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and

(1.3) J(x) = {x∗ ∈ X∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}.

The different sorts of continuity of duality maps are crucial. The normalized
duality of a Hilbert space H is the identity operator (here the dual space H∗ is
identified with H through the Riesz canonical embedding) and is therefore always
continuous in either weak or strong topology. However, a general duality map Jφ
is not so lucky; it is not always continuous in either weak or strong topology unless
certain smoothness condition is satisfied. For instance, Jφ is norm-to-norm uni-
formly continuous over bounded sets if the space X is uniformly smooth. However,
(sequential) weak continuity of Jφ is much more subtle. We say that a duality map
Jφ of a Banach space X is sequentially weakly continuous if a sequence (xn) in X
is weakly convergent to x, then the sequence (Jφ(xn)) in X

∗ is weak∗ly convergent
to Jφ(x). Though the sequence space ℓp with 1 < p <∞ has a sequentially weakly
continuous duality map Jφ with φ(t) = tp−1, most of the useful Banach spaces such
as Lp[0, 1] fail to have a sequentially weakly continuous duality map. [For the sake
of simplicity, by ‘weakly continuous’ we always mean ‘sequentially weak continu-
ous’ hereafter; also we will always assume, unless otherwise specified, that Banach
spaces are infinite-dimensional throughout the rest of this paper.] However a weakly
continuous duality map Jφ does provide a convenient tool for argument of weakly
convergent sequences. As a matter of fact, we have the following result [19].

Proposition 1.1. If a Banach space X has a weakly continuous duality map Jφ,
then for any sequence (xn) in X weakly convergent to x, there holds the identity

(1.4) lim sup
n→∞

Φ(∥xn − y∥) = lim sup
n→∞

Φ(∥xn − x∥) + Φ(∥x− y∥), y ∈ X,

where Φ is defined by

(1.5) Φ(t) =

∫ t

0
φ(s)ds.

It should be pointed out that even if a Banach space X has a weakly continuous
duality map Jφ with some gauge φ, it does not mean that for another gauge ψ,
the duality map Jψ remains weakly continuous. It is easily understood that the
weak continuity of the duality map Jφ depends on the selection of the gauge φ.
Several authors (see e.g. [11, 15, 29, 18, 33]) use the assumption in their papers
that the normalized duality map J of a Banach space is weakly continuous in order
to extend some results from the setting of Hilbert spaces to that of Banach spaces.
This assumption is however quite sensitive as we shall see that even the sequential
space ℓp fails to have a weakly continuous normalized duality map (unless p = 2)
although the pth-order generalized duality map Jp of ℓp is indeed weakly continuous.
This indicates that the assumption of the weak continuity of the normalized duality
map J seems an unappropriate condition imposed on Banach spaces; instead the
weak continuity of a general duality map Jφ should be employed and assumed to
be weakly continuous.
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2. Basic properties of duality maps

Duality maps have extensively been studied and employed to solve problems in
Banach spaces such as nonlinear equations, fixed point problems, and optimization;
see [13, 14, 16, 17, 19, 21, 22, 23, 27, 18, 26, 40, 37, 36, 34, 35, 41, 42]. In this
section we collect some basic properties of duality maps.

Proposition 2.1. ([10]) Let X be a Banach space and φ a gauge function.

(a) For each x ∈ X, Jφ(x) is a non-empty weak∗ closed convex subset of X∗.

(b) Jφ is an upper semi-continuous mapping of X into 2X
∗
with X∗ equipped

with its weak∗ topology.
(c) Jφ is the subdifferential of the convex functional Φ(∥ · ∥) (see (1.5)), that is,

Jφ(x) = ∂Φ(∥x∥), x ∈ X.

(d) If ψ is another gauge, then φ(∥x∥)Jψ(x) = ψ(∥x∥)Jφ(x) for x ∈ X.
(e) Let Jp : ℓp → ℓq, with q = p/(p − 1), be the pth-order generalized duality

map of ℓp with 1 < p <∞, then

(2.1) Jp(x) = {|xn|p−1sgn(xn)}
for all x = (xn) ∈ ℓp; hence it is weakly continuous [4].

(f) The pth-order generalized duality map of Lp[0, 1] with 1 < p < ∞ is given
by

(2.2) JL
p[0,1]

p (f)(t) =

(
|f(t)|
∥f∥p

)p−1

sgn(f(t)), a.e. t ∈ [0, 1]

for all 0 ̸= f ∈ Lp[0, 1]. Hence, it fails to be weakly continuous [4, 24].

Recently there appeared a few paper assuming the weak continuity of J . This
seems not quite reasonable since even for lp this is false if p ̸= 2. Note that lp for
1 < p < ∞ is the only known space which is reflexive and has a weak continuous
generalized duality map [24].

Let X be a Banach space and let SX = {x ∈ X : ∥x∥ = 1} be its unit sphere.
Consider the limit:

(2.3) lim
t→0

∥x+ ty∥ − ∥x∥
t

.

Recall we say that X is

• smooth (or Gateaux differentiable) if the limit (2.3) exists for each x, y ∈ SX ;
• uniformly Gateaux differentiable if it is smooth and the limit (2.3) is attained
uniformly in x ∈ SX for each fixed y ∈ SX ;

• Frechet differentiable if it is smooth and the limit (2.3) is attained uniformly
in y ∈ SX for each fixed x ∈ SX ;

• uniformly smooth (or uniformly Frechet differentiable) if it is smooth and
the limit (2.3) is attained uniformly in x, y ∈ SX .

Proposition 2.2. ([12], [31]) Let X be a real Banach space. Then its normalized
duality map J satisfies the following properties:

(i) J is homogeneous, i.e., J(λx) = λJ(x) for λ ∈ R and x ∈ X.
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(ii) J is additive if and only if X is a Hilbert space.
(iii) J is single-valued if and only if X is smooth
(iv) J is surjective if and only if X is reflexive
(v) J is injective or strictly monotone if and only if X is strictly convex.
(vi) J is single-valued and norm-to-norm continuous if and only if X is Frechet

differentiable.
(vii) if X is smooth (i.e., Gateaux differentiable), then J is single-valued and

norm-to-weak∗ continuous.
(viii) if X is uniformly Gateaux differentiable, then J is single-valued and norm-

to-weak∗ uniformly continuous on bounded sets of X.
(ix) J is single-valued and norm-to-norm uniformly continuous on bounded sets

of X if and only if X is uniformly smooth.

3. Weak continuity of duality maps

Let X be a (infinite-dimensional) Banach space and consider a duality map Jφ
induced by gauge φ. In the sequel, we will denote → for strong convergence, ⇀ for

weak convergence, and
∗
⇀ for weak∗ convergence.

Definition 3.1. The duality map Jφ is said to be (sequentially) weak continuous
[4] if Jφ maps weakly convergent sequences in X to weak∗ly convergent sequences

in X∗, that is, if xn ⇀ x in X, then Jφ(xn)
∗
⇀ Jφ(x) in X

∗.

Weak continuity of a duality map Jφ plays an important role in the fixed point
theory for nonexpansive mappings. For instance, it is proved [23] that if X is a
Banach space having a weakly continuous duality map Jφ, then it possesses Reich’s
property. This means that for each closed convex subset C of X and each non-
expansive mapping T : C → C with fixed points (recall that T is nonexpansive if
∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ C), if xτ ∈ C is the unique fixed point of the
contraction Tτ defined by

Tτx := τu+ (1− τ)Tx, x ∈ C,

where u ∈ C and τ ∈ (0, 1), then (xτ ) converges in norm, as τ → 0, to a fixed
point of T . Reich [30] proved that a uniformly smooth Banach space enjoys Reich’s
property. It is an interesting problem to find more Banach spaces which have Reich’s
property.

It is interesting to know what kind of (infinite-dimensional) Banach spaces can
have a weakly continuous duality map. Browder [4] shows that for each 1 < p <∞,
the pth generalized duality map of ℓp is weakly continuous, and that of Lp fails to
be weakly continuous. Next we show that even for ℓp, its normalized duality map
fails to be weakly continuous (except for p = 2).

Proposition 3.2. For 1 < p < ∞ and p ̸= 2, the normalized duality map J of lp

is not weakly continuous.

Proof. Recall, for any Banach space X, the relationship between its normalized
duality map J and pth generalized duality map Jp is given by

(3.1) J(x) =
1

∥x∥p−2
Jp(x), 0 ̸= x ∈ X.
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Now return to the space X = ℓp. Define a sequence (xn) as follows

(3.2) xn =

{
e1, if n is odd,
en + e1, if n is even.

Here (en) is the standard basis of ℓp. Then xn ⇀ e1 and Jp(xn) ⇀ Jp(e1) by the
weak continuity of Jp for ℓp. However, since

∥xn∥p =
{

1, if n is odd,

21/p, if n is even.

we get

J(xn) =
1

∥xn∥p−2
Jp(xn)

{
⇀ Jp(e1), if n (odd) → ∞,

⇀ 2(2−p)/pJp(e1), if n (even) → ∞.

As p ̸= 2, 2(2−p)/p > 1. We conclude that J(xn) does not converge weakly. �

Proposition 3.3. Let H be a real (infinite-dimensional) Hilbert space and let Jp
be the generalized duality map of H for 1 < p < ∞. Then Jp is weakly continuous
if and only p = 2.

Proof. It suffices to prove that Jp is not weakly continuous if p ̸= 2. By (3.1) and
the fact the normalized duality map of a Hilbert space is the identity, we get

(3.3) Jp(x) = ∥x∥p−2x, x ∈ H.

Let (en) be an orthonormal sequence inH converging weakly to 0. Define a sequence
(xn) by (3.2). It follows that

Jp(xn) = ∥xn∥p−2xn

{
⇀ e1, if n (odd) → ∞,

⇀ 2(p−2)/2e1, if n (even) → ∞.

This clearly shows that Jp(xn) ̸⇀ Jp(e1) as 2
(p−2)/2 ̸= 1 for p ̸= 2. �

Basing upon the result of Proposition 3.3, one may conjecture that if the nor-
malized duality J of a Banach space X is weakly continuous, then the space X is a
Hilbert space. The answer to this conjecture is nevertheless negative, as shown by
the following simple example.

Example 3.4. Consider the space

X = H + V

endowed with the norm

∥x∥ =
√

∥h∥2 + ∥v∥2, x = (h, v), h ∈ H, v ∈ V,

where H is a Hilbert space and V is a finite-dimensional smooth normed space
with a norm not induced by an inner product. Then X is non-Hilbert; however its
normalized duality map is weakly continuous.
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4. Duality maps of product spaces

In this section we consider the permanence of weak continuity of duality maps.
Let X and Y be two Banach spaces with norms ∥ · ∥X and ∥ · ∥Y , respectively. If
no confusions would occur, we use ∥ · ∥ to denote norm of any Banach spaces. Let
1 < p <∞. We shall use

Z := X ⊕p Y

to denote the product space X × Y equipped with the norm

(4.1) ∥z∥ ≡ ∥z∥Z := (∥x∥pX + ∥y∥pY )
1
p , z = (x, y) ∈ Z.

We write JXp , JYp and JZp for the pth generalized duality maps of X, Y and Z,
respectively.

Proposition 4.1. Let φ be a gauge and 1 < p <∞. We have

(4.2) JZp (z) = (JXp (x), JYp (y)), z = (x, y) ∈ Z

and

(4.3) JZφ (z) =

((
∥x∥X
∥z∥Z

)p−1 ∥z∥Z
∥x∥X

JXφ (x),

(
∥y∥Y
∥z∥Z

)p−1 ∥z∥Z
∥y∥Y

JYφ (y)

)
for z = (z, y) ∈ Z, x ̸= 0, y ̸= 0.

Proof. It is known that the dual space Z∗ = X∗ ⊕q Y
∗, q = p/(p− 1), with norm

∥z∗∥Z∗ = (∥x∗∥qX∗ + ∥y∗∥qY ∗)
1
q , z∗ = (x∗, y∗) ∈ Z∗.

Now put z∗ = (x∗, y∗) with x∗ ∈ JXp (x) and y∗ ∈ JYp (y). Then it is easy to see that

⟨z, z∗⟩ = ⟨x, x∗⟩+ ⟨y, y∗⟩
= ∥x∥pX + ∥y∥pY = ∥z∥pZ .(4.4)

It is also not hard to find that

∥z∗∥Z∗ = (∥x∗∥qX∗ + ∥y∗∥qY ∗)
1
q

= (∥x∥(p−1)q
X + ∥y∥(p−1)q

Y )
1
q

= (∥x∥pX + ∥y∥pY )
1
q

= ∥z∥p−1
Z .(4.5)

Combining (4.4) and (4.5) proves (4.2).
By Proposition 2.1(d), we have the relation, for any Banach space (V, ∥ · ∥),

JVφ (v) =
φ(∥v∥)
∥v∥

JVp (v), v ∈ V, v ̸= 0.

This together with (4.2) immediately implies (4.3). �
Corollary 4.2. Keep the notion in Proposition 4.1. Suppose both JXp and JYp are

weakly continuous. Then JZp is also weakly continuous, where Z is equipped with

the ℓp product norm (4.1). However, even if the normalized duality maps JX and
JY are both weakly continuous, the normalized duality map JZ of Z endowed with
the ℓp product norm (4.1) is not necessarily weakly continuous unless p = 2.
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Proof. The weak continuity of JZp follows immediately from that of JXp and JYp via
(4.2).

To see the second part, we first observe from (3.1) that, for z = (x, y) ̸= (0, 0),

(4.6) JZ(z) =

((
∥x∥X
∥z∥Z

)p−2

JX(x),

(
∥y∥Y
∥z∥Z

)p−2

JY (y)

)
.

This indicates that, due to the weak lower semicontinuity of norms, JZ may fail
to be weakly continuous even though JX and JY are weakly continuous. A coun-
terexample is constructed as follows. Take X and Y to be separable Hilbert spaces
and let Z = X ⊕p Y . Notice that JX = I and JY = I are the identity operators of
X and Y , respectively. Let (eXn ) and (eYn ) be two orthonormal bases of X and Y ,
respectively. For the sake of convenience, we shall use ∥ · ∥ to denote all norms on
the spaces X, Y and Z. Define (for n ≥ 1)

xn = eXn+1 + eX1 ⇀ x := eX1 , ∥xn∥ = 2
1
2 , ∥x∥ = 1,

yn = eYn+1 +
1

2
eY1 ⇀ y :=

1

2
eY1 , ∥yn∥ =

√
5

2
, ∥y∥ =

1

2
,

zn = (xn, yn)⇀ z := (x, y), ∥zn∥ =

(
2

p
2 +

(√5

2

)p)1/p

, ∥z∥ =

(
1 +

1

2p

)1/p

.

We now show that JZ(zn) ̸⇀ JZ(z) for p ̸= 2. As a matter of fact, since

∥xn∥
∥zn∥

=

√
2(

2
p
2 +

(√
5
2

)p)1/p =: cp,
∥yn∥
∥zn∥

=

√
5

2
(
2

p
2 +

(√
5
2

)p)1/p =: dp,

it turns out from (4.6) that

JZ(zn) =
(
cp−2
p xn, d

p−2
p yn

)
⇀
(
cp−2
p x, dp−2

p y
)
.

However we have (again by (4.6)),

JZ(z) =

((
∥x∥
∥z∥

)p−2

x,

(
∥y∥
∥z∥

)p−2

y

)
= (ĉp−2

p x, d̂p−2
p y),

where

ĉp =

(
1 +

1

2p

)− 1
p

, d̂p =
1

2
ĉp =

1

2

(
1 +

1

2p

)− 1
p

.

As it is evident that ĉp−2
p ̸= cp−2

p and d̂p−2
p ̸= dp−2

p since p ̸= 2, we conclude that
JZ(zn) ̸⇀ JZ(z) if p ̸= 2. �

Remark 4.3. Proposition 4.14 of [12] claimed that in ℓp spaces, 1 < p < ∞,
every duality map is sequentially weak-to-weak continuous. This is a misstatement.
The normalized duality map J ℓp is not sequentially weak-to-weak continuous unless

p = 2 though the generalized duality map J
ℓp
p is indeed sequentially weak-to-weak

continuous.
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5. Concluding remarks and open questions

Recall that a Banach space X is said to satisfy Opial’s property [24] if for any
sequence xn ⇀ x, it follows that

(5.1) lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − z∥, z ∈ X, z ̸= x.

It is known that Opial’s property plays an important role in the fixed point theory
of nonexpansive and asymptotically mappings [28, 20, 39, 38]. It is easy to find that
a Banach X possesses Opial’s property if it has a weakly continuous duality map
Jφ, but not vice versa.

In [32], van Dulst profoundly proves that any separable Banach space can equiv-
alently be renormed to satisfy Opial’s property.

Question One. Whether a separable and smooth Banach space can equivalently
be renormed to have a weakly continuous duality map Jφ with some gauge φ?

Question Two. If X is a Banach space such that its normalized duality map J
is weakly continuous, can X be decomposed as X = H ⊕2 Y ? Here H is a Hilbert
space and Y is finite-dimensional Banach space.

Question Three. If X is a Banach space such that there exists a closed subspace
M of X with the properties: (i) M has a weakly continuous duality map JMφ with
a gauge φ and (ii) the quotient space X/M is finite-dimensional, does X have a
weakly duality map JXψ for some gauge ψ?
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