A NOTE ON ITERATIVE COMMON SOLUTION TO MONOTONE INCLUSION AND FIXED POINT PROBLEMS

FENGHUI WANG
Honoring Prof. Simeon Reich on his 65th birthday

Abstract

In this note we consider a problem that consists in finding a zero of the sum of two monotone mappings such that it is also a fixed point of some nonlinear mappings, simultaneously. We study an iterative method for solving such a problem recently proposed by Takahashi et al. and show that one condition ensuring the convergence can be completely removed.

1. Introduction

It is well known that the monotone inclusion problem plays an essential role in the theory of nonlinear analysis and optimization. This problem consists of finding a zero element of a monotone mapping. However, in some concrete cases including variational inequalities, the problem requires to find a zero of the sum of two monotone mappings, namely, find \hat{x} in a Hilbert space H so that

$$
\begin{equation*}
0 \in(A+B) \hat{x} \tag{1.1}
\end{equation*}
$$

where $A: H \rightarrow H$ and $B: H \rightrightarrows H$ are two monotone mappings. The zero-point set of the sum $A+B$ is denoted by $(A+B)^{-1}(0)$. A fixed point problem is to find a point \hat{x} with the property:

$$
\begin{equation*}
\hat{x} \in C, \quad S \hat{x}=\hat{x}, \tag{1.2}
\end{equation*}
$$

where C is a nonempty closed convex subset of H and $S: C \rightarrow C$ is a nonlinear mapping. The fixed-point set of S is denoted by $\operatorname{Fix}(S)$.

In their recent paper [4], Takahashi, Takahashi and Toyoda considered a problem for finding a common solution of problem (1.1) and of problem (1.2), namely, they seek to find a point \hat{x} such that

$$
\begin{equation*}
\hat{x} \in \operatorname{Fix}(S) \cap(A+B)^{-1}(0) \tag{1.3}
\end{equation*}
$$

where $A: C \rightarrow H$ is κ-inverse strongly monotone, $B: H \rightrightarrows H$ is maximal monotone so that $\mathcal{D}(B) \subseteq C$, and S is nonexpansive. Under this hypothesis, they proposed the following iteration:

$$
\begin{equation*}
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S\left[\alpha_{n} u+\left(1-\alpha_{n}\right) J_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right)\right] \tag{1.4}
\end{equation*}
$$

[^0]where $u \in H$ is fixed, $J_{r_{n}}$ denotes the resolvent of B with $\left(r_{n}\right)$ a positive sequence, and $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ are real sequences both choosing in $[0,1]$. Then the sequence $\left(x_{n}\right)$ generated by (1.4) can be strongly convergent to a solution of (1.3) provided that
(i) $\lim _{n}\left|r_{n}-r_{n+1}\right|=0$;
(ii) $\lim _{n} \alpha_{n}=0, \sum_{n} \alpha_{n}=\infty$;
(iii) $0<a \leq r_{n} \leq b<2 \kappa, 0<c \leq \beta_{n} \leq d<1$.

The aim of this note is to continue the study of the above algorithm. By using the techniques developed in $[3,5]$, we shall show the strong convergence of algorithm (1.4) without condition (i) above, that is, conditions (ii)-(iii) are sufficient to ensure the convergence of algorithm (1.4).

2. Preliminary and notation

Throughout, I denotes the identity mapping, and $\mathcal{D}(T)$ the domain of a mapping T. The notation " \rightarrow " stands for strong convergence, " \downarrow " weak convergence, and $\omega_{w}\left(x_{n}\right)$ the set of the weak cluster points of $\left(x_{n}\right)$.

We use P_{C} to denote the projection from H onto C; namely, for $x \in H, P_{C} x$ is the unique point in C with the property: $\left\|x-P_{C} x\right\|=\min _{y \in C}\|x-y\|$. It is well known that $P_{C} x$ is characterized by:

$$
\begin{equation*}
\left\langle x-P_{C} x, z-P_{C} x\right\rangle \leq 0 \forall z \in C . \tag{2.1}
\end{equation*}
$$

A mapping $T: C \rightarrow H$ is called nonexpansive if

$$
\|T x-T y\| \leq\|x-y\| \forall x, y \in C ;
$$

α-averaged if there exist a constant $\alpha \in(0,1)$ and a nonexpansive mapping S such that $T=(1-\alpha) I+\alpha S$; firmly nonexpansive, if

$$
\langle T x-T y, x-y\rangle \geq\|T x-T y\|^{2} \forall x, y \in C ;
$$

κ-inverse strongly monotone (κ-ism), if there exists $\kappa>0$ so that

$$
\langle T x-T y, x-y\rangle \geq \kappa\|T x-T y\|^{2} \forall x, y \in C .
$$

Nonexpansive mappings have the following essential property (see [2]).
Lemma 2.1 (Demiclosedness principle). Let $T: C \rightarrow H$ be a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$. If $\left(x_{n}\right)$ is a sequence in C such that $x_{n} \rightharpoonup x$ and $(I-T) x_{n} \rightarrow y$, then $(I-T) x=y$. In particular, if $y=0$, then $x \in \operatorname{Fix}(T)$.

Firmly nonexpansive mappings are known to be both $\frac{1}{2}$-averaged and 1 -ism. It is worth noting that averaged mappings have several remarkable properties that are not shared by nonexpansive mappings.

Lemma 2.2 ($[1,8])$. Let κ, κ_{1} and κ_{2} be constants in $(0,1)$.
(i) If $T: C \rightarrow H$ is κ-averaged, then for $x \in C$ and $y \in \operatorname{Fix}(T)$,

$$
\|T x-y\|^{2} \leq\|x-y\|^{2}-\frac{1-\kappa}{\kappa}\|(I-T) x\|^{2} .
$$

(ii) Let $T_{1}: H \rightarrow H$ and $T_{2}: C \rightarrow H$ be κ_{1} and κ_{2}-averaged, respectively. Then $T_{1} T_{2}$ is $\left(\kappa_{1}+\kappa_{2}-\kappa_{1} \kappa_{2}\right)$-averaged.

A mapping $B: H \rightrightarrows H$ is called monotone, if $\langle u-v, x-y\rangle \geq 0$ for all $x, y \in$ $\mathcal{D}(B), u \in B x, v \in B y ;$ maximal monotone if it is monotone and its graph is not properly contained in the graph of any other monotone mapping. Hereafter if no confusion occurs, denote by $J_{r}:=(I+r B)^{-1}(r>0)$ the resolvent of B. If B is monotone, then J_{r} is single-valued and firmly nonexpansive; If further B is maximal monotone, then $\mathcal{D}\left(J_{r}\right)=H$.
Lemma 2.3. Let $A: C \rightarrow H$ be a κ-ism mapping and $B: H \rightrightarrows H$ a maximal monotone mapping so that $\mathcal{D}(B) \subseteq C$. For $r \in(0,2 \kappa)$, set $T_{r}:=J_{r}(I-r A)$. Then $\operatorname{Fix}\left(T_{r}\right)=(A+B)^{-1}(0) ;$ and for $z \in(A+B)^{-1}(0)$, it follows

$$
\left\|T_{r} x-z\right\|^{2} \leq\|x-z\|^{2}-\frac{2 \kappa-r}{2 \kappa+r}\left\|T_{r} x-x\right\|^{2}
$$

Proof. The first assertion is easy to check. To see the second, we note that $I-2 \kappa A$ is nonexpansive since A is κ-ism. It then follows from

$$
I-r A=\left(1-\frac{r}{2 \kappa}\right) I+\frac{r}{2 \kappa}(I-2 \kappa A)
$$

that $I-r A$ is $r / 2 \kappa$-averaged. Since J_{r} is $1 / 2$-averaged, using Lemma 2.2 yields the desired result.

Lemma 2.4. Let $A: C \rightarrow H$ be a κ-ism mapping and $B: H \rightrightarrows H$ a maximal monotone mapping with $\mathcal{D}(B) \subseteq C$. If $0<r \leq s$, then for every $x \in C$,

$$
\begin{equation*}
\left\|x-T_{r} x\right\| \leq 2\left\|x-T_{s} x\right\| \tag{2.2}
\end{equation*}
$$

where $T_{s}:=J_{s}(I-s A)$ and $T_{r}:=J_{r}(I-r A)$.
Proof. Let $z_{1}=T_{r} x$ and $z_{2}=T_{s} x$. By definition of T_{r},

$$
\frac{x-z_{1}}{r}-A x \in B z_{1}, \frac{x-z_{2}}{s}-A x \in B z_{2}
$$

The monotonicity of B then implies

$$
\left\langle z_{1}-z_{2}, \frac{x-z_{1}}{r}-\frac{x-z_{2}}{s}\right\rangle \geq 0
$$

or equivalently

$$
\left\|z_{2}-z_{1}\right\|^{2} \leq\left(1-\frac{r}{s}\right)\left\langle z_{2}-z_{1}, z_{2}-x\right\rangle
$$

If $r \leq s$, then $\left\|z_{2}-z_{1}\right\| \leq\left\|z_{2}-x\right\|$. By the triangle inequality, $\left\|z_{1}-x\right\| \leq \| z_{1}-$ $z_{2}\|+\| z_{2}-x \|$, which at once yields (2.2).

We end this section by two useful lemmas.
Lemma 2.5 ($\mathrm{Xu}[7]$). Let $\left(a_{n}\right)$ be a nonnegative real sequence satisfying

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} b_{n}
$$

where $\left(\alpha_{n}\right) \subset(0,1)$ and $\left(b_{n}\right)$ are real sequences. Then $a_{n} \rightarrow 0$ provided that
(i) $\sum \alpha_{n}=\infty, \lim _{n} \alpha_{n}=0$;
(ii) $\varlimsup_{n} b_{n} \leq 0$ or $\sum \alpha_{n}\left|b_{n}\right|<\infty$.

Lemma 2.6 (Maingé [3]). Let $\left(s_{n}\right)$ be a real sequence that does not decrease at infinity, in the sense that there exists a subsequence $\left(s_{n_{k}}\right)$ so that

$$
s_{n_{k}} \leq s_{n_{k}+1} \text { for all } k \geq 0
$$

For every $n>n_{0}$ define an integer sequence $(\tau(n))$ as

$$
\tau(n)=\max \left\{n_{0} \leq k \leq n: s_{k}<s_{k+1}\right\}
$$

Then $\tau(n) \rightarrow \infty$ as $n \rightarrow \infty$ and for all $n>n_{0}$

$$
\begin{equation*}
\max \left(s_{\tau(n)}, s_{n}\right) \leq s_{\tau(n)+1} \tag{2.3}
\end{equation*}
$$

3. Strong convergence

In this section, we consider problem (1.3) under the assumption that $A: C \rightarrow H$ is κ-ism, $B: H \rightrightarrows H$ is maximal monotone so that $\mathcal{D}(B) \subseteq C$, and S is nonexpansive.

We now consider algorithm (1.4) introduced in [4]. For the convenience, we define $T_{n}=J_{r_{n}}\left(I-r_{n} A\right)$, and thus the algorithm has the form:

$$
\begin{equation*}
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S\left[\alpha_{n} u+\left(1-\alpha_{n}\right) T_{n} x_{n}\right] . \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let the following conditions hold:
(i) $\lim _{n} \alpha_{n}=0, \sum_{n} \alpha_{n}=\infty$;
(ii) $0<a \leq r_{n} \leq b<2 \kappa, 0<c \leq \beta_{n} \leq d<1$.

If the solution set Ω of problem (1.3) is nonempty, then the sequence $\left(x_{n}\right)$ generated by (3.1) converges strongly to $\hat{x}=P_{\Omega} u$.

Proof. Let $y_{n}=\alpha_{n} u+\left(1-\alpha_{n}\right) T_{n} x_{n}$. Hence we have

$$
\begin{aligned}
\left\|x_{n+1}-\hat{x}\right\| & =\left\|\left(1-\beta_{n}\right)\left(S y_{n}-\hat{x}\right)+\beta_{n}\left(x_{n}-\hat{x}\right)\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|y_{n}-\hat{x}\right\|+\beta_{n}\left\|x_{n}-\hat{x}\right\|,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|y_{n}-\hat{x}\right\| & =\left\|\alpha_{n}(u-\hat{x})+\left(1-\alpha_{n}\right)\left(T_{n} x_{n}-\hat{x}\right)\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-\hat{x}\right\|+\alpha_{n}\|u-\hat{x}\|
\end{aligned}
$$

Combining these two inequalities yields

$$
\left\|x_{n+1}-\hat{x}\right\| \leq\left[1-\alpha_{n}\left(1-\beta_{n}\right)\right]\left\|x_{n}-\hat{x}\right\|+\alpha_{n}\left(1-\beta_{n}\right)\|u-\hat{x}\|
$$

By induction, we can deduce that $\left(x_{n}\right)$ is bounded and so is $\left(y_{n}\right)$.
We next show the following key estimation:

$$
\begin{align*}
s_{n+1} \leq & \left(1-\sigma \alpha_{n}\right) s_{n}-\sigma\left(\left\|T_{n} x_{n}-x_{n}\right\|^{2}+\left\|S y_{n}-x_{n}\right\|^{2}\right) \\
& +2 \alpha_{n}\left(1-\beta_{n}\right)\left\langle u-\hat{x}, y_{n}-\hat{x}\right\rangle \tag{3.2}
\end{align*}
$$

where $s_{n}=\left\|x_{n}-\hat{x}\right\|^{2}$, and $\sigma>0$ is chosen so that

$$
\frac{\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left(2 \kappa-r_{n}\right)}{2 \kappa+r_{n}} \geq \sigma
$$

and $\beta_{n}\left(1-\beta_{n}\right) \geq \sigma$ for all $n \geq 0$. Indeed, it follows from Lemma 2.3 that

$$
\left\|T_{n} x_{n}-\hat{x}\right\|^{2} \leq\left\|x_{n}-\hat{x}\right\|^{2}-\frac{2 \kappa-r_{n}}{2 \kappa+r_{n}}\left\|T_{n} x_{n}-x_{n}\right\|^{2}
$$

By the subdifferential inequality,

$$
\begin{aligned}
\left\|y_{n}-\hat{x}\right\|^{2}= & \left\|\alpha_{n}(u-\hat{x})+\left(1-\alpha_{n}\right)\left(T_{n} x_{n}-\hat{x}\right)\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)\left\|T_{n} x_{n}-\hat{x}\right\|^{2}+2 \alpha_{n}\left\langle u-\hat{x}, y_{n}-\hat{x}\right\rangle \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-\hat{x}\right\|^{2}+2 \alpha_{n}\left\langle u-\hat{x}, y_{n}-\hat{x}\right\rangle \\
& -\frac{\left(1-\alpha_{n}\right)\left(2 \kappa-r_{n}\right)}{2 \kappa+r_{n}}\left\|T_{n} x_{n}-x_{n}\right\|^{2} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\left\|x_{n+1}-\hat{x}\right\|^{2}= & \beta_{n}\left\|x_{n}-\hat{x}\right\|^{2}+\left(1-\beta_{n}\right)\left\|S y_{n}-\hat{x}\right\|^{2} \\
& -\beta_{n}\left(1-\beta_{n}\right)\left\|S y_{n}-x_{n}\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-\hat{x}\right\|^{2}+\left(1-\beta_{n}\right)\left\|y_{n}-\hat{x}\right\|^{2} \\
& -\beta_{n}\left(1-\beta_{n}\right)\left\|S y_{n}-x_{n}\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-\hat{x}\right\|^{2}+\left(1-\beta_{n}\right)\left(1-\alpha_{n}\right)\left\|x_{n}-\hat{x}\right\|^{2} \\
& -\frac{\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left(2 \kappa-r_{n}\right)}{2 \kappa+r_{n}}\left\|T_{n} x_{n}-x_{n}\right\|^{2} \\
& +2 \alpha_{n}\left(1-\beta_{n}\right)\left\langle u-\hat{x}, y_{n}-\hat{x}\right\rangle \\
& -\beta_{n}\left(1-\beta_{n}\right)\left\|S y_{n}-x_{n}\right\|^{2}
\end{aligned}
$$

and the desired inequality (3.2) follows.
Finally, we show $s_{n} \rightarrow 0$ by considering two possible cases.
CASE 1. (s_{n}) is eventually decreasing (i.e., there exists $N \geq 0$ such that $\left(s_{n}\right)$ is decreasing for $n \geq N)$. In this case, $\left(s_{n}\right)$ must be convergent, and from (3.2) it follows

$$
\sigma\left(\left\|T_{n} x_{n}-x_{n}\right\|^{2}+\left\|S y_{n}-x_{n}\right\|^{2}\right) \leq M \alpha_{n}+\left(s_{n}-s_{n+1}\right)
$$

where $M>0$ is a sufficient large real number. Consequently, both $\left\|T_{n} x_{n}-x_{n}\right\|$ and $\left\|S y_{n}-x_{n}\right\|$ converge to zero. Let $T_{a}=J_{a}(I-a A)$. In view of Lemma 2.4, $\left\|x_{n}-T_{a} x_{n}\right\| \leq 2\left\|x_{n}-T_{n} x_{n}\right\| \rightarrow 0$. Since T_{a} is nonexpansive,

$$
\omega_{w}\left(x_{n}\right) \subseteq \operatorname{Fix}\left(T_{a}\right)=(A+B)^{-1}(0)
$$

where we use the demiclosedness principle. On the other hand, we see

$$
\begin{aligned}
\left\|x_{n}-y_{n}\right\| & =\left\|\alpha_{n}\left(u-x_{n}\right)+\left(1-\alpha_{n}\right)\left(T_{n} x_{n}-x_{n}\right)\right\| \\
& \leq \alpha_{n}\left\|u-x_{n}\right\|+\left\|T_{n} x_{n}-x_{n}\right\| \rightarrow 0
\end{aligned}
$$

which implies

$$
\begin{aligned}
\left\|x_{n}-S x_{n}\right\| & \leq\left\|x_{n}-S y_{n}\right\|+\left\|S y_{n}-S x_{n}\right\| \\
& \leq\left\|x_{n}-S y_{n}\right\|+\left\|y_{n}-x_{n}\right\| \rightarrow 0
\end{aligned}
$$

Using again the demiclosedness principle, $\omega_{w}\left(x_{n}\right) \subseteq \Omega$; hence

$$
\begin{aligned}
\varlimsup_{n \rightarrow \infty}\left\langle u-\hat{x}, y_{n}-\hat{x}\right\rangle & =\varlimsup_{n \rightarrow \infty}\left\langle u-\hat{x}, x_{n}-\hat{x}\right\rangle \\
& =\max _{w \in \omega_{w}\left(x_{n}\right)}\langle u-\hat{x}, w-\hat{x}\rangle \leq 0
\end{aligned}
$$

where the inequality uses (2.1). It then follows from (3.2) that

$$
s_{n+1} \leq\left(1-\sigma \alpha_{n}\right) s_{n}+2 \alpha_{n}\left(1-\beta_{n}\right)\left\langle u-\hat{x}, y_{n}-\hat{x}\right\rangle
$$

We therefore apply Lemma 2.5 to conclude $s_{n} \rightarrow 0$.
Case 2. $\left(s_{n}\right)$ is not eventually decreasing. Hence, we can find a subsequence $\left(s_{n_{k}}\right)$ so that $s_{n_{k}} \leq s_{n_{k}+1}$ for all $k \geq 0$. In this case, we may define an integer sequence $(\tau(n))$ as in Lemma 2.6. In view of (2.3), we deduce from (3.2) that

$$
\begin{equation*}
\sigma\left(\left\|T_{\tau(n)} x_{\tau(n)}-x_{\tau(n)}\right\|^{2}+\left\|S y_{\tau(n)}-x_{\tau(n)}\right\|^{2}\right) \leq M \alpha_{\tau(n)} \rightarrow 0 \tag{3.3}
\end{equation*}
$$

In a similar way to Case 1 , we have

$$
\varlimsup_{n \rightarrow \infty}\left\langle u-\hat{x}, y_{\tau(n)}-\hat{x}\right\rangle \leq 0
$$

Combining (2.3) and (3.2) yields

$$
\sigma s_{\tau(n)} \leq 2\left(1-\beta_{\tau(n)}\right)\left\langle u-\hat{x}, y_{\tau(n)}-\hat{x}\right\rangle
$$

for all $n>n_{0}$. Taking \varlimsup in this inequality, we get $s_{\tau(n)} \rightarrow 0$. Moreover, it follows from (3.1) that

$$
\begin{aligned}
\sqrt{s_{\tau(n)+1}} & =\left\|\left(x_{\tau(n)}-\hat{x}\right)-\left(x_{\tau(n)}-x_{\tau(n)+1}\right)\right\| \\
& \leq \sqrt{s_{\tau(n)}}+\left\|x_{\tau(n)}-x_{\tau(n)+1}\right\| \\
& \leq \sqrt{s_{\tau(n)}}+\left\|x_{\tau(n)}-S y_{\tau(n)}\right\|
\end{aligned}
$$

which together with (3.3) implies $s_{\tau(n)+1} \rightarrow 0$. Consequently, from (2.3) the desired result $s_{n} \rightarrow 0$ immediately follows.

Remark 3.2. In Theorem 3.1, we remove one sufficient condition used by Takahashi, Takahashi and Toyoda [4], namely, $\left|r_{n}-r_{n+1}\right| \rightarrow 0$.

Remark 3.3. In a similar way to [6], we can apply our results to the variational inequalities, the split feasibility problem, and the convexly constrained linear inverse problem.

References

[1] P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operator, Optimization 53 (2004), 475-504.
[2] K. Goebel and W. A. Kirk, Topics on Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
[3] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912.
[4] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), 27-41.
[5] F. Wang and H. Cui, On the contraction-proximal point algorithms with multi-parameters, J. Glob. Optim. 54 (2012), 485-491.
[6] F. Wang and H. K. Xu, Strongly convergent iterative algorithms for solving a class of variational inequalities, J. Nonlinear Convex Anal. 11 (2010), 407-421.
[7] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66 (2002), 240-256.
[8] H. K. Xu, Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150 (2011), 360-378.

Manuscript received May 15, 2013
revised September 26, 2013
Fenghui Wang
Department of Mathematics, Luoyang Normal University, Luoyang 471022, P.R. China E-mail address: wfenghui@gmail.com

[^0]: 2010 Mathematics Subject Classification. 47J20, 49J40, 47H05, 47H10, 47H09.
 Key words and phrases. Maximal monotone mapping, averaged mapping, inverse-strongly monotone mapping, monotone inclusions, variational inequality.

 This work is supported by the National Natural Science Foundation of China (grant no. 11301253, 11271112).

