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where u ∈ H is fixed, Jrn denotes the resolvent of B with (rn) a positive sequence,
and (αn), (βn) are real sequences both choosing in [0, 1]. Then the sequence (xn)
generated by (1.4) can be strongly convergent to a solution of (1.3) provided that

(i) limn |rn − rn+1| = 0;
(ii) limn αn = 0,

∑
n αn = ∞;

(iii) 0 < a ≤ rn ≤ b < 2κ, 0 < c ≤ βn ≤ d < 1.

The aim of this note is to continue the study of the above algorithm. By using the
techniques developed in [3, 5], we shall show the strong convergence of algorithm
(1.4) without condition (i) above, that is, conditions (ii)-(iii) are sufficient to ensure
the convergence of algorithm (1.4).

2. Preliminary and notation

Throughout, I denotes the identity mapping, and D(T ) the domain of a mapping
T . The notation “→” stands for strong convergence, “⇀” weak convergence, and
ωw(xn) the set of the weak cluster points of (xn).

We use PC to denote the projection from H onto C; namely, for x ∈ H, PCx is
the unique point in C with the property: ∥x − PCx∥ = miny∈C ∥x − y∥. It is well
known that PCx is characterized by:

⟨x− PCx, z − PCx⟩ ≤ 0 ∀z ∈ C.(2.1)

A mapping T : C → H is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ ∀x, y ∈ C;

α-averaged if there exist a constant α ∈ (0, 1) and a nonexpansive mapping S such
that T = (1− α)I + αS; firmly nonexpansive, if

⟨Tx− Ty, x− y⟩ ≥ ∥Tx− Ty∥2 ∀x, y ∈ C;

κ-inverse strongly monotone (κ-ism), if there exists κ > 0 so that

⟨Tx− Ty, x− y⟩ ≥ κ∥Tx− Ty∥2 ∀x, y ∈ C.

Nonexpansive mappings have the following essential property (see [2]).

Lemma 2.1 (Demiclosedness principle). Let T : C → H be a nonexpansive mapping
with Fix(T ) ̸= ∅. If (xn) is a sequence in C such that xn ⇀ x and (I − T )xn → y,
then (I − T )x = y. In particular, if y = 0, then x ∈ Fix(T ).

Firmly nonexpansive mappings are known to be both 1
2 -averaged and 1-ism. It is

worth noting that averaged mappings have several remarkable properties that are
not shared by nonexpansive mappings.

Lemma 2.2 ([1, 8]). Let κ, κ1 and κ2 be constants in (0, 1).

(i) If T : C → H is κ-averaged, then for x ∈ C and y ∈ Fix(T ),

∥Tx− y∥2 ≤ ∥x− y∥2 − 1− κ

κ
∥(I − T )x∥2.

(ii) Let T1 : H → H and T2 : C → H be κ1 and κ2-averaged, respectively. Then
T1T2 is (κ1 + κ2 − κ1κ2)-averaged.
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A mapping B : H ⇒ H is called monotone, if ⟨u − v, x − y⟩ ≥ 0 for all x, y ∈
D(B), u ∈ Bx, v ∈ By; maximal monotone if it is monotone and its graph is not
properly contained in the graph of any other monotone mapping. Hereafter if no
confusion occurs, denote by Jr := (I + rB)−1(r > 0) the resolvent of B. If B is
monotone, then Jr is single-valued and firmly nonexpansive; If further B is maximal
monotone, then D(Jr) = H.

Lemma 2.3. Let A : C → H be a κ-ism mapping and B : H ⇒ H a maximal
monotone mapping so that D(B) ⊆ C. For r ∈ (0, 2κ), set Tr := Jr(I − rA). Then
Fix(Tr) = (A+B)−1(0); and for z ∈ (A+B)−1(0), it follows

∥Trx− z∥2 ≤ ∥x− z∥2 − 2κ− r

2κ+ r
∥Trx− x∥2.

Proof. The first assertion is easy to check. To see the second, we note that I − 2κA
is nonexpansive since A is κ-ism. It then follows from

I − rA =
(
1− r

2κ

)
I +

r

2κ
(I − 2κA)

that I − rA is r/2κ-averaged. Since Jr is 1/2-averaged, using Lemma 2.2 yields the
desired result. �

Lemma 2.4. Let A : C → H be a κ-ism mapping and B : H ⇒ H a maximal
monotone mapping with D(B) ⊆ C. If 0 < r ≤ s, then for every x ∈ C,

∥x− Trx∥ ≤ 2∥x− Tsx∥,(2.2)

where Ts := Js(I − sA) and Tr := Jr(I − rA).

Proof. Let z1 = Trx and z2 = Tsx. By definition of Tr,

x− z1
r

−Ax ∈ Bz1,
x− z2

s
−Ax ∈ Bz2.

The monotonicity of B then implies

⟨z1 − z2,
x− z1

r
− x− z2

s
⟩ ≥ 0,

or equivalently

∥z2 − z1∥2 ≤
(
1− r

s

)
⟨z2 − z1, z2 − x⟩.

If r ≤ s, then ∥z2 − z1∥ ≤ ∥z2 − x∥. By the triangle inequality, ∥z1 − x∥ ≤ ∥z1 −
z2∥+ ∥z2 − x∥, which at once yields (2.2). �

We end this section by two useful lemmas.

Lemma 2.5 (Xu [7]). Let (an) be a nonnegative real sequence satisfying

an+1 ≤ (1− αn)an + αnbn,

where (αn) ⊂ (0, 1) and (bn) are real sequences. Then an → 0 provided that

(i)
∑

αn = ∞, limn αn = 0;
(ii) limn bn ≤ 0 or

∑
αn|bn| < ∞.
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Lemma 2.6 (Maingé [3]). Let (sn) be a real sequence that does not decrease at
infinity, in the sense that there exists a subsequence (snk

) so that

snk
≤ snk+1 for all k ≥ 0.

For every n > n0 define an integer sequence (τ(n)) as

τ(n) = max{n0 ≤ k ≤ n : sk < sk+1}.
Then τ(n) → ∞ as n → ∞ and for all n > n0

max(sτ(n), sn) ≤ sτ(n)+1.(2.3)

3. Strong convergence

In this section, we consider problem (1.3) under the assumption that A : C → H is
κ-ism, B : H ⇒ H is maximal monotone so that D(B) ⊆ C, and S is nonexpansive.

We now consider algorithm (1.4) introduced in [4]. For the convenience, we define
Tn = Jrn(I − rnA), and thus the algorithm has the form:

xn+1 = βnxn + (1− βn)S[αnu+ (1− αn)Tnxn].(3.1)

Theorem 3.1. Let the following conditions hold:

(i) limn αn = 0,
∑

n αn = ∞;
(ii) 0 < a ≤ rn ≤ b < 2κ, 0 < c ≤ βn ≤ d < 1.

If the solution set Ω of problem (1.3) is nonempty, then the sequence (xn) generated
by (3.1) converges strongly to x̂ = PΩu.

Proof. Let yn = αnu+ (1− αn)Tnxn. Hence we have

∥xn+1 − x̂∥ = ∥(1− βn)(Syn − x̂) + βn(xn − x̂)∥
≤ (1− βn)∥yn − x̂∥+ βn∥xn − x̂∥,

and

∥yn − x̂∥ = ∥αn(u− x̂) + (1− αn)(Tnxn − x̂)∥
≤ (1− αn)∥xn − x̂∥+ αn∥u− x̂∥.

Combining these two inequalities yields

∥xn+1 − x̂∥ ≤ [1− αn(1− βn)]∥xn − x̂∥+ αn(1− βn)∥u− x̂∥.
By induction, we can deduce that (xn) is bounded and so is (yn).

We next show the following key estimation:

sn+1 ≤ (1− σαn)sn − σ(∥Tnxn − xn∥2 + ∥Syn − xn∥2)
+ 2αn(1− βn)⟨u− x̂, yn − x̂⟩,(3.2)

where sn = ∥xn − x̂∥2, and σ > 0 is chosen so that

(1− αn)(1− βn)(2κ− rn)

2κ+ rn
≥ σ,

and βn(1− βn) ≥ σ for all n ≥ 0. Indeed, it follows from Lemma 2.3 that

∥Tnxn − x̂∥2 ≤ ∥xn − x̂∥2 − 2κ− rn
2κ+ rn

∥Tnxn − xn∥2.
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By the subdifferential inequality,

∥yn − x̂∥2 = ∥αn(u− x̂) + (1− αn)(Tnxn − x̂)∥2

≤ (1− αn)∥Tnxn − x̂∥2 + 2αn⟨u− x̂, yn − x̂⟩
≤ (1− αn)∥xn − x̂∥2 + 2αn⟨u− x̂, yn − x̂⟩

− (1− αn)(2κ− rn)

2κ+ rn
∥Tnxn − xn∥2.

Consequently,

∥xn+1 − x̂∥2 = βn∥xn − x̂∥2 + (1− βn)∥Syn − x̂∥2

− βn(1− βn)∥Syn − xn∥2

≤ βn∥xn − x̂∥2 + (1− βn)∥yn − x̂∥2

− βn(1− βn)∥Syn − xn∥2

≤ βn∥xn − x̂∥2 + (1− βn)(1− αn)∥xn − x̂∥2

− (1− αn)(1− βn)(2κ− rn)

2κ+ rn
∥Tnxn − xn∥2

+ 2αn(1− βn)⟨u− x̂, yn − x̂⟩
− βn(1− βn)∥Syn − xn∥2,

and the desired inequality (3.2) follows.
Finally, we show sn → 0 by considering two possible cases.
Case 1. (sn) is eventually decreasing (i.e., there exists N ≥ 0 such that (sn)

is decreasing for n ≥ N). In this case, (sn) must be convergent, and from (3.2) it
follows

σ(∥Tnxn − xn∥2 + ∥Syn − xn∥2) ≤ Mαn + (sn − sn+1),

where M > 0 is a sufficient large real number. Consequently, both ∥Tnxn − xn∥
and ∥Syn − xn∥ converge to zero. Let Ta = Ja(I − aA). In view of Lemma 2.4,
∥xn − Taxn∥ ≤ 2∥xn − Tnxn∥ → 0. Since Ta is nonexpansive,

ωw(xn) ⊆ Fix(Ta) = (A+B)−1(0),

where we use the demiclosedness principle. On the other hand, we see

∥xn − yn∥ = ∥αn(u− xn) + (1− αn)(Tnxn − xn)∥
≤ αn∥u− xn∥+ ∥Tnxn − xn∥ → 0,

which implies

∥xn − Sxn∥ ≤ ∥xn − Syn∥+ ∥Syn − Sxn∥
≤ ∥xn − Syn∥+ ∥yn − xn∥ → 0.

Using again the demiclosedness principle, ωw(xn) ⊆ Ω; hence

lim
n→∞

⟨u− x̂, yn − x̂⟩ = lim
n→∞

⟨u− x̂, xn − x̂⟩

= max
w∈ωw(xn)

⟨u− x̂, w − x̂⟩ ≤ 0,
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where the inequality uses (2.1). It then follows from (3.2) that

sn+1 ≤ (1− σαn)sn + 2αn(1− βn)⟨u− x̂, yn − x̂⟩.

We therefore apply Lemma 2.5 to conclude sn → 0.
Case 2. (sn) is not eventually decreasing. Hence, we can find a subsequence

(snk
) so that snk

≤ snk+1 for all k ≥ 0. In this case, we may define an integer
sequence (τ(n)) as in Lemma 2.6. In view of (2.3), we deduce from (3.2) that

σ(∥Tτ(n)xτ(n) − xτ(n)∥2 + ∥Syτ(n) − xτ(n)∥2) ≤ Mατ(n) → 0.(3.3)

In a similar way to Case 1, we have

lim
n→∞

⟨u− x̂, yτ(n) − x̂⟩ ≤ 0.

Combining (2.3) and (3.2) yields

σsτ(n) ≤ 2(1− βτ(n))⟨u− x̂, yτ(n) − x̂⟩

for all n > n0. Taking lim in this inequality, we get sτ(n) → 0. Moreover, it follows
from (3.1) that √

sτ(n)+1 = ∥(xτ(n) − x̂)− (xτ(n) − xτ(n)+1)∥
≤ √

sτ(n) + ∥xτ(n) − xτ(n)+1∥
≤ √

sτ(n) + ∥xτ(n) − Syτ(n)∥,

which together with (3.3) implies sτ(n)+1 → 0. Consequently, from (2.3) the desired
result sn → 0 immediately follows. �

Remark 3.2. In Theorem 3.1, we remove one sufficient condition used by Taka-
hashi, Takahashi and Toyoda [4], namely, |rn − rn+1| → 0.

Remark 3.3. In a similar way to [6], we can apply our results to the variational
inequalities, the split feasibility problem, and the convexly constrained linear inverse
problem.
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