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WEAK AND STRONG CONVERGENCE THEOREMS FOR
COMMUTATIVE FAMILIES OF POSITIVELY HOMOGENEOUS
NONEXPANSIVE MAPPINGS IN BANACH SPACES

WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

ABSTRACT. In this paper, we first prove a weak convergence theorem by Mann’s
iteration for a commutative family of positively homogeneous nonexpansive map-
pings in a Banach space. Next, using the shrinking projection method defined
by Takahashi, Takeuchi and Kubota, we prove a strong convergence theorem for
such a family of the mappings. These results are new even if the mappings are
linear and contractive.

1. INTRODUCTION

Let N be the set of positive integers. Let E be a real Banach space with norm || - ||
and let C be a closed and convex subset of E. Let T" be a mapping of C into itself.
We denote by F(T) the set of fixed points of T. A mapping T : C' — C' is called
nonexpanswe if | Tx —Ty|| < ||z —y|| for all z,y € C. Let C be a closed convex cone
of E. A mapping T : C — C' is called positively homogeneous if T(ax) = oT(z)
for all z € C and o > 0. From Reich [27] we know a weak convergence theorem
by Mann’s iteration [20] for nonexpansive mappings in a Banach space: Let E
be a uniformly convex Banach space with a Fréchet differentiable norm and let
T : C — C be a nonexpansive mapping with F(T') # (). Define a sequence {z,} in
Cbyz=x¢€C and

Tnt1 = nZp + (1 —ap)Tx,, VneN,

where {a;, } is a real sequence in [0, 1] such that > > | o, (1 —a,,) = co. Then, {z,}
converges weakly to z € F(T).

In this theorem, the fixed point z is characteraized under any projections in a
Banach space. Recently, Takahashi and Yao [45] proved a theorem for positively
homogeneous nonexpansive mappings in a Banach space. In the theorem, the limit
of weak convergence is characteraized by using a sunny generalized nonexpansive
retraction in the sense of Ibaraki and Takahashi [9]. On the other hand, Nakajo and
Takahashi [25] proved a strong convergence theorem for nonexpansive mappings in
a Hilbert space by using the hybrid method in mathematical programming: Let
C' be a closed and convex subset of a Hilbert space H and let T : C' — C be a
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nonexpansive mapping with F(T) # (). Let {a,} be a real sequence in [0, 1] such
that 0 < ay, < a < 1 for all n € N. Define a sequence {x,} in C by z; =z € C and

Up = anTy + (1 — o) Ty,
Co=1{2€C: flun — 2] < o — 2},

n=1{2€C:(xy,—2z,x—x,) >0},
Tni1 = Pe,ng,z, Vn €N,

where Pc, g, is the metric projection of H onto C,, N Q. Then, {x,} converges
strongly to z € F/(T), where z = Pp(ryz and Pp(ry is the metric projection of H
onto F(T).

Such a strong convergence theorem for nonexpansive mappings has not extended
to Banach spaces. Takahashi and Yao [45] also proved such a theorem for positively
homogeneous nonexpansive mappings. Very recently, Takahashi, Wong and Yao
[43] obtained mean convergence theorems for commutative families of positively
homogeneous nonexpansive mappings in Banach spaces.

Our purpose in this paper is first to prove a weak convergence theorem by Mann’s
iteration for a commutative family of positively homogeneous nonexpansive map-
pings in a Banach space. In the theorem, the limit of weak convergence is also
characteraized by using a sunny generalized nonexpansive retraction. Furthermore,
using the shrinking projection method defined by Takahashi, Takeuchi and Kubota,
we prove a strong convergence theorem for a commutative family of positively ho-
mogeneous honexpansive mappings in a Banach space. These results are new even
if the mappings are linear and contractive.

2. PRELIMINARIES

Let E be a real Banach space with norm || - || and let E* be the dual of E. We
denote the value of y* € E* at z € E by (z,y*). When {z,} is a sequence in
E, we denote the strong convergence of {z,} to z € FE by z,, — x and the weak
convergence by x, — x. The modulus ¢ of convexity of F is defined by

5(e) = inf {1

for every € with 0 < € < 2. A Banach space FE is said to be uniformly convex if
d(e) > 0 for every e > 0. A uniformly convex Banach space is strictly convex and
reflexive. Let C be a nonempty subset of a Banach space E. A mapping T : C' — C
is quasi-nonexpansive if F(T) # 0 and ||[Tx — y|| < ||l — y|| for all z € C and
y € F(T), where F(T) is the set of fixed points of T'. If C'is a closed convex subset
of F and T : C — C is quasi-nonexpansive, then F(T') is closed and convex; see
Itoh and Takahashi [11]. The following result was proved by Browder; see [34].

[z + yll
-zl =Lyl <1z —yll =2 e

Lemma 2.1. Let E be a uniformly convexr Banach space and let C be a bounded
closed convex subset of E. Let T : C — C be a nonexpansive mapping. If {x,} is a
sequence of C such that r, — u and x, — Tx, — 0, then u is a fived point of T.

Let C' be a nonempty closed convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x € E, there exists a unique element
z € C such that ||z —z|| < ||z —y|| for all y € C. Putting z = Po(z), we call Po the



WEAK AND STRONG CONVERGENCE THEOREMS 559

metric projection of E onto C. The duality mapping J from E into 2F" is defined
by

Jr={z* € B*: {x,2%) = ||z]* = [|=*|1*}
for every v € E. Let U = {z € E : ||z|| = 1}. The norm of E is said to be Gateaux
differentiable if for each x,y € U, the limit

ety — ]

t—0 t

exists. In the case, E is called smooth. We know that E is smooth if and only if
J ia a single valued mapping of E into E*. We also know that FE is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a
single-valued bijection and in this case, the inverse mapping J~! coincides with the
duality mapping J, on E*. The norm of F is said to be Fréchet differentiable if for
each x € U, the limit (2.1) is attained uniformly for y € U. It is known that if the
norm of E is Fréchet differentiable, then J is norm to norm continuous. For more
details, see [34]. We know the following result;

(2.1)

Lemma 2.2. Let E be a smooth Banach space and let J be the duality mapping on
E. Then, (x —y,Jx— Jy) > 0 for all x,y € E. Furthermore, if E is strictly convex
and (x —y, Jx — Jy) =0, then z = y.

The following result was proved by Xu [46].
Lemma 2.3 (Xu [46]). Let E be a uniformly convexr Banach space and let r > 0.
Then there exists a strictly increasing, continuous, and convex function g : [0, 2r] —
[0,00) such that g(0) =0 and

laz + (1 = a)yll* < aflz|* + (1 — @) |y|* — a(1 — a)g(||z — ylI)

forall z,y € B, and a € [0,1] , where B, = {z € E : ||z| < r}.

Let E be a smooth Banach space. The function ¢: E x E — (—00,00) is defined
by

Sz, y) = ||z]* = 2(x, Jy) + [ly||?

for x,y € F, where J is the duality mapping of F; see [1] and [14]. We have from
the definition of ¢ that

(2.2) d(x,y) = d(x,2) + o(z,y) + 2(x — 2, Jz — Jy)
for all z,y,2 € E. From (||z| — |ly|)? < ¢(z,y) for all 2,y € E, we can see that
¢(z,y) > 0. If E is additionally assumed to be strictly convex, then

(2.3) d(x,y) =0z =y.

If C is a nonempty closed convex subset of a smooth, strictly and reflexive Banach
space E, then for all z € E there exists a unique z € C' (denoted by IIoz) such that

(2.4) P(z,z) = ggg Py, ).

The mapping Il¢ is called the generalized projection from E onto C; see Alber [1],
Alber and Reich [2], and Kamimura and Takahashi [14]. The following lemmas are
well known; see, for instance, [14].
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Lemma 2.4. Let E be a smooth and uniformly convexr Banach space and let {x,}
and {yn} be sequences in E such that {x,} or {yn} is bounded. Iflim, oo ¢(Tpn,yn) =
0, then lim, oo ||Zn — ynl|| = 0.

Lemma 2.5. Let E be a smooth and uniformly convexr Banach space and let r > 0.
Then, there exists a strictly increasing, continuous and convex function g : [0, 00) —
[0,00) such that g(0) =0 and

9([lz —yl) < o(z,y)
for all x,y € B,, where B, ={z € E : |z|| < 0}.

Let E be a Banach space and let D be a nonempty closed subset of E. A mapping
R: FE — D is said to be sunny if

R(Rx 4+ t(x — Rx)) = Rz, Vze€ E, Vt>0.

A mapping R : E — D is a retraction if Rx = x for all x € D. Let E be a smooth
Banach space F and let C' be a nonempty subset of £. A mapping T : C — C is
generalized nonexpansive [9] if F(T) # () and

(2.5) o(Tx,y) < ¢(z,y)

for all x € C' and y € F(T). A nonempty subset of a smooth Banach space E is
said to be a generalized nonexpansive retract (resp. sunny generalized nonexpansive
retract) of E if there exists a generalized nonexpansive retraction (resp. sunny
generalized nonexpansive retraction) of E onto D. From [9], we know the following
lemmas.

Lemma 2.6 (Ibaraki and Takahashi [9]). Let E be a smooth, strictly convex and
reflexive Banach space and let D be a nonempty closed subset of E. Then, a sunny
generalized nonexpansive retraction of E onto D is uniquely determined.

Lemma 2.7 (Ibaraki and Takahashi [9]). Let E be a smooth, strictly convex and
reflexive Banach space and let D be a monempty closed subset of E. Suppose that
there exists a sunny generalized nonexrpansive retraction R of E onto D and let
(z,z) € E x D. Then, the following hold:

(1) z = Rx if and only if (x — z,Jy — Jz) <0, Yy € D;

(2) ¢(Rz,z) + ¢(x, Rx) < ¢(x, 2).

In 2007, Kohsaka and Takahashi [16] proved the following results.

Lemma 2.8 (Kohsaka and Takahashi [16]). Let E be a smooth, strictly convex
and reflexive Banach space and let Cy be a nonempty closed convexr subset of E*.
Suppose that e, is the generalized projection of E* onto Cy. Then, R defined by
R = J Mg, J is a sunny generalized nonexpansive retraction of E onto J~1C,.

Lemma 2.9 (Kohsaka and Takahashi [16]). Let E be a smooth, strictly conver and
reflexive Banach space and let D be a nonempty subset of E. Then, the following
conditions are equivalent

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.
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In this case, D 1is closed.

Lemma 2.10 (Kohsaka and Takahashi [16]). Let E be a smooth, strictly convex
and reflerive Banach space and let D be a nonempty closed subset of E. Suppose
that there exists a sunny generalized nonexpansive retraction R of E onto D and let
(x,z) € E x D. Then, the following conditions are equivalent

(1) z = Rx;
(2) ¢(z,2) = mingep ¢(z,y).

From Ibaraki and Takahashi [10] we know the following lemma.

Lemma 2.11 (Ibaraki and Takahashi [10]). Let E be a smooth, strictly conver and
reflexive Banach space and let T be a generalized nonexpansive mapping of E into
itself. Then, F(T) is a sunny generalized nonexpansive retract of E.

From Takahashi and Yao [45] we also have the following lemma.

Lemma 2.12 (Takahashi and Yao [45]). Let E be a Banach space and let C' be a
closed conver cone of E. Let T : C — C be a positively homogenuous nonexpansive
mapping. Then, for any x € C' and m € F(T), there exists j € Jm such that

<$ - Txa .7) S 07
where J is the duality mapping of E into E*.
Using Lemma 2.12, Takahashi and Yao [45] ontained the following theorem.

Theorem 2.13 (Takahashi and Yao [45]). Let E be a smooth Banach space and
let C' be a closed conver cone of E. Let T : C — C be a positively homogenuous
nonexpansive mapping. Then, T is a generalized nonexpansive mapping.

For a sequence {C,,} of nonempty, closed and convex subsets of a reflexive Banach
space E, define s-Li,C,, and w-Ls,C,, as follows: z €s-Li,C,, if and only if there
exists {x,} C E such that {z,} converges strongly to = and that z, € C, for
all n € N. Similarly, y ew-Ls,C,, if and only if there exists a subsequence {Cy, }
of {C,} and a sequence {y;} C E such that {y;} converges weakly to y and that
yi € Cy, for all i € N. If Cj satisfies that

(2.6) Cy =s-Li,,C,, =w-Ls,,Cy,

it is said that {C),} converges to Cj in the sense of Mosco [24] and we write Cy =M-
limy, 00 Cy. It is easy to show that if {C), } is nonincreasing with respect to inclusion,
then {C)} converges to N2, C,, in the sense of Mosco. For more details, see [24].
We know the following theorem [7].

Lemma 2.14. Let E be a smooth Banach space and let E* have a Fréchet differ-
entiable norm. Let {C,} be a sequence of nonempty closed convexr subsets of E.
If Cy =M-lim,,_so C,, exists and nonempty, then for each x € E, Il x converges
strongly to Illcyx, where llc, and Ilc, are the generalized projections of E onto Cy,
and Cy, respectively.
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3. SEMIGROUPS OF POSITIVELY HOMOGENEOUS NONEXPANSIVE MAPPINGS

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a € S the mappings s — a-s and s +— s-a from S to
S are continuous. In the case when S is commutative, we denote st by s+ ¢. Let
B(S) be the Banach space of all bounded real valued functions on S with supremum
norm and let C'(S) be the subspace of B(S) of all bounded real valued continuous
functions on S. Let u be an element of C'(S)* (the dual space of C(S)). We denote
by p(f) the value of p at f € C(S). Sometimes, we denote by p:(f(t)) or uef(t)
the value p(f). For each s € S and f € C(S5), we define two functions I, f and r,f
as follows:

(s )(t) = f(st) and  (rsf)(t) = f(ts)
for all t € S. An element p of C'(S)* is called a mean on C(S) if u(e) = ||p| = 1,
where e(s) = 1 for all s € S. We know that p € C(S)* is a mean on C(S) if and
only if

inf f(s) < p(f) <sup f(s), VfeC(9).

seS ses

A mean p on C(S) is called left invariant if pu(lsf) = u(f) for all f € C(S) and
s € S. Similarly, a mean p on C(S) is called right invariant if p(rsf) = u(f) for all
feC(S)and s € S. A left and right invariant invariant mean on C(S) is called an
invariant mean on C(S). The following theorem is in [34, Theorem 1.4.5].

Theorem 3.1 ([34]). Let S be a commutative semitopological semigroup. Then
there exists an invariant mean on C(S), i.e., there exists an element p € C(S)*
such that p(e) = ||\p|| =1 and p(rsf) = u(f) for all f € C(S) and s € S.

Let E be a Banach space and let C' be a nonempty, closed and convex subset of
E. Let S be a semitopological semigroup and let S = {Ts : s € S} be a family
of nonexpansive mappings of C into itself. Then & = {7y : s € S} is called a
continuous representation of S as nonexpansive mappings on C' if T = T,T; for all
s,t € S and s — Tz is continuous for each x € C. We denote by F(S) the set of
common fixed points of T, s € 5, i.e.,

F(S) =n{F(Ty) : s € S}.

The following definition [31] is crucial in the nonlinear ergodic theory of abstract
semigroups. Let S be a topological space and Let C'(S) be the Banach space of
all bounded real valued continuous functions on S with supremum norm. Let E
be a reflexive Banach space. Let u : S — E be a continuous function such that
{u(s) : s € S} is bounded and let u be a mean on C(S). Then there exists a unique
element zg of FE such that

pslu(s), ™) = (20,2%), Va*e E".

We call such zp the mean vector of u for u and denote by 7(u)u, i.e., 7(p)u = 2. In
particular, if S = {Ts : s € S} is a continuous representation of S as nonexpansive
mappings on C such that F(S) # 0 and u(s) = Tsz for all s € S, then there exists
zg € C such that

ws(Tsx, ) = (20,2%), Vz*e E*.
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We denote such zg by Tj,x. A net {j1o} of means on C(S) is said to be asymptotically
invariant if for each f € C'(S) and s € S,

ta(f) = pallsf) = 0 and  pa(f) — pa(rsf) — 0,
and it is said to be strongly asymptotically invariant if for each s € S,
lsta — pall = 0 and  |[rpa — pall = 0,

where [7 and r} are the adjoint operators of I5 and rg, respectively. Such nets were
first studied by Day [6]. The following result is in Shioji and Takahashi [30]; see
also [19].

Lemma 3.2. Let S be a commutative semitopological semigroup. Let E be a uni-
formly convex Banach space, let C' be a nonempty, closed and convexr subset of F,
and let B be a bounded subset of C. Let S = {Ts : s € S} be a continuous repre-
sentation of S as nonexpansive mappings on C' such that F(S) # 0. Let {ua} be a
strongly asymptotically invariant net of means on C(S). Then for anyt € S,

lim sup || 13T« — Ty, x| = 0.
® zeB

Using Lemma 2.12, we also the following result.

Lemma 3.3. Let S be a commutative semitopological semigroup. Let E be a smooth
and reflezive Banach space and let S = {Ts : s € S} be a continuous representation
of S as positively homogeneous nonexpansive mappings of E into itself. Let p be
a mean on C(S) and let T,z be a mean vector of {Tsx : s € S} and p for every
x € E. Then

d(Tux,m) < ¢p(x,m), Vee L, meF(S).

Proof. Let x € E. Since F(S) is nonempty, {Tsz : s € S} is bounded. Then there
exists T,z € I such that

ps(Tox,z*) = (Tyx,x*), Va* € E*.
We have that
[ Tx|l = sup{ [(Tpx, 2)] - [[27]| = 1}
= sup{ |ps(Tsw,2")| « [|27]| = 1}
< sup{ [l - sup [(Tsw, z")[ « |27 = 1}
sES
< sup{ sup || Tsz| - ||z7]| : [|z"[| = 1}
seS
< sup{ sup [|lz[| - [[27]| : [|"] = 1}
ses
= ||l|l.
Using Lemma 2.12, we have that for any m € F(S),
$(Tux,m) = | Tux|? = 2Tz, Jm) + |[m]?
< |l = 2us(T, Jm) + [|m]?
< l)|* = 2ps(z, Jm) + [lm]?
= |lz)|* — 2{z, Jm) + ||m]?
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This completes the proof. g

4. WEAK CONVERGENCE THEOREMS

In this section, we prove a weak convergence theorem of Mann’s iteration [20]
for a commutative family of positively homogenuous nonexpansive mappings in a
Banach space. Using Lemma 3.3, we have the following result.

Lemma 4.1. Let S be a commutative semitopological semigroup. Let E be a smooth
and uniformly conver Banach space and let S = {Ts : s € S} be a continuous
representation of S as positively homogeneous nonexpansive mappings of E into
itself. Let {un} be a sequence of means on C(S). Let {an} be a sequence of real
numbers such that 0 < «, < 1 and let {z,} be a sequence in E generated by
r1=x € FE and

Tnt1 = Ty + (1 — )Ty, zn, Yn €N
If Rp(sy is a sunny generalized nonexpansive retraction of E onto F(S), then
{Rp(s)yTn} converges strongly to z € F(S).
Proof. Let u € F(S). Using Lemma 3.3, we have that

d(Tni1,u) = Planxy, + (1 — o) Ty, Tn, )
< and(Tn, u) + (1 — on)P(T), xn, uw)
< 0 (T, u) + (1 — o) (T, u)
= ¢(Tp,u).

So, limy, 0 ¢(2n,u) exists. Since {¢(xp,u)} is bounded, {z,} and {71}, ,x,} are
bounded. Define y,, = Rp(s)zn for all n € N. Since ¢(vp41,u) < ¢(2n,u) for all
u € F(S), from y, € F(S) we have

(4‘1) ¢($n+1ayn) < ¢(xn7yn)'

From Lemma 2.7 and (4.1), we have

¢(Tnt1, Rp(s)Tnt1)

¢ (Tnt1,Yyn) — ¢(Rp(s)Tn+1,Yn)
(xn-&-l; yn) - ¢(yn+17 Yn)

< (b(xn-&-l; yn)

A(Tpy1, yn+1)

Then ¢(zn, yn) is a convergent sequence. We also have from (4.1) that for all m € N,

¢(mn+m7 yn) < ¢($n7 yn)

From ypn4m = Rp(s)Tn+m and Lemma 2.7, we have

A(Yntm>Yn) + O(Tntms Yntm) < A Tnpm, Yn) < (T, Yn)
and hence
O(YntmsYn) < (Z)(:Un, Yn) — O(Tntm, Yntm)-
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Using Lemma 2.5, we have that

IUYntm — ynll) < O(Yntm>Yn) < (@0, Yn) — S(Tntms Yntm)s

where g : [0,00) — [0,00) is a continuous, strictly increasing and convex function
such that g(0) = 0. Then, the properties of g yield that Rp(s)z, converges strongly
to an element z of F(S). O

Using Lemma 4.1, we prove the following theorem.

Theorem 4.2. Let S be a commutative semitopological semigroup. Let E be a
smooth and uniformly convex Banach space and let S = {Ts : s € S} be a continuous
representation of S as positively homogeneous monexpansive mappings of E into
itself. Assume that a sequence {un} of means on C(S) is strongly asymptotically
invariant. Let {a,} be a sequence of real numbers such that 0 < o, < a < 1 for
some a € R with 0 < a < 1. Then, a sequence {x,} generated by vr1 =z € E and

converges weakly to z € F(S). Further, if E has a Fréchet differentiable norm, then
z = limy o0 Rp(s)Tn, where Rp(s) is a sunny generalized nonexpansive retraction

of E onto F(S).
Proof. For x € E and m € F(S), put r = ||z — m|| and set
X={uekFE:|u-—m|<r}

Then, X is a nonempty, bounded, closed and convex suset of . Furthermore, X
is Ts-invariant for every s € S and contains 1 = x. From Lemma 2.3, there exists
a continuous, strictly increasing and convex function g : [0,00) — [0, 00) such that
9(0) = 0 and

|nt1 —mlf?

lanan + (1 — o) Ty, n — m||2

IA

anl|lzn —m|* + (1 = an)|| T, w0 — m|?
—ap(l - Ozn)g(HTunxn — znl)
(4.2)

IN

anllzn = mlf* + (1 — ag)|lzn — m|f?
= an(1 = an)g([| Ty, xn — nl)

= |lzn — m|* — an(1 - n)g(| Ty @ — nl|)

< lzn —m|®
So, limy,_ye0 ||z, — m|| exists. Since 0 < a,, < a < 1, we have from (4.2) that
(43)  an(l = @)g(ITuzn — 2all) < an(l = an)g(ITpn — 2l

< lzn = m|? = [lznss —m|.

Since lim,, o0 ||zn, — m|| exists, we have from (4.3) that
(1.4) Tim ([T — 22 = 0.
From the properties of g and {a,}, we have

(4.5) lim o, ||Ty,zn — x| = 0.

n—oo
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In fact, take any subsequence {aun,|Ty, Tn; — Tnll} of {an||Ty,zn — znll}. If
lim; o0 v, = 0, then lim;_,oo amHTunime — X, || = 0. If lim; o0 vy, # 0, then
there exist ¢ > 0 and a subsequence {ani].} of {ay,} such that ;= &> 0 for all
j € N. Then we have from (4.4) that g(||T#nij Tn;, —Tn;, ||) = 0. From the properties

of g, we have ||T, fing, Ty Ty, || = 0 and hence O, IIT, ni, iy Ty, || = 0. Therefore

7

nan;O an || Ty, xn — xp|| = 0.

Using (4.5) and the definition of {x,}, we have that
(4.6) Tpt1 — Ty, xn = an(xy — Ty, ) — 0.
We have from Lemma 3.2 that for any s € .S,

|Tni1 — Tsxniall < || Tnp1 — T/—annH
(4.7) + ||Tunxn - TsTunl‘n” + ||T8Tun$n — Tswpy1|
S 2H$n+1 - T/‘Lnan + ||T;Ufnxn - TSTNTL$”” — 0
Since E is reflexive and {x,} is bounded, there exists a subsequence {x,,} of {z,}
such that x,, — v for some v € X. Since F is uniformly convex and lim,, o ||Ts2n—
xn|| =0 for all s € S, we have from Lemma 2.1 that v is a fixed point of Ts. Thus
v € F(S). Let {xy,} and {z,,} be two subsequences of {z,,} such that x,, — u and
Tp; — v. We have that u,v € F(S). As in the proof of Lemma 4.1, we have that
for any m € F(S),
(@nt1,m) = ¢(an®n + (1 — an) Ty, Tn, m)
< an¢(xn7 m) + (1 - an)¢(Tunxn7 m)
< ¢(zn,m)
for all n € N. Then, lim,_,o ¢(x,, m) exists. Put
a= lim (¢($na U) - ¢(xn7 ’U))
n—oo
Since ¢(xp,u) — ¢(Tn,v) = 2(xp, Jv — Ju) + ||Jul|*> — ||v||?, we have
a = 2(u, Ju = Ju) + [ful* — [|v]|?
and
a = 2(v, Jv — Ju) + Jul* — ||v]*.
From these equalities, we obtain
(u—v,Ju— Jv) =0.

Since J is strictly monotone, it follows that u = wv; see [34]. Therefore, {z,}
converges weakly to an element u of F(S). On the other hand, we know from
Lemma 4.1 that {Rp(s)z,} converges strongly to 2z € F'(S). From Lemma 2.7, we
also have
(acn - RF(S)xna JRF(S)ZL‘n — Ju> > 0.

Since E has a Fréchet differentiable norm, the duality mapping J is norm-to-norm
continuous. So, we have (u — z,Jz — Ju) > 0. Since J is monotone, we also have
(u—z,Jz — Ju) <0. So, we have (u — z,Jz — Ju) = 0. Since F is strictly convex,
we have z = u. This completes the proof. Il
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Using Theorem 4.2, we obtain the following new result for linear contractive
mappings of F into itself.

Theorem 4.3. Let E be a smooth and uniformly convex Banach space and Let
T : E — FE be a linear contractive mapping. Let {c,} be a sequence of real numbers
such that 0 < a,, < 1 and Y2 | an(l — ) = 0o. Then, a sequence {x,} generated
byzry =x € E and

Tpt1 =y + (1 — ap)Tx,, VneN

converges weakly to z € F(T). Further, if E has a Fréchet differentiable norm, then
z = limy,_, 00 Ry, where R is a sunny generalized nonexpansive retraction of E onto

F(T).

Proof. A linear contractive mapping T : E — FE is a positively homogenuous non-
expansive mapping such that 7(0) = 0. From Theorem 4.2, we get the desired
result. 0

5. STRONG CONVERGENCE THEOREMS

In this section, we prove a strong convergence theorem by a hybrid method called
the shrinking projection method for positively homogenuous nonexpansive mappings
in a Banach space.

Theorem 5.1. Let S be a commutative semitopological semigroup. Let E be a
uniformly convex Banach space which has a Fréchet differentiable norm and let
S = {T; : s € S} be a continuous representation of S as positively homogeneous
nonezpansive mappings of E into itself. Let {u,} be a strongly asymptotically in-
variant sequence of means on C(S). Let {ay} be a sequence of real numbers such
that 0 < oo, < a < 1. Let {x,,} be a sequence generated by x1 =z € E, C1 = E and

Up = anp + (1 — ay) T, xn,
Cn+1 = {Z € Cy: ¢(umz) < ¢(xmz)}7

Tny1 = Re, v, VnEN,

where R, ., is the sunny generalized nonexpansive retraction of E onto Chy1.
Then, {x,} converges strongly to z = Rp(syx, where Rp(s) is the sunny gener-
alized nonexpansive retraction of E onto F(S).

Proof. Since Ty : E — FE is a generalized nonexpansive mapping for every s € .S,
we have from Lemma 2.11 that F'(S) is a sunny generalized nonexpansive retract
of E. We shall show that JC), are closed and convex and F(S) C C,, for all n € N.
It is obvious from the assumption that JC; = JE = E* is closed and convex, and
F(S) C Cy. Suppose that JC}, is closed and convex and F(S) C Cy, for some k € N.
From the definition of ¢, we have that for z € Cj,

P(ug, z) < ¢(xk, 2)

= luell? = lll® = 2(ue — 21, J2) < 0.
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So, JC%41 is closed and convex. If z € F(S) C Cf, then we have

d(un, 2) = p(anzn + (1 — an) Ty, n, 2)
< and(n, 2) + (1 — an)d(Ty, Tn, 2)
< and(Tn, 2) + (1 — an)p(zy, 2)
= ¢(xn, 2).

Hence, we have z € Cy1. By induction, we have that JC), are closed and convex
and F(S) C C, for all n € N. Since JC,, is closed and convex, from Lemma 2.6
there exists a unique sunny generalized nonexpansive retraction R¢, of E onto C),.
We also know from Lemma 2.8 that such R¢, is denoted by J —I JC,J, where J is
the duality mapping of E and Ilj¢, is the generalized projection of E onto JC,.
Thus, {z,} is well-defined.

Since {JC,} is a nonincreasing sequence of nonempty, closed and convex subsets
of E* with respect to inclusion, it follows that

(5.1) 0 # JF(S) C M- lim JC, = N2, JCy.

Put C5 = N2, JCy,. Then, by Theorem 2.14 we have that {Il;¢, ., Jx} converges
strongly to x5 = lcxJx. Since E* is a Fréchet differencial norm, J ~1 is continuous.

So, we have
Tni1 = Rpix = J Mg, Jo — J 'z,

To complete the proof, it is sufficient to show that J _1:1:3 = Rp(s)z.
Since z, = Rc,x and 2,41 = Rg, ;2 € Cpy1 C Cy, we have from Lemma 2.7
and (2.2) that

0<2(x—zp, Joy, — JTnt1)
= ¢(x, Tp41) — AT, 2n) — AT, Tny1)
< O(x, 2ni1) — (@, 20).
Thus we get that
(52> qb(l', xn) < ¢($7 anrl)‘
Furthermore, since x,, = R¢,x and z € F(T') C C,,, from Lemma 2.10 we have
(5.3) oz, 2n) < d(, 2).

Then we have that lim, o ¢(x,z,) exists. This implies that {z,} is bounded.
Hence, {u,} and {T},,z,} are also bounded. From

Qb(xn, :L‘TH*I) = ¢(chx7 xTH*l)
= ¢($7 :L'nJrl) - Qb(x, chl')
= ¢($7:L'n+1) - Qb(l‘,l’n) — 0,

we have that

(5'4) ¢($na anrl) — 0.
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From z,41 € Cp41, we have that ¢(un,zni1) < (T, Tni1). So, we get that
d(tn, Tpy1) — 0. Using Lemma 2.4, we have

nlggo un — Tpi1ll = nlgrolo |2n — Tpia]| = 0.
So, we have
(5.5) [un — zpl| < lJun — g1 + [[Tas1 — 20| — 0.
Since ||zn — un|| = ||zn — anzn — (1 — o) Ty, 20| = (1 — o)||zn — Ty, 20| and
0 < ap <a<1, we have that
(5.6) | Ty, 20 — zn|| = 0.

We have Lemma 3.2 that for any s € S,
|20 — Tsznll < |20 — Tunan + HT/—Ln':Un - TsTunﬂan + HTsTunxn — Tszn ||
<2l|zy — Ty, xnl| + (| T, n — TsTy, xnl| — 0.
Since xp+1 — J _1:1:(’3 and Ty is continuous, we have J _1:1:3 € F(Ty). Therefore,
we have J 1z} € F(S).
Put 29 = Rp(s)®. Since zg = Rp(s)z C Cpy1 and zp41 = Re,,
(5.7) ¢(z, n11) < 9(2, 20).

So, we have that

xz, we have that

¢z, J 7 ap) = al® - 2(x, 2g) + T g
= lim (||z]* - 2(z, Jon) + [l2a]*)
n—oo

= lim ¢(z,zy)

n—o0
< ¢(z, 20).
Then we get 29 = J1xj. Hence, {z,} converges strongly to zg. This completes the
proof. O

Using Theorem 5.1, we prove a strong convergence theorem for linear contractive
mappings in a Banach space.

Theorem 5.2. Let S be a commutative semitopological semigroup. Let E be a
uniformly convexr Banach space which has a Fréchet differentiable norm and let
S ={T; : s € S} be a continuous representation of S as linear contractive mappings
of E into itself. Let {u,} be a strongly asymptotically invariant sequence {un} of
means on C(S). Let {an} be a sequence of real numbers such that 0 < a,, < a < 1.
Let {x,} be a sequence generated by x1 =z € E, C; = E and

Up = np + (1 — an)T),, xn,
Cn—i—l = {Z €Cy: QZ)(U“,Z) < ¢(xn7z)},
Tny1 = Re,,x, Vn €N,

where R, ., is the sunny generalized nonexpansive retraction of E onto Chy1.
Then, {x,} converges strongly to z = Rp(syx, where Rp(sy is the sunny gener-
alized nonexpansive retraction of E onto F(S).
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Proof. A linear contractive mapping Ts : E — FE is positively homogenuous and

nonexpansive. So, using Theorem 5.1, we obtain the desired result. O
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