

ABSTRACT. Split feasibility problem has received a lot of attention due to its
diverse applications in signal processing, image reconstruction, with particular
progress in intensity-modulated radiation therapy, approximation theory, control
theory, biomedical engineering, communications, and geophysics. In this paper,
we first prove some properties of firmly nonexpansive mappings. Then we apply
these properties to establish a strong convergence theorem with a Regularized-like
method to find an element of the solutions set of a monotone inclusion problem
in a Hilbert space. Using this result, we also prove a strong convergence theorem
for finding an element of the solutions set of generalized split feasibility problem
(GSFPgr). As applications, we study the solutions and algorithms for the
convex feasibility problems, split feasibility problems. To be the best of our
knowledge, there are no researchers consider generalized split feasibility problem
(GSFPgFr) by using these methods in the infinite dimensional real Hilbert spaces
and finite dimensional Euclidean spaces.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T': C' —
H be mapping, and let Fiz(T) := {z € C : Tx = x} denote the set of fixed points
of T. A mapping T : C — H is said to be nonexpansive if ||Tz — Ty|| < ||z — y||
for all x,y € C; T is said to be quasi-nonexpansive mapping if Fiz(T) # () and
|Tx — y|| < ||z —y|| for all x € C and y € Fiz(T). For a > 0, a mapping
A: H — H is called a—inverse-strongly monotone (a-ism) if

(r —y, Az — Ay) > of| Az — Ay|]*,Va,y € H

If0o< AN<2a, A: H — H is a a—inverse-strongly monotone mapping, then
I —MA: H — H is nonexpansive. A mapping T : C' — H is said to be a firmly
nonexpansive mapping if

172 = Ty|* < |lz = yl* = I( = T)a = (I = Tyl

for every x,y € C.

A mapping g : H — H is a contraction if there exists £k € (0,1) such that
llg(z)—g(y)|| < Ek||lxz—y]|, for all z,y € H. We call such a mapping ¢ a k—contraction.
A nonlinear operator V : H — H is called strongly monotone if there exists 4 > 0
such that (z —y,Va —Vy) > Jllz — y||* for all 2,y € H. Such V is also called
y—strongly monotone. A nonlinear operator V : H — H is called Lipschitzian
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continuous if there exists L > 0 such that |[Vax — Vy|| < L|jx — y|| for all z,y € H.
Such V is also called L-Lipschitzian continuous.

Let B : H — H be a multivalued mapping. The effective domain of B is denoted
by D(B), that is, D(B) = {x € H : Bx # (0}. A multivalued mapping B is said
to be a monotone operator on H if (z —y,u —v) > 0 for all x,y € D(B),u € Bz,
and v € By. A monotone operator B on H is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued
operator J, = (I +7B)~!: H — D(B), which is called the resolvent of B for r, and
define the set B~10 as B~10 = {z € H : 0 € Bx}.

In 2011, Lin and Takahashi [15] proved the following strong convergence theorem.

Theorem 1.1. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let o > 0 and let F' be a a—inverse-strongly monotone mapping of
C into H. Let B be a mazimal monotone mapping on H and let G be a maximal
monotone mapping on H such that the domain of G is included in C. Let Jy =
(I+AB)"t and T, = (I + rG)~! for each A > 0 and 7 > 0. Let 0 < k < 1
and let g be a k—contraction of H into itself. Let V be a y— strongly monotone
and L—Lipschitzian continuous operator with v > 0 and L > 0. Soppose that
(A+B)"'0N G710 # 0. Take u,y € R as follows:
2 y-L
0<p< L%’ 0<vy< p 2
Let x1 = x € H and let {x,} C H be defined by
Tpt1 = anTn + (1= an) (B f(@n) + (1 = BuV)JIn, (I = A F) T, 1)
for each n € N, \,, C (0,00), oo, C (0,1), B, C (0,1), and r, C (0,00). Assume
that:
(i) 0 < liminf,, o0 @y < limsup,,_ .o an < 1;
(i) lim B, =0, and Y o2 Bp = 00;
n—oo
(iii) 0 < a <A, <b<2a, and liminf, o, > 0.
Then lim x, =, where T = Pppy-1ona-10l =V +79)7.

n—oo

=

On the other hand, the split feasibility problem can be formulated as the following
problem:
(SFP) Find z € H; such that z € C and Az € Q,

where C and @) are nonempty closed convex subsets of Hilbert spaces H; and Hs,
respectively, and A : Hy — Hs is an operator.

The split feasibility problem (SFP) in finite dimensional Hilbert spaces was first
introduced by Censor and Elfving [7] for modeling inverse problems which arise from
medical image reconstruction. Since then, the split feasibility problem (SFP) has re-
ceived much attention due to its applications in signal processing, image reconstruc-
tion, with particular progress in intensity-modulated radiation therapy, approx-
imation theory, control theory, biomedical engineering, communications, and geo-
physics. For examples, one can refer to [5, 7, 8, 16, 20] and related literatures. Since
then, many researchers study (SFP) in finite dimensional or infinite dimensional
Hilbert spaces. For examples, one can see [5, 6, 11, 18, 19, 25, 27, 26, 28, 29, 30].
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A special case of problem (SFP) is the convexly constrained linear inverse prob-
lem in the finite dimensional Hilbert space [12]:

(CLIP) Find 7 € C such that Az =b, where b € Hy,

which has extensively been investigated by using the Landweber iterative method
[17]:

Tpi1 = xp + AT (b — Az,),n € N.

In 2002, Byrne [5] first introduced the so-called CQ algorithm which generates a
sequence {x,} by the following recursive procedure:

(1.1) Tnt1 = Po(xn — pnA* (I — Pg)Azxy),

where the stepsize p,, is chosen in the interval (0,2/||A||?), and Pc and Py are the
metric projections onto C' C R™ and @ C R™, respectively. Compared with Censor
and Elfving’s algorithm [7] where the matrix inverse A is involved, the CQ algorithm
(1.1) seems more easily executed since it only deals with metric projections with no
need to compute matrix inverses.

In 2010, Xu [26] modified Byrne’s CQ algorithm and proved the following weak
convergence theorem in infinite Hilbert spaces for their modified algorithm.

Theorem 1.2 ([26]). Suppose that the solution set of (SFP) is nonempty. Let
{zn} C H be defined by

(1.2) Tnt1 = Po((1 — pen)xn, — pA*(I — Pg)Axy,),

for eachn € N and &, C (0,1). Assume that 0 < p < W and 307 &, < 00. Then
{zn} converges weakly to a solution of (SFP).

Besides, we know that the equilibrium problem is to find z € C' such that
(EP) g(z,y) > 0 for each y € C,

where g : C' x C' = R is a bifunction.

This problem includes fixed point problems, optimization problems, variational
inequality problems, Nash equilibrium problems, minimax inequalities, and saddle
point problems as special cases. (For examples, one can see [3] and related litera-
tures.)

The solution set of equilibrium problem (EP) is denoted by EP(g). For solving
the equilibrium problem, let us assume that the bifunction g : C' x C' — R satisfies
the following conditions:

(A1) g(z,z) =0 for each z € C;

(A2) g is monotone, i.e., g(x,y) + g(y,x) < 0 for any =,y € C;
(A3) for each z,y,z € C, ltiﬂr)lg(tz + (1 —=t)z,y) < g(z,y);
(A4)

A4) for each z € C, the scalar function y — g(z,y) is convex and lower semi-
continuous.

We have the following result from Blum and Oettli [3].
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Theorem 1.3 ([3]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let g : C x C — R be a bifunction which satisfies conditions (A1)-(A4).
Then for each v > 0 and each x € H, there exists z € C' such that

1
forally € C.

In 2005, Combettes and Hirstoaga [9] estabilshed the following important prop-
erties of resolvent operator.

Theorem 1.4 ([9]). Let C be a nonempty closed convex subset of a real Hilbert
space H and let g : C x C — R be a function satisfying conditions (A1)-(A4). For
r >0, define T : H— C by

1
Tﬂx:{zGC:g(z,y)+r<y—z,z—m)20, VyEC’}.

for oll x € H. Then the following hold:
(i) T? is single-valued;
(ii) T¢ is firmly nonexpansive, that is, ||Tx — Ty||? < (x —y, Tz — Ty) for
all x,y € H;
(iii) {zeH: T!z=x}={xe€C: g(x,y) >0, Vy e C};
(iv) {zx € C: g(x,y) >0, Yy € C} is a closed and convex subset of C.

We call such T the resolvent of g for r > 0.
Motivated by Theorem 1.1 and Theorem 1.2, we first consider the following al-
gorithm for finding a point Z = P p)-10nG-10(0):
Let J,, T, and F be defined as Theorem 1.1. Suppose that (F +B)" 10N G10 #
(. Let {z,} C H be defined by
{ x1 € C chosen arbitrarily,
Tng1 = Jp(I — p(F + Bnd)) Ty
for each n € N, p C (0, oo) Br C (0,1), and r C (0,00). Assume that:
(i) 0<a<p< 2+2a
(ii) limy, 00 B, = 0 and X2°, ), = o0.
Then hm T, = T, where T = Pp,p)-10nG-10(0)-

Let Cl, Cg and @) be nonempty closed convex subsets of Hilbert spaces H;, H; and
Hj, respectively. Let g1 : C1xC1 — R, g2 : CoxCy — Rand g3 : @xQ — R be three
bifunctions which satisfies conditions (A1)-(A4). Let Fj be a firmly nonexpansive
mapping of Hy into Hs. Let A : Hi — Hs be a bounded linear operator. Then
we apply a strong convergence theorem for finding a element of the solutions set of
a monotone inclusion problem in a Hilbert space to prove a strongly convergence
theorem for the following generalized feasibility problem :

(GSFPgr) Find 7 € H; such that z € Fiz(Jy) () Fiz(T,) and Az € Fix(F}).
The generalized split feasibility problem (GSFPgg) contains many important prob-
lems as special cases.
(i) If J,, = T3, T,, = T3 and Fy = T , then (GSFPgg) is reduced to
generalized split feasibility equilibrium problem: (GSFPgg).
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(GSFPEE) Find z € Hy such that T € EP(gl) ﬂEP(gg) and AT € EP(gg)
(ii) If C1 = Cq, go(x,y) = 0 for each (z,y) € C1 x Cy , then (GSFPgg) is
reduced to the split equilibrium problem (SFPgg):
(SFPgg) Find z € Hy such that z € EP(g1) and AT € EP(g3).
(iii) If g1(z,y) = 0, and g2(u,v) = 0 for each (z,y) € C; x Cy and each (u,v) €
Cy x Co, then (GSFPEE) is reduced to (GSFPcg):
(GSFPCE) Find Z € Hy such that z € C} ﬂCQ and Az € EP(gg).
(iv) If g3(z,y) = 0 for each (z,y) € @ x @ , then (GSFPcg) is reduced to
(GSFPcq):
(GSFPcq) Find z € H; such that 2 € C; () Cs and AZ € Q.
(v) If C1 = Oy, then (GSFP¢q) is reduced to split feasibility problem(SFPcq):
(SFPcq) Find z € H; such that 2 € ¢ and Az € Q.

In this paper, we first establish a strong convergence theorem with a Regularized-
like method to find a element of the solutions set of a monotone inclusion problem
in a Hilbert space. Using this result, we also prove a strong convergence theorem
for finding a element of the solutions set of generalized split feasibility problem
(GSFPgr). As applications, we study the solutions and algorithms for the convex
feasibility problems, split feasibility problems. To be the best of our knowledge,
there are no researchers consider generalized split feasibility problem (GSFPgp)
by using these methods in the infinite dimensional real Hilbert spaces and finite
dimensional Euclidean spaces.

2. PRELIMINARIES

Throughout this paper, let N be the set of positive integers and let R be the set
of real numbers. Let H be a (real) Hilbert space with inner product (-, ) and norm
|| - ||, respectively. We denote the strongly convergence and the weak convergence
of {x,,} to x € H by =, - x and x,, — x, respectively. From [24], for each x,y € H
and A € [0, 1], we have

Az + (1= Nyll? = All]|* + (1= Nyll* = A1 = N)llz =yl
Hence, we also have
(2.1) 2(x —y,u—v) = [l — |+ |ly — ull* = [[& = ul|* = [ly —o||?

for all x,y,u,v € H.
Let C be a nonempty subset of a real Hilbert space H, and let T': C' — H is said
to be a firmly nonexpansive mapping if

Tz = Tyl* < lla =yl = | = T)z — (I = Tyl
for every z,y € C, that is,
|ITx — Ty||> < (& —y,Te — Ty)
for every x,y € C. The following results are needed in this paper.

Lemma 2.1. Let C' be a nonempty closed convex subset of a real Hilbert space H.
Let a >0, F is a ﬁ—inverse—strong—monotone mapping of C into H, and v € R,

then F +~I is a ﬁfmverse—strong—monotone mapping.
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1

Proof. Since F'is a _5—inverse-strong-monotone mapping, we have

(Fo — Fy,a—y) > —5|Fa— Fy|*
for all x,y € C. This implies that
(v + )((F + D)z — (F + 71y, = —y)
= (y+a®)hllz —yl* + (Fz — Fy,z —y)]
(22) = lle —yl? + v (Fe - Fy.z —y) + 7w — y|* + *(Fa - Fy,z —y)
> Pz —yl® +2y(Fe — Fy,x —y) + | Fa - Fy|®
= |ly(z —y) + Fz — Fy||* = [|(F + D)z — (F +~D)yl*.
Thus, we obtain that F' 4+ ~I be a ﬁ—inverse—strong—monotone mapping. O

Lemma 2.2. Let C' be a nonempty closed convexr subset of a real Hilbert space H.

Let a >0, F is a %—inverse—strong—monotone mapping of C into H, v € R, \ €

(0,1) and0 < A < agim, then I —\(F+~I) is a contractive mapping with coefficient
(1 —=M\y).

Proof. Since F is a - —inverse-strong-monotone mapping, we have
(0%

1
(Fo = Fy,z —y) > —|Fz - Fy|*
This implies that
(I = AX(F +~1))x — (I = AN(F +~I))y|?
< |1 = M) (z —y) — AN(Fz — Fy)|]?
< (1= M?fz — gl — 2(1 = M)Az — g, Fr — Fy) + X2[|Fa — Py

2
23) < 0=MPllz =yl = (1= M)A Pz = Fy|* + X[ Fa - Fy|?

< (0=l - ALY ey
< (1= M)l — gl
< (1= M)l — gl
So, I — A\(F' 4 ~I) is a contractive mapping with coefficient (I — \y). O

Lemma 2.3. Let Hi and Hs be two real Hilbert spaces, A : Hy — Hs be a bounded
linear operator, and A* be the adjoint of A. Let C' be a nonempty closed convex
subset of Ho, and let G : Hy — Hy be a firmly nonexpansive mapping. Then
A (I -G)A is a W—ism, that is,
1
A2
for all x,y € Hy.

|A*(I — G) Az — A*(I — G)Ay||* < (z — y, A*(I — G) Az — A*(I — G) Ay)
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Proof. Since G is a firmly nonexpansive mapping. Hence,
|A*(I — G)Az — A*(I — G)Ay|]?

< AP = G)Az — (I - G) Ay|?

= [AIP(|Az — Ay|[* + |GAz — GAY|]® — 2(Az — Ay, GAz — GAy))

< [AIP(I1Az — Ay|* - (Az — Ay, GAz — GAy))

= [AI*((Az — Ay, (I - G)Az — (I - G)Ay))

= |AlIP((z — y, A*(I - G)Az — A*(I - G)Ay))
for all z,y € H. Therefore, A*(I — G)A is W— ism. O
Lemma 2.4 ([2]). Let C be a nonempty closed convex subset of a real Hilbert space

H. Let G : H — H be a firmly nonexpansive mapping. Suppose that F(G) # (.
Then (x — Gz,Gx — w) > 0 for each v € H and each w € Fiz(G).

Lemma 2.5. Let C' be a nonempty closed convex subset of a real Hilbert space H.
Let G : H — H be a firmly nonexpansive mapping. Suppose that Fiz(G) # (. Then
|z — Gz||? + |Gz — w||? < ||z — w||? for each x € H and each w € Fix(G).

Proof. By Lemma 2.4, we have

(x — Gz,Gx —w) >0
for each x € H and each w € Fiz(G). Using (2.1), we have that
20z — Gx,Gr —w) = — ||z — Gz|]* + ||z — w||* — |Gz — w|)? >0,
for each x € H and each w € Fiz(G). Hence, we have that
lz = Gz || + |Gz — w|* < |z - w]?
for each x € H and each w € Fiz(G). O

We also know that the metric projection from H onto C' is the mapping Pco :
H — (' which assigns to each point x € H the unique point Pox satisfying the
property ||z — Pcx|| = infyec ||z — y||. The following Lemma is a special case of
Lemma 2.4.

Lemma 2.6 ([23]). Let C be a nonempty closed convex subset of a Hilbert space
H. Let Pc be the metric projection from H onto C. Then for each x € H, (x —
Pox,Pox —y) >0 forally € C.

Proof. Since P is a firmly nonexpansive mapping. It is easy to see that Fiz(Pg) =
C. Put Gz = Pox in Lemma 2.4, for all x € H. Then Lemma 2.6 follows from
Lemma 2.4. Il

In 2013, He and Du [14] gave the following result which is an special case of
Lemma 2.5.

Lemma 2.7 ([14]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let G: C x C — R be a bifunction which satisfies conditions (A1)-(A4). Take
any a > 0 and let o be fived. Suppose that EP(G) # 0. Then ||z —TSx||? +||TS x —
z||? < ||z — Z||? for each x € H and each T € EP(G).
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Proof. Lemma 2.7 follows immediately from Lemma 2.5 and Theorem 1.3. U

Lemma 2.8 ([4]). Let C be a nonempty closed convez subset of a real Hilbert space
H. Let T be a nonexpansive mapping of C into itself, and let {x,} be a sequence
in C. If &, = w and li_}rn ||z — Tay|| =0, then Tw = w.

n o0

Lemma 2.9 ([21]). Let {z,} and {y,} be bounded sequences in a Banach space X,
and let {a,} be a sequence in [0,1] with 0 < liminf o, < limsup oy, < 1. Suppose
n—oo

n—oo
that Tn+1 = anyn + (1 — ap)xy, for each n € N, and lim sup(||yn+1 — Yn|| — ||Tn+1 —
n—oo
xn||) <0. Then lim ||z, —y,|| = 0.
n—oo

We also know the following lemma from [23].

Lemma 2.10 ([23]). Let H be a Hilbert space and B be a mazimal monotone
mapping on H. Let J,. is the resolvent of B defined by J, = (I +rB)~! for each
r > 0.

1) For each r > 0, 1s single-valued and firmly nonexpansive;
i) F h 0, Jg l lued and firml
(ii) D(Jg) = H and Fiz(Jg) = {x € D(A) : 0 € Az}.

Lemma 2.11 ([10, 26]). Let C be a nonempty closed convez subset of a real Hilbert
space H, and let T : C — C' be a mapping. Then the following satisfied:
(i) T is nonexpansive if and only if the complement (I —T) is 1/2-ism.
(ii) If S is v-ism, then for v > 0, vS is v/vy-ism.
(iii) S is averaged if and only if the complement I —S is v-ism for some v > 1/2.
(iv) If S and T are both averaged, then the product (composite) ST is averaged.
(v) If the mappings {T;}}_, are averaged and have a common fized point, then
Nizy Fiz(T;) = Fix(Ty---Ty). The notation Fix(T) denotes the set of all
fized points of the mapping T, that is, Fiz(T) ={x € H : Tz = x}.

Lemma 2.12 ([1]). Let {an}nen be a sequence of nonnegative real numbers, {a,}
a sequence of real numbers in [0,1] with Y 2 | &, = 00, {un} a sequence of non-
negative real numbers with Y >7  u, < oo, {t,} a sequence of real numbers with
limsupt, < 0. Suppose that an+1 < (1 — ap)an + anty + uy for each n € N. Then
lim a, = 0.

n—o0

3. MAIN RESULTS

In this section, we first establish a strong convergence theorem with a Regularized-
like method to find an element of the set of solutions for a monotone inclusion
problem in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let « > 0, F is a %—inverse—stmngly monotone mapping of C
into H. Let B be a maximal monotone mapping on H and let G be a mazximal
monotone mapping on H such that the domains of B and G are included in C. Let
Jy, =T+ pB)t and T, = (I + rG)~! for each p > 0 and r > 0. Suppose that
(F+B)"'0NG710# 0. Let {z,} C H be defined by

x1 € C chosen arbitrarily,

(3.1
Tpt1 = Jo(I — p(F + BpI)) Ty,



A UNIFIED STUDY OF THE SPLIT FEASIBLE PROBLEMS WITH APPLICATIONS 613

for each n € N, p € (0, oo) Bn € (0,1), and r € (0,00). Assume that:
( ) 0 <a < P < 2+25
(ii) limy, 00 Bn, = 0 and X925, = 0.

Then li_}rn Ty, =T, where T = Pipipy-10n6-10(0)-

Proof. By Lemma 2.10, we know that .J, = (I+pB)~tand T, = (I+rG)~! are firmly

nonexpansive mappings, for each p > 0 and r > 0. It follows from 0 < a < p < %4—2

andFisa%

(3.1)
| To(I = p(F + Bu)) Ty = Jy(I = p(F + Bud))Tryl|?

< (I = p(F + Bpd))Tow — (I — p(F + Bu)) Tyl

< |l = pBu)(Trx — Try) — p(FTow — FT,y)|

< (1= pBn)?|Tyx = Toyl|® = 2(1 = pBn)p(Tyx — Try, FTox — FT,y)
+ p°||FTx — FToy|?

—ism that we have

2
< (1 - pﬁn)QHTrnx - TTnyH2 - ?(1 - pﬂn)pHFTﬂU - FTryH2 + pz”FTrl' - FTryHQ

< (1= pu)Toa — Tyl = p( (1= p) — ) IFTy — FTy)?
< (1= pB)?|| T — Try|®
< (1= pBa)?llz —ylI>.
Let 7 € (F + B)"'0(G~10. Tt follows from Lemma 2.10(ii), we have
(3.2) z=J,(I —pF)z and z = T,Z.

Let u,, = T,x,. For each n € N, we have from (3.1), and (3.1) that
[zns1 = 2|[ = |[Jp(I = p(F' + Bul))Tran — Jp(I — pF)T,Z||
< oL = p(F + Bul) Tyvn — Jo(I = p(F + B )Ty
(3.3) + [ Tp(I = p(F + o)) Trx — J,(I — pF) T, 2|
< (1= pBu)llen — | + pBnll2|]
< max{||z, — Z, [|Z][}.

By induction, we deduce
(3.4) |z — 2| < max{||lzy — ], [|Z][}-

This indicates that the sequence {z,} is bounded. Furthermore, {u,} is bounded.
Since F' be a é—ism, and 8, € R, it follows from Lemma 2.11 that pF' is m%—ism

and I — pF' is %—averaged. That is,

[—pF = (1—&>I+%T

for some nonexpansive mapping 7. Since J, is 1/2 averaged, J, = (I + 5)/2 for
some nonexpansive mapping S, T, is also 1/2 averaged, T, = ( + A)/2 for some
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nonexpansive mapping A. Then, we can rewrite x,41 as

2 — pa? 6 + pa’?
8p Tn + 8p Yn,

Tn41

where

8 (2 — pa? 2
Yn

po 1 1
=5 poe < Azp + TTTTxn - ipﬂnTrxn + 55([ —p(F+ 5nf))Tr$n>.

Hence, we have that

2

8 2 — pa? po
Hyn-i-l - ynH = H 6+ pa2 ( 3 Axn—i—l + TTTrxn-H

1 1
_ipﬂn-l—lTrxn-‘rl + 55(1 - P(F + 5n+11))TTxn+1)

8 2 — pa’ o? 1
_6 T pOé2 ( 8,0 Az, + pTTTTCCn - §anTrxn
1
+§S(I - p(F + BnI))Trxn> '
8

IN

2 — pa? o? o?
< 8p |‘A$n+1 - Al’n” + HIOTTTrxn+1 - pTTTrxn

6 + pa?

1 1
+308nllTeniall + 308l Trz)

I — p(F + Bns1 D)) Trapsr — (I — p(F + Bu)) Ty
o1z | = P B ) Trny = (1= p(F + Bpl)) Ty

Now, we choose a constant M such that
sup{ ol [Ty < 2.
n
We have the following estimates:

2 — po? 2 — po?
PO Ay — Ay < =L

Hxn—O—l - l’nH,

042 ()[2 a2 Oé2
P00 = 2Tt [ < P T Tt = TTotal < 25 s =
and
(I = p(F 4 Buir D) i1 — (I = p(F + ) Ty
< | = pF)Trang1) — (I = pF)Tran) || + pBnsil| Trangr || + pBnl| Tran||
< s = 2all + (PBas1 + pfn) M.
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Thus, we deduce that

2 — pa? 2pa’
[9nt1 = ynll < m”gﬁnﬂ — | + mul‘nﬂ |
4
(3.5) + m(”ﬂfnﬂ — Zn|| + 2(pBr+1 + pBr) M)
= |41 — @nll + 6+ pa? (PBn+1 + pBn) M.
By (3.5) and assumption,
(3°6) hmsup(Hyn-H - yn“ - Hxn-i-l - :CnH) < 0.
n—oo
By (3.6) and Lemma 2.9,
nh_{go [yn — anl| = 0.
Consequently,
. . 64 pa?
(3.7) nh_{go [Zn+1 — @nll = nh_)m |lzn = yn|| = 0.

Since {x,} is bounded, there exist a subsequence {z,,} of {z,} such that z,, —
w. Next, we have

[n, = Jo(I = pF) Ty, || <[an; — 2,1 |[+]|n; 41 = Tp(I = pF) Toam, |
=||Jo(I = p(F + B, 1)) Tyan, — Jp(I — pF)Tyan, ||
+l|#n, — @n; 4]
<Br,pllwn, ||+ zn, — n; ]
By (3.7), (3.8), and assumptions,
(3.9) lim ||@n, — J,(I = pF)Tray,||= 0.

(3.8)

Since J,(I — pF)T, is nonexpansive, it follows from Lemma 2.8 that w € Fix(J,(I —
pF)T,). From (3.2), we have

(3.10) Fix(J,(I = pF)) (| Fiz(T,) # 0.

Since J,(I — pF) and T, are averaged, it follows from (3.10) and Lemma 2.11 that
w € Fix(J,(I —pF)T;) = Fiz(J,(I—pF')) () Fiz(T,). Hence, it follows from Lemma
2.10(ii), we have w € (F + B)~t0oN G~'0.

Let £ be the minimum norm solution of 2. That is, £ = Pq0, where Q =
(F+ B)"'0NG10. Since {z,} is bounded, there exists a subsequence {zy,} of
{zy} such that z,, — z and

limsup(—2, z, — &) = im (=2, z,, — 2).
n—+00 j—00

As the above proof, we know that z € 2. Hence,

(3.11)  limsup(—2,z, — %) = lim (~2,2,;, — &) = (~2,2 — 2) < 0.
n—00 Jj—o0
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Since J, be a firmly nonexpansive, and by Lemma 2.2, we have the following:
(3.12)
201 = #l[2 = 1oL = p(F + Bul)) Ty — Jy(I = pF) Ty
<A = p(F+ BuI))Trxn — (I — pF) T3, 2511 — )
< (I = p(F + BuD)) Ty — (I = p(F + BuD)) Ty, 21 — @)

+ pBn(~T1%, Tpy1 — )
< [T = p(F + BnI))Tran — (I — p(F + Bud)) T3 - ||znir — 2|
+ Bup(—112, Tn1 — 2)
< (1= pB)llzn — 2| - lTnt1 — 2| + Bap(—2, Tpt1 — T)
< Qo) b2 4 Danis — 87 4 Bupl 2, 20s1 — 8.
It follows that
(3.13) |#ns1 = 2% < (1= Bup)llen — 21|° + 2Bpp(—2, Tnt1 — 2).
By assumptions, (3.11), (3.13), and Lemma 2.12, we know that x,, — &. Therefore,
the proof is completed. O

Let C1 and @ be nonempty closed convex subsets of real Hilbert spaces H; and
Hj, respectively. Let F} be a firmly nonexpansive mapping of Hs into Hy. Let B be
a maximal monotone mapping on H; and let G be a maximal monotone mapping on
H; such that the domains of B and G are included in Cy. Let Jy = (I +AB)~! and
T, = (I +7G)"! for each A > 0 and 7 > 0. Let A : H; — Hy be a bounded linear
operator, and let A* be the adjoint of A. Now, we recall the following problem:
(GSFPpr) Find z € H; such that € Fix(J)) () Fiz(T,) and Az € Fix(F}).

In order to to study the convergence theorems for the solution set of generalized
split feasibility problem (GSFPgyr), we must give an essential result in this paper.

Theorem 3.2. Given any T € H;.
(i) If z is a solution of (GSFPgr), then Jy(I — pA*(I — F1)A)T,2) =%
(ii) Suppose that Jy\(I — pA*(I — F1)A)T,z) = with 0 < p < IWI%H and the
solution set of (GSFPyr) is nonempty. Then T is a solution of (GSFPgg).

Proof. (i) Suppose that £ € H; is a solution of (GSFPgr). Then = € Fiz(Jy)[)
Fix(T,) and Az € Fix(F1). It is easy to see that

J)\(I — pA*(I - Fl)A)Tr.f = J)\(f: — pA*(I — Fl)Ai’) =\ =1.
(ii)Suppose that Jy(I — pA*(I — F1)A)T,z) = & with 0 < p < IIAWI%-F? and the
solution set of (GSFPpg) is nonempty.

Since the solution set of (GSFPgy) is nonempty, there exists w € H; such that
w € Fiz(Jy) N Fiz(T,) and Aw € Fix(Fy). So,

(3.14) w € Fiz(J)) (| Fiz(I - pA*(I — F1)A)) (| Fiz(T,
By Lemma 2.3, we have that

(3.15) A*(I — F1)A is7T—= — ism.

HAH2
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By (3.15), 0 < p < jaj75. and lemma 2.11(ii),(iii), we know that
(3.16) I — pA*(I — Fy)A is averaged.

On the other hand, since Jy, and T, are firmly nonexpansive mappings, it is easy
to see that

(3.17) Jy and T, are % avereged.
Hence, by (3.14), (3.16), (3.17) and Lemma 2.11(v), we have that
z € J\(I - pA*(I - F1)A)T,2) = Fiz(J)) [ | Fiz(I — pA*(I — F1)A)) () Fia(T,
By Lemma 2.4,
((z — pA*(I — F1)AZ) — Z,& — w) > 0 for each
w € Fiz(Jy) (| Fiz(T,) and Aw € Fix(Fy),

That is,
(3.18)
(A*(I — F1)Az,z — w) < 0 for each w € Fiz(Jy) ﬂFix(TT) and Aw € Fix(Fy).
By (3.18) and A* is the adjoint of A,
(3.19)
(Az — F1 Az, AT — Aw) < 0 for each w € Fiz(J)) ﬂFz:c r) and Aw € Fix(F).

On the other hand, by Lemma 2.4 again,

(3.20) (Az — F1 Az,v — F1 Az) < 0 for each v € Fix(F}).

By (3.19) and (3.20),

(3.21) (Az — F1AZ,v — F1 Az + Az — Aw) <0

for each w € Fiz(Jy) (| Fiz(T,) and Aw € Fiz(Fy) and each v € Fiz(Fy). That is,
(3.22) |AZ — F1AZ||? < (AZ — F1 AZ, Aw — v)

for each w € Fix(Jy) () Fiz(T,) and Aw € Fiz(F;) and each v € Fixz(F}). Since
w is a solution of generalized split feasibility problem (GSFPgg), we know that
w € Fixz(Jy\)Fizx(T,) and Aw € Fiz(Fy). So, it follows from (3.22) that Az =
Fix(Fy). Further, z € Fixz(Jy) and & € Fixz(T,) . Therefore, Z is a solution of
(GSFPyy). O

Apply Theorem 3.1, and Theorem 3.2, we can find the solution of (GSFPp).

Theorem 3.3. Let C'y and Cs be two nonempty closed convex subsets of real Hilbert
spaces Hi and Ho, respectively. Let Fy be a firmly nonexpansive mapping of Ho
into Ha. Let B be a mazimal monotone mapping on Hi and let G be a mazimal
monotone mapping on Hy such that the domains of B and G are included in Cy. Let
Jy={I+AB) "t and T, = (I+7rG)~! for each A\ > 0 andr > 0. Let A: C; — Hy be
a bounded linear operator, and let A* be the adjoint of A. Suppose that the solution
set of (GSFPyr) is nonempty. Let {x,} C H be defined by

(3.2 x1 € H chosen arbitrarily,
’ Tn+1 = Jp((l - 6np)l - pA*(I - Fl)A)Trxn
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for eachn € N, p € (0,00), B, € (0,1), and r € (0,00). Assume that:
(ii) limy, 00 B = 0 and X922, By, = o0.

Then lim x, = &, where T is a solution of (GSFPygp).
n—oo

Proof. Since Fi is a firmly nonexpansive, it follow from Lemma 2.3 that we have
that A*(I — F1)A : C; — Hj is W—ism. Put F = A*(I — F})A in Theorem
3.1. Then algorithm (3.1) in Theorem 3.1 follows immediately from algorithm (3.2)
in Theorem 3.3. Since the solution set of (GSFPgg) is nonempty, there exist
w € C1, such that w € Fix(Jy) () Fixz(T,) and Aw € Fiz(F}). Hence, we have that
w € Fix(J,(I — pA*(I — F1)A)T,) = Fixz(J,(I — pF)T}). Therefore, we have that
w € (F+ B)~'0N G710 # 0. It follow from Theorem 3.1 that nh—>Holo Zn = T, where

T = P(F-i—B)*lOﬂG*lO(O)' that iS,

(3.23) 7= J,(I — pF)T,& = J,(I — pA*(I — F1)A)T,z.

By assumptions, (3.23), and Theorem 3.2(ii), we know that Z is a solution of
(GSFPgr). Therefore, the proof is completed. O

Remark 3.4. In Theorem 3.3, we establish a strongly convergence theorem of
generalized split feasibility problem (GSFPpg) without calculating the inverse of
the operator we consider.

4. APPLICATION
Takahashi, Takahashi and Toyoda [22] showed the following lemma.

Lemma 4.1 ([22]). Let C be a nonempty closed convex subset of a Hilbert space H
and let g : C x C — R be a bifunction satisfying the conditions (A1)-(A4). Define
Ay as follows:
_J{lzeH:g(x,y) > (y—2,2),VyeC}Vr el
(4.1) Agx —{ 0.Va ¢ C
Then, EP(g) = Ag_IO and Ay is a mazimal monotone operator with the domain

of Ay C C. Furthermore, for any x € H and r > 0, the resolvent T¢ of g coincides
with the resolvent of Ay, i.e., T¢x = (I +rA,) 'z.

Now, we recall the following problem:
(GSFPgg) Find z € H; such that & € EP(g1) () EP(g2) and Az € EP(g3).
Apply Theorems 1.4, and 3.3, Lemma 4.1, we get the following result.

Theorem 4.2. Let C1,Co and Q) be three nonempty closed conver subsets of three
Hilbert spaces Hy, Hy and Hs, respectively. Let g1 : C1 xC1 = R, go: Co x Cy = R
and g3 : Q x Q — R with conditions (A1)-(A4), and let Ty, the resolvent of g; for
pi >0,1=1,2,3. Let A: Hi — Hy be a bounded linear operator, and let A* denote
the adjoint of A. Suppose that the solution set of (GSFPgg) is nonempty. Let
{zn} be defined by
(4.2 { x1 € Hy chosen arbitrarily,
‘ Tyt =T (1 = Bapr)] — prA*(I = T53) A) T3
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for eachn € N, p; C (0,00),i =1,2,3, and B, C (0,1). Assume that:
(ii) limp—oo B = 0 and X9, 3, = 0.

Then the sequence {x,} converges strongly to &, where & is an element of the solution
set of (GSFPgg).

Proof. Define A, as (4.1). By Lemma 4.1, we know that EP(g) = Ag_lo and A, is
a maximal monotone operator with the domain of A, C C. Furthermore, for any
x € H and r > 0, the resolvent TY of g coincides with the resolvent of A, i.e.,

Tz = (I +rAy) 'z,
By Theorem 1.4, T3 is a firmly nonexpansive mapping.

Put B = Ay, G = Ay, and Iy = Tj; in Theorem 3.3. Then J,z = (I +
pAg) "t =T, Tyyx = (I + p2dy,) ta = Ti2z. By Theorem 1.4, we have that
Fiz(J,) = Fiz(T)') = EP(q1), Fiz(T,,) = Fiz(Tj5;) = EP(g2) and Fiz(F)) =
Fiz(T{?) = EP(g3). So, we have that the solution set of (GSFPgg) coincides with
the solution set of (GSFPxr) , we get the result. O

Now, we recall the following problem:
(SFPgg) Find z € Cy such that z € EP(g1) and Az € EP(g3).
Apply Theorem 4.2, we can finding the solution of (SFPgg).

Theorem 4.3. Let (1 and @ be three nonempty closed convex subsets of Hy, Hy
and Hs, respectively. Let g1 : C1 x C1 — R and g3 : Q x Q — R with conditions
(A1)-(A4), and let T3 the resolvent of g; for p; > 0,i = 1,3. Let A : H — Hj be
a bounded linear operator, and let A* denote the adjoint of A. Suppose that the
solution set of (SFPgg) is nonempty. Let {z,,} be defined by by
(4.3 { x1 € (' chosen arbitrarily,

‘ Tpy1 =T (L= Bupr)] — pr A*(I — Tg) A) .
for each n € N, p; € (0,00),7 = 1,2,3, and f,, € (0,1). Assume that:

(ii) limy, 00 B, = 0 and X225, = 00.
Then the sequence {x,} converges strongly to Z, where & is an element of the
solution set of (SFPgg).

Proof. Put ga(x,y) = 0,Vz,y € C; and C; = Cy in Theorem 4.2, Then Thz =
Pc,z. By Theorem 4.2, we get the result. U

Now, we recall the following problem:
(GSFPcg) Find & € H; such that 2 € C1 () C3 and Az € EP(g3).
Apply Theorem 4.2, we can find the solution of (GSFPcg).

Theorem 4.4. Let Cy, Co and Q be three nonempty closed convex subsets of Hi,
H, and Hj, respectively. Let g3 : Q x @ — R with conditions (A1)-(A4), and let
T32 the resolvent of g3 for ps > 0. Let A : Hy — Ha be a bounded linear operator,
and let A* denote the adjoint of A. Suppose that the solution set of (GSFPcEg) is
nonempty. Let {x,} be defined by by
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(4.4 { x1 € Hy chosen arbitrarily,
Tnst 1= Poy (1= Bupt)] — prA*(I = TE) A) Po,n
for eachn € N, p; € (0,00),i=1,2,3, and 3, € (0,1). Assume that:
(i) 0<a<p < i
(ii) limy, 00 B =0 and X925, = 0.
Then the sequence {x,} converges strongly to &, where I is an element of the solution
set of (GSFPcE).

Proof. Put ¢1(z,y) = 0,Vaz,y € C1 and gao(z,y) = 0,Vz,y € Co in Theorem 4.2,
Then T3z = Po,x. and T2 = Pey,x. By Theorem 4.2, we get the result. O
Now, we recall the following problem:
(GSFPCQ) Find Z € Hy such that z € C} ﬂCQ and AT € Q).
Apply Theorem 4.2, we can find the solution of (GSFPcq).

Theorem 4.5. Let Cy, Cy and Q be three nonempty closed convex subsets of Hy,
Hy and Hs, respectively. Let A : Hy — Hs be a bounded linear operator, and let A*
denote the adjoint of A. Suppose that the solution set of (GSFPcq) is nonempty.
Let {x,} be defined by by
(4.4) { x1 € Hy chosen arbitrarily,

‘ Tnt1 := Po, (1 = Bup1)] — prA*(I — Pg)A)Po,an
for each n € N, p; € (0,00), and 5, € (0,1). Assume that:

(1) 0<a<p < i

(ii) limp—oo Bn = 0 and X952, 3, = o0.
Then the sequence {x,,} converges strongly to &, where & is an element of the solution
set of (GSFPcq).

Proof. Put g1(x,y) = 0,Vx,y € Cy, g2(z,y) = 0,Vz,y € Cy and g3(x,y) = 0,Va,y €
@ in Theorem 4.2, Then 75 v = Poyx , Tgzx = Po,x and Thyx = Pox. By Theorem
4.2, we get the result. U

Now, we recall the following problem:

(SFPcq) Find z € Hy such that z € Cy and Az € Q.

Apply Theorem 4.2, we can find the solution of (SFPcq).

Theorem 4.6. Let C7 and @ be three nonempty closed convex subsets of Hi and
Hy, respectively. Let A : Hi — Hy be a linear and bounded operator, and let A*
denote the adjoint of A. Suppose that the solution set of (GSFPcq) is nonempty.
Let {z,,} be defined by by
(4.5 { x1 € C1 chosen arbitrarily,

. Tn+1 = Po, (1 = Bup1)I = pA*(I — Pg)A)zy,
for each n € N, p; € (0,00), and 3, € (0,1). Assume that:

(i) 0<a§p1<”AH%+2;

(ii) limy, 00 Bn, = 0 and X925, = 00.
Then the sequence {x,} converges strongly to &, where & is an element of the solution

set of (GSFPcq).
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PTOOf' Put gl(xay) = 07Vl'7y € Cla g2(£7y) = O7V$7y € 02 ) g3(£7y) = O,\V/ZL',y € Q
and Cy = Cy in Theorem 4.2, Then T3 = Pg,, T5 = Pc, and Ty = Pgp. By
Theorem 4.2, we get the result. O

Remark 4.7. (i) Theorem 4.6 is different C'QQ method; (ii) Theorem 4.6 give a
strongly convergent theorem, but Theorem 3.7 in [26] only study weak convergence
theorem of the split feasibility problem. (iii) Theorem 4.6 also different from The-
orem 3.7 in [26].
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