
Copyright 2014



548 D. R. SAHU, V. COLAO, AND G. MARINO

(0, 1) and let {δn} be a sequence in (0,∞) such that limn→∞ bn = limn→∞
δn
bn

= 0.

If the approximate solutions ỹn ∈ C satisfy

(1.2) ∥bnRỹn + (1− bn)(I − T )ỹn∥ ≤ δn for all n ∈ N,
then {ỹn} converges strongly to an element y∗ ∈ F (T ) which uniquely solves the
variational inequality:

⟨Ry∗, J(y∗ − v)⟩ ≤ 0 for all v ∈ F (T ).(1.3)

Let R+ be the set of nonnegative real numbers and let F := {T (t) : t ∈ R+} be
a one-parameter family of mappings from C to itself. F is said to be a strongly
continuous semigroup of mappings if

(i) T (0)x = x for all x ∈ C;
(ii) T (s+ t) = T (s)T (t) for all s, t ∈ R+;
(iii) for each x ∈ C, the mapping T (·)x from R+ into C is continuous.

Moreover, F is said to be an uniformly continuous semigroup of mappings, if con-
dition (iii) holds uniformly over any bounded subset of C.

We denote by F (F ) the set of all common fixed points of F , i.e., F (F ) :=∩
t∈R+ F (T (t)).

An interesting problem is to modify Browder’s result (1.1) to approximate a
common fixed point for a semigroup of nonexpansive mappings. Suzuki [15] proved
the following implicit iteration process in a Hilbert space.

Theorem 1.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let
F = {T (t) : t ∈ R+} be a strongly continuous semigroup of nonexpansive mappings
from C into itself with F (F ) ̸= ∅. Let {bn} be a sequence in (0, 1) and {tn} a
sequence in (0,∞) satisfying limn→∞ tn = limn→∞ bn/tn = 0. Fix u ∈ C and define
a sequence {yn} by

(1.4) yn = bnu+ (1− bn)T (tn)yn for all n ∈ N.
Then {yn} converges strongly to the element of F (F ) nearest to u.

Xu [18] extended Suzuki’s result to uniformly convex Banach spaces with weakly
sequentially continuous duality mappings and he posed the following question. Can
the iteration sequence (1.4) provide the same result in Banach spaces that include
the Lp spaces, 1 < p < ∞?
To give a partial answer to the question, we deal with an important and widely stud-
ied generalization of nonexpansive mappings, that is the class of pseudo-contractions.
We say that a mapping T : C → C is said to be

(1) pseudo-contractive if for all x, y in C, there exists j(x − y) in J(x − y)
satisfying ⟨Tx− Ty, j(x− y)⟩ ≤ ∥x− y∥2;

(2) ϕ-strongly pseudo-contractive if there exists a strictly increasing function
ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that for all x, y in C, there exists
j(x−y) in J(x−y) satisfying ⟨Tx−Ty, j(x−y)⟩ ≤ ∥x−y∥2−ϕ(∥x−y∥)∥x−y∥;

(3) generalized Φ-pseudo-contractive (cf.[17]) if there exists a strictly increasing
function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that for all x, y in C, there
exists j(x−y) in J(x−y) satisfying ⟨Tx−Ty, j(x−y)⟩ ≤ ∥x−y∥2−Φ(∥x−y∥).
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We remark that R = I − T is accretive (resp. ϕ-strongly accretive, uniformly ac-
cretive) if T is pseudo-contractive (resp. ϕ-strongly pseudo-contractive, generalized
Φ-pseudo-contractive), where I is the identity operator.

Recently, applications of semigroups on the existence of solutions to certain par-
tial differential equations had been explored by Hester and Morales in [7]. They
proved that the semigroup result directly implies the existence of a unique global
solution to a time evolution equation of the form u′ = Au, where A is a combination
of derivatives.
Our concern now is the following:

Problem 1.3. Does iteration process (1.4) provide the same result for Lipschitz
pseudo-contractive semigroups F even in uniformly convex spaces?

In this paper, we prove a version of Theorem 1.1 for a uniformly continuous
semigroup of pseudocontractive mappings in a Banach space much more general
than uniformly convex spaces. This partially settles the open problem posed by Xu
[18] and Problem 1.3.

2. Preliminaries

Throughout this paper, N denotes the set of natural numbers, X is a real Banach
space, C is a nonempty, closed and convex subset of X, X∗ is the dual space of X
and J is the normalized duality mapping from X to 2X

∗
defined by

J(x) := {j ∈ X∗ : ⟨x, j⟩ = ||x||2 = ||j||2},

where ⟨·, ·⟩ denotes the generalized duality pairing. It is well known that if X∗ is
strictly convex, then J is single-valued.

Recall that X is said to be smooth provided the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x and y in SX = {x ∈ X : ∥x∥ = 1}. In this case, the norm
of X is said to be Gâteaux differentiable and it is said to be uniformly Gâteaux
differentiable if for each y ∈ S, this limit is attained uniformly for x ∈ S. X is said
to be uniformly smooth if the limit is attained uniformly for x, y ∈ X. Classical
examples of uniformly smooth Banach spaces are the Lp spaces, for 1 < p < ∞ (see
e.g., [1, 4]).
Let {xn} be a bounded sequence inX. Consider the functional ra(·, {xn}) : X → R+

defined by

ra(x, {xn}) = lim sup
n→∞

∥xn − x∥, x ∈ X.

The infimum of ra(·, {xn}) over C is said to be the asymptotic radius of {xn} with
respect to C and is denoted by ra(C, {xn}). A point z ∈ C is said to be an asymptotic
center of the sequence {xn} with respect to C if

ra(z, {xn}) = inf{ra(x, {xn}) : x ∈ C}.

The set of all asymptotic centers of {xn} with respect to C is denoted by Za(C, {xn}).
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X is said to satisfy property (I) (cf. [9]) if asymptotic center of every bounded
sequence in X with respect to closed convex subsets of X consists of exactly one
point.

Uniformly convex spaces are examples of this type Banach spaces (cf. [1, 5]). It
is known (cf. Lim [8]) that Za(C, {xn}) consists of a single point if X is reflexive
and uniformly convex in every direction.

We need the following known fact (cf. Morales [11, Proposition 11]).

Lemma 2.1. Let X be a reflexive Banach space with a uniformly Gâteaux differen-
tiable norm and let C be a closed and convex subset of X. Suppose {xn} is a bounded
sequence in C and v ∈ Za(C, {xn}). Then, there exists a subsequence {xnk

} of {xn}
such that

lim sup
k→∞

⟨u− v, J(xnk
− v)⟩ ≤ 0 for all u ∈ C.

A semigroup F := {T (t) : t ∈ R+} of Lipschitzian mappings from C into itself,
is said uniformly Lipschitzian if there exists a constant L > 0 such that ∥T (t)x −
T (t)y∥ ≤ L∥x− y∥ holds for any t ∈ R+ and for any x, y ∈ C.
Let C be a nonempty, closed and convex subset of a smooth Banach space X and
D a nonempty subset of C. Given an accretive operator R : C → X, we consider
the following variational inequality V ID(C,R):

find z ∈ D such that ⟨Rz, J(z − v)⟩ ≤ 0 for all v ∈ D.

We denote by ΩD(C,R) the set of solutions of variational inequality V ID(C,R).

Remark 2.2. If R is uniformly accretive and if ΩD(C,R) is nonempty, then this
last consists of a unique element.

Proof. Let z1, z2 ∈ ΩD(C,R). Then

⟨Rz1, J(z1 − z2)⟩ ≤ 0

and
⟨Rz2, J(z2 − z1)⟩ ≤ 0.

Summing the two inequalities and by the uniform accretivity of R, we get

Φ(∥z1 − z2∥) ≤ ⟨Rz1 −Rz2, J(z1 − z2)⟩ ≤ 0

for some strictly increasing function Φ, with Φ(0) = 0. From this last, it is easily
derived that z1 = z2. �

3. Main results

Firstly, we prove a result on the existence of common fixed points for a semigroup
of pseudo-contractions.We assume the existence of an approximated fixed point
sequence only for countable many elements of the semigroup.

Lemma 3.1. Let X be a reflexive Banach space satisfying property (I) and let C
be a nonempty closed convex subset of X. Let T = {T (t) : t ∈ R+} be a strongly
continuous semigroup of continuous pseudo-contractive mappings from C into itself
and let {tn} be a sequence in (0,∞) converging to 0.
Let {yn} be a bounded sequence in C such that limn→∞ ∥yn − T (tm)yn∥ = 0 for all
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m ∈ N and let y∗ be the unique element in Za(C, {yn}), then F (T ) is nonempty
and y∗ ∈ F (T ).

Proof. Fix m ∈ N. Since T (tm) is continuous and pseudo-contractive, we derive
from [10, Theorem 6] that gm := (2I − T (tm))−1 is a nonexpansive mapping from
C into itself.
Since

lim sup
n→∞

∥yn − gm(y∗)∥ ≤ lim sup
n→∞

∥gm(yn)− gm(y∗)∥+ lim sup
n→∞

∥yn − gm(yn)∥

≤ lim sup
n→∞

∥yn − y∗∥+ lim sup
n→∞

∥(2I− T (tm))−1(2yn− T (tm)yn)− (2I− T (tm))−1(yn)∥

≤ lim sup
n→∞

∥yn − y∗∥+ lim sup
n→∞

∥yn − T (tm)yn∥

= lim sup
n→∞

∥yn − y∗∥,

it follows that gm(y∗) ∈ Za(C, {yn}) and hence gm(y∗) = y∗ for any m ∈ N.
As a consequence, y∗ ∈

∩
n∈N F (tn), where {tn} ⊂ (0,∞) converges to 0. Applying

[16, Proposition 1], it is easily derived that y∗ ∈ F (F ). �
Our second lemma proves the existence of approximating fixed point sequences

for a lipschitz semigroup under mild assumptions on the Banach space.

Lemma 3.2. Let X be a Banach space and let C be a nonempty closed convex
subset of X. Let A : C → X be a bounded mapping (i.e. A maps bounded sets into
bounded sets) and let F = {T (t) : t ∈ R+} be a uniformly continuous semigroup of
uniformly Lipschitz mappings.
Let {bn} be a sequence in (0, 1) and let {tn} and {δn} be two sequences in (0,∞)
such that

lim
n→∞

tn = lim
n→∞

bn/tn = lim
n→∞

δn/tn = 0.

If {yn} ⊂ C is a bounded sequence of approximate solutions, i.e. it satisfies

(3.1) ∥bn(I −A)yn + (1− bn)(I − T (tn))yn∥ ≤ δn for all n ∈ N
then limn→∞ ∥yn − T (tm)yn∥ = 0 for all m ∈ N.

Proof. Let L > 0 be the Lipschitz constant of the semigroup F and assume that
{yn} is a bounded sequence in C satisfying (3.1).
Without loss of generality, we may assume that {bn} is a sequence in (0, δ] for some
δ ∈ (0, 1). Since {yn} and {Ayn} are bounded, there exists a constant K ≥ 0 such
that ∥(I −A)yn∥ ≤ K for all n ∈ N. Note that

∥(I − T (tn))yn∥ = (1− bn)
−1∥(1− bn)(I − T (tn))yn + bn(I −A)yn − bn(I −A)yn∥

≤ (1− bn)
−1(δn + bn∥(I −A)yn∥)(3.2)

≤ (1− δ)−1(δn +Kbn).

Let d̃ be the metric on X defined by

d̃(x, y) := sup
s∈R+

∥T (s)x− T (s)y∥.

By standard arguments, it is easily derived that

(3.3) ∥x− y∥ ≤ d̃(x, y) ≤ L∥x− y∥ for any x, y ∈ C,
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and that for any n ∈ N, T (tn) is nonexpansive with respect to d̃.
Let [·] be the integer part and fix m ∈ N. Then, for any n ≥ m,

∥yn − T (tm)yn∥ ≤ d̃(yn, T (tm)yn)

≤
[tm/tn]−1∑

i=0

d̃(T (itn)yn, T ((i+ 1)tn)yn)

+d̃(T ([tm/tn]tn)yn, T (tm)yn)(3.4)

=

[tm/tn]−1∑
i=0

d̃(T i(tn)yn, T
i(tn)T (tn)yn)

+d̃(T [tm/tn](tn)yn, T
[tm/tn](tn)T (tm − [tm/tn]tn)yn)

≤ (tm/tn)d̃(yn, T (tn)yn) + d̃(yn, T (sn)yn),

where sn := tm − [tm/tn]tn ≥ 0.
Note that by (3.2) and (3.3), we have

d̃(yn, T (tn)yn) ≤ L(1− δ)−1(δn +Kbn),

thus (3.4) becomes

(3.5) ∥yn − T (tm)yn∥ ≤ L(tm(1− δ)−1(δn/tn +Kbn/tn) + sup
y∈{yn}

∥y − T (sn)y∥).

Observe that
sn = tm − [tm/tn]tn ≤ tn → 0

and hence

(3.6) lim
n→∞

sup
y∈{yn}

∥y − T (sn)y∥ = 0,

by the uniform continuity of F .
On the other hand and by hypothesis,

lim
n→∞

tm(1− δ)−1(δn/tn +Kbn/tn) = 0,

which, together with (3.6) and (3.5), implies limn→∞ ∥yn − T (tm)yn∥ = 0 for any
fixed m ∈ N. �

We now prove our main result.

Theorem 3.3. Let X be a uniformly smooth Banach space, which satisfies property
(I). Let C ⊂ X be nonempty, closed and convex. Let A : C → X be a bounded and
continuous generalized Φ-pseudo-contractive mapping and F = {T (t) : t ∈ R+} a
uniformly continuous semigroup of uniformly Lipschitz pseudo-contractive mappings
from C into itself. Let {bn} be a sequence in (0, 1) and let {tn} and {δn} be two
sequences in (0,∞) such that

(3.7) lim
n→∞

tn = lim
n→∞

bn/tn = lim
n→∞

δn/tn = lim
n→∞

δn/bn = 0.

If the approximate solutions yn ∈ C satisfy (3.1) and {yn} is bounded, then

(a) F (F ) is nonempty,
(b) F (F ) ∩ ΩF (F )(I −A,C), is nonempty and
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(c) {yn} converges strongly to the unique element y∗ ∈ F (F )∩ΩF (F )(I−A,C)

Proof. (a) Assume that the approximate solutions yn ∈ C satisfy (3.1) and {yn} is
bounded. By Lemma 3.2, we have yn − T (tm)yn → 0 as n → ∞ for all m ∈ R.
Since X has property (I), it follows from Lemma 3.1 that F (F ) ∩ Za(C, {yn}) is
nonempty and singleton. In particular, F (F ) ̸= ∅.

(b) Let v ∈ F (F ). Set βn = ⟨bn(I −A)yn +(1− bn)(I −T (tn))yn, J(yn − v)⟩ and
cv = supn∈N ∥yn − v∥. Observe that βn ≤ δncv and

⟨yn − T (tn)yn, J(yn − v)⟩ = ⟨yn − v + T (tn)v − T (tn)yn, J(yn − v)⟩
= ∥yn − v∥2 − ⟨T (tn)yn − T (tn)v, J(yn − v)⟩
≥ 0 for all n ∈ N.

Thus,

⟨(I −A)yn, J(yn − v)⟩ = b−1
n ⟨bn(I −A)yn + (1− bn)(I − T (tn))yn

−(1− bn)(I − T (tn))yn, J(yn − v)⟩
= b−1

n βn − b−1
n (1− bn)⟨(I − T (tn))yn, J(yn − v)⟩

≤ b−1
n βn

≤ b−1
n δncv.(3.8)

Let y∗ be the unique element of Za(C, {yn}), which also lies in F (F ). By Lemma
2.1, there exists a subsequence {ynk

} such that

(3.9) lim sup
k→∞

⟨Ay∗ − y∗, J(ynk
− y∗)⟩ ≤ 0.

From (3.8), we have

∥ynk
− y∗∥2 = ⟨ynk

−Aynk
+Aynk

−Ay∗ +Ay∗ − y∗, J(ynk
− y∗)⟩

≤ b−1
n δnk

cy∗ + ∥ynk
− y∗∥2 − Φ(∥ynk

− y∗∥) + ⟨Ay∗ − y∗, J(ynk
− y∗)⟩,

which gives us that

Φ(∥ynk
− y∗∥) ≤ b−1

nk
δnk

cy∗ + ⟨Ay∗ − y∗, J(ynk
− y∗)⟩.(3.10)

Together with (3.9), this last implies that {ynk
} strongly converges to y∗.

Let v ∈ F (F ) and observe that, by (3.8),

⟨y∗ −Ay∗, J(y∗ − v)⟩ = ⟨(I −A)y∗, J(y∗ − v)⟩ − ⟨(I −A)y∗, J(ynk
− v)⟩

+⟨(I −A)y∗, J(ynk
− v)⟩ − ⟨(I −A)ynk

, J(ynk
− v)⟩

+⟨(I −A)ynk
, J(ynk

− v)

≤ |⟨(I −A)y∗, J(y∗ − v)⟩ − ⟨(I −A)y∗, J(ynk
− v)⟩|

+∥(I −A)ynk
− (I −A)y∗∥∥J(ynk

− v)∥+ b−1
nk

δnk
cv.

Since the duality mapping J is single-valued and norm to weak∗ uniformly con-
tinuous on any bounded subset of a Banach space X with a uniformly Gâteaux
differentiable norm and {ynk

} converges to y∗, we have

⟨y∗ −Ay∗, J(y∗ − v)⟩ ≤ 0 for any v ∈ F (F ),

i.e. y∗ ∈ F (F ) ∩ ΩF (F )(I −A,C) ̸= ∅.
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(c) Suppose that the sequence {yn} does not converge to y∗. As a consequence,
there exists ε0 > 0 and a subsequence {ynm}, such that for any m ∈ N,
(3.11) ∥ynm − y∗∥ ≥ ε0.

Let z∗ be the unique element in Za(C, {ynm}) and note that by Lemma 3.1, z∗ also
belongs to F (F ). By Lemma 2.1 and passing to a further subsequence, if necessary,
we can assume that

lim sup
m→∞

⟨Az∗ − z∗, J(ynm − z∗)⟩ ≤ 0.

Following the same arguments as in (b), we then derive that ynm → z∗ and that
z∗ ∈ F (F ) ∩ ΩF (F )(I − A,C). Since ΩF (F )(I − A,C) is singleton, we obtain that
z∗ = y∗, which contradicts (3.11). Hence limn→∞ yn = y∗. �

By the next proposition, we prove the existence of a sequence satisfying (3.1).
Moreover we obtain an answer to the problem posed by Xu in [18].

Proposition 3.4. Let C be a nonempty closed convex subset of a uniformly smooth
Banach space X, A : C → C a continuous generalized Φ-pseudo-contractive map-
ping and F = {T (t) : t ∈ R+} a semigroup of pseudo-contractive mappings from C
into itself. Let {bn} be a sequence in (0, 1) and {tn} a sequence in (0,∞). For each
n ∈ N, define Gn : C → C by Gnz := bnAz + (1 − bn)T (tn)z, y ∈ C. Then, there
exists exactly one fixed point zn in C of Gn defined by

(3.12) zn = bnAzn + (1− bn)T (tn)zn for all n ∈ N.

Proof. Set Φn(·) := bnΦ(·) for each n ∈ N. Then the mapping Gn : C → C is
continuous and generalized Φn-pseudo-contractive. Indeed, for x, y in C, we have

⟨Gnx−Gny, J(x− y)⟩ = bn⟨Ax−Ay, J(x− y)⟩
+ (1− bn)⟨T (tn)x− T (tn)y, J(x− y)⟩

≤ bn(∥x− y∥2 − Φ(∥x− y∥)) + (1− bn)∥x− y∥2

= ∥x− y∥2 − Φn(∥x− y∥).
Note also that Φn(·) is a strictly increasing function with Φn(0) = 0. By Xiang [17,
Theorem 2.1], Gn has a unique fixed point zn in C. �
Corollary 3.5. Let X be a uniformly smooth Banach space, which satisfies prop-
erty (I). Let C ⊂ X be nonempty, closed and convex. Let A : C → X be a bounded
and continuous generalized Φ-pseudo-contractive mapping and F = {T (t) : t ∈ R+}
a uniformly continuous semigroup of uniformly Lipschitz pseudo-contractive map-
pings from C into itself. Let {bn} be a sequence in (0, 1), let {tn} and {δn} be two
sequences in (0,∞) such that

(3.13) lim
n→∞

tn = lim
n→∞

bn/tn = lim
n→∞

δn/tn = lim
n→∞

δn/bn = 0

and let {zn} be defined by (3.12).
If {zn} is bounded then

(a) F (F ) is nonempty,
(b) F (F ) ∩ ΩF (F )(I −A,C), is nonempty and
(c) {zn} converges strongly to the unique element y∗ ∈ F (F )∩ΩF (F )(I−A,C)
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Remark 3.6. We remark that,

(a) in both Lemma 3.2 and Theorem 3.3, if the sequence {tn} can be chosen so
that, for n ≥ m, tm/tn ∈ N (e.g. tn = a−n for some a ∈ N), the uniform
continuity condition on the semigroup can be weakened by only assuming
strong continuity;

(b) in Theorem 3.3, we prove the existence of a solution of a variational inequal-
ity problem on the set F (F ), which can fail to be convex.

(c) the asymptotic center technique is used in Theorem 3.3. Therefore, our
approach is different from the results recently studied in Sahu, Wong and
Yao [13].
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