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Then, for every non-decreasing sequence {Yn} of subsets of Y , with ∪n∈NYn = Y ,
there exists ñ ∈ N such that F (x) ∩ Yñ ̸= ∅ for all x ∈ X.

Proof. Let {Yn} be a non-decreasing sequence of subsets of Y , with ∪n∈NYn = Y .
Fix ν ∈ N so that y0 ∈ Yν . Arguing by contradiction, assume that, for each n ∈ N,
there exists xn ∈ X such that

(1) F (xn) ∩ Yn = ∅ .
First, consider the “sequentially compact, sequentially closed” case. Hence, for each
n ≥ ν, one has y0 ̸∈ F (xn), that is xn ∈ X \F−(y0). So, there exists a subsequence
{xnk

} converging to a point x∗ ∈ X \ F−(y0). Now, fix y∗ ∈ F (x∗) ∩D and h ≥ ν
such that y∗ ∈ Yh. By assumption, F−(y∗) ∩ (X \ F−(y0)) is sequentially open in
X \F−(y0), and hence xnk

∈ F−(y∗) for all k large enough. Then, if we choose k so
that nk ≥ h, we have y∗ ∈ F (xnk

) ∩ Ynk
, against (1). Now, consider the “compact,

closed” case. Let A ⊆ D be a finite set. Fix p ≥ ν so that A ⊆ Yp. Hence, in view
of (1), we have

X \ F−(A ∪ {y0}) ̸= 0 .

In other words, the family {(X\F−(y))∩(X\F−(y0))}y∈D has the finite intersection
property. But then, since each member of this family is closed in X \F−(y0) which
is compact, we have

X \ F−(D ∪ {y0}) ̸= 0 .

This is against the assumption that F−(D) = X, and the proof is complete. �
Our main result is as follows.

Theorem 2. Let X be a non-empty set, I ⊆ R an interval and F : I → 2X a
multifunction satisfying the following conditions:

(i) there exist λ0 ∈ I, with F (λ0) ̸= ∅, and a topology on F (λ0) such that F (λ0)
is sequentially compact (resp. compact);

(ii) the set

D =: {λ ∈ I : F (λ) ∩ F (λ0) is sequentially closed (resp. closed) in F (λ0)}
is dense in I ;

(iii) for each x ∈ X, the set I \ F−(x) is an interval open in I .

Under such hypotheses, there exists a compact interval [a∗, b∗] ⊆ I such that either
(F (a∗) ∩ F (λ0)) \ F (]a∗, b∗[) ̸= ∅ and F|]a∗,b∗[ is non-decreasing with respect to the
inclusion, or (F (b∗) ∩ F (λ0)) \ F (]a∗, b∗[) ̸= ∅ and F|]a∗,b∗[ is non-increasing with
respect to the inclusion. In particular, the first (resp. second) occurrence is true
when λ0 = inf I (resp. λ0 = sup I) .

Proof. For each x ∈ X, put
Φ(x) = I \ F−(x) .

Clearly
Φ−(λ) = X \ F (λ)

for all λ ∈ I. In view of Proposition 1, there exists a compact interval [a, b] ⊆ I,
with λ0 ∈ [a, b], such that

Φ(x) ∩ [a, b] ̸= ∅
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for all x ∈ X. Therefore, each set Φ(x)∩ [a, b] is an interval open in [a, b]. For each
x ∈ X, put

α(x) = inf(Φ(x) ∩ [a, b])

and
β(x) = sup(Φ(x) ∩ [a, b]) .

Clearly, for each x0 ∈ F (λ0) and each r ∈]α(x0), β(x0)[∩D one has

x0 ∈ Φ−(r)

and
α(x) < r < β(x)

for all x ∈ Φ−(r). Since, by assumption, Φ−(r) ∩ F (λ0) is sequentially open (resp.
open) in F (λ0) and D is dense in I, we then infer that α|F (λ0) is sequentially upper
semicontinuous (resp. upper semicontinuous) at x0, while β|F (λ0) is sequentially
lower semicontinuous (resp. lower semicontinuous) at x0. Now, suppose that λ0 ∈
]a, b[. Observe that

(2) F (λ0) = α−1([λ0,+∞[) ∪ β−1(]−∞, λ0]) .

Since F (λ0) ̸= ∅, we have either α−1([λ0,+∞[) ̸= ∅ or β−1(] −∞, λ0]) ̸= ∅. First,
assume that α−1([λ0,+∞[) ̸= ∅. Then, since F (λ0) is sequentially compact (resp.
compact) and α|F (λ0) is sequentially upper semicontinuous (resp. upper semicon-
tinuous), in view of (2), there is x∗ ∈ F (λ0) such that α(x∗) = supX α. Since
α(x∗) ≥ λ0, we have α(x∗) ∈]a, b[. This implies, in particular, that α(x∗) does not
belong to Φ(x∗) ∩ [a, b], since this set is open in [a, b]. As a consequence, we have
x∗ ∈ F (α(x∗)). Now, fix λ, µ ∈]α(x∗), β(x∗)[, with λ < µ. Clearly, µ ̸∈ F−(x∗) and
hence x∗ ̸∈ F (µ). Next, for each x ∈ Φ−(µ), we have

α(x) ≤ α(x∗) < λ < µ ≤ β(x) .

Hence, λ ̸∈ F−(x) that is x ∈ Φ−(λ). Therefore, we have

x∗ ∈ F (α(x∗)) \ F (]α(x∗), β(x∗)[)
as well as

Φ−(µ) ⊆ Φ−(λ)

that is
F (λ) ⊆ F (µ) .

So, in the current case, the conclusion is satisfied taking a∗ = α(x∗) and b∗ = β(x∗).
Now, assume that β−1(] − ∞, λ0]) is non-empty. This time, due to the sequential
lower semicontinuity (resp. lower semicontinuity) of β|F (λ0), there exists x̂ ∈ X such
that β(x̂) = infX β. As before, one realizes that x̂ ∈ F (β(x̂)). Fix λ, µ ∈]α(x̂), β(x̂)[
with λ < µ. Clearly, x̂ ̸∈ F (λ). For each x ∈ Φ−(λ), we have

α(x) ≤ λ < µ < β(x̂) ≤ β(x)

and so x ∈ Φ−(µ). Therefore, we have

x̂ ∈ F (α(x̂)) \ F (]α(x̂), β(x̂)[)
as well as

Φ−(λ) ⊆ Φ−(µ)
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that is

F (µ) ⊆ F (λ) .

So, in this case, the conclusion is satisfied taking a∗ = α(x̂) and b∗ = β(x̂). Now,
assume λ0 = a (in particular, this occurs when λ0 = inf I). If supX α > a, then
since

α−1([a,+∞[) ⊆ F (a) ,

and F (a) is sequentially compact (resp. compact), α attains its supremum (larger
than a), and so we are exactly in the first sub-case considered when λ0 ∈]a, b[. If
supX α = a, we still reach the conclusion, as in the first sub-case considered when
λ0 ∈]a, b[, taking a∗ = a and b∗ = β(x∗), where x∗ is any point in F (a). In doing so,
notice simply that x∗ ∈ F (α(x∗)) as α(x∗) = a. Finally, let λ0 = b ( in particular,
this occurs when sup I = b). If infX β < b, then since

β−1(]−∞, b]) ⊆ F (b) ,

and F (b) is sequentially compact (resp. compact), β attains its supremum (smaller
than b), and so we are exactly in the second sub-case considered when λ0 ∈]a, b[. If
infX β = b, we still reach the conclusion, as in the second sub-case considered when
λ0 ∈]a, b[, taking a∗ = α(x̂) and b∗ = b, where x̂ is any point in F (b). The proof is
complete. �

We now give a purely set-theoretical reformulation of Theorem 2 in the “compact,
closed” case. We first need the following definition.

Definition 3. Let Y be a non-empty set and F a family of subsets of Y . We say
that F has the compactness-like property if every subfamily of F satisfying the
finite intersection property has a non-empty intersection.

We have the following characterization which is due to C. Costantini ([1]):

Proposition 4. Let Y be a non-empty set, let F be a family of subsets of Y and
let τ be the topology on Y generated by the family {Y \C}C∈F . Then, the following
assertions are equivalent:

(a) Each member of F is τ -compact.
(b) The family F has the compactness-like property.
(c) The space Y is τ -compact.

Here is the reformulation of Theorem 2.

Theorem 5. Let X be a non-empty set, I ⊆ R a interval and F : I → 2X a
multifunction such that, for each x ∈ X, the set X \ F−(x) is an interval open in
I. Moreover, assume that, for some λ0 ∈ I, with F (λ0) ̸= ∅, and some set D ⊆ I
dense in I, the family {F (λ) ∩ F (λ0)}λ∈D has the compactness-like property.

Then, the same conclusion as that of Theorem 2 holds.

Proof. In view of Proposition 4, if we consider the topology on F (λ0) generated by
the family {F (λ0)\F (λ)}y∈D, all the assumptions of Theorem 2 (for the “compact,
closed” case) are satisfied, and the conclusion follows. �
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Now, we are going to present an application of Theorem 2.

In the sequel, X is a non-empty set, Y is a real Hausdorff locally convex topo-
logical vector space, C is a closed subset of Y such that Y \ C is convex, I ⊆ R is
an interval containing 0 and f, g are two functions from X into Y . The symbol ∂
stands for boundary.

Here is the above mentioned application.

Theorem 6. Assume that the following conditions are satisfied:

(a1) the set f−1(C) is non-empty and the set {(f(x), g(x)) : x ∈ f−1(C)} is
compact in Y × Y ;

(a2) for each x ∈ X, there exists λ ∈ I such that

f(x) + λg(x) ∈ Y \ C .

Then, there exist a compact interval [a∗, b∗] ⊆ I and a point x∗ ∈ f−1(C) satisfying

f(x∗) + λg(x∗) ∈ Y \ C
for all λ ∈]a∗, b∗[, such that, if we put

V =
∪

λ∈]a∗,b∗[

{x ∈ X : f(x) + λg(x) ∈ Y \ C} ,

at least one of the following assertions holds:

(p1) f(x
∗) + a∗g(x∗) ∈ ∂C and

(f + a∗g)(V ) ∩ C ⊆ ∂(f + a∗g)(V ) ∩ ∂C ;

(p2) f(x
∗) + b∗g(x∗) ∈ ∂C and

(f + b∗g)(V ) ∩ C ⊆ ∂(f + b∗g)(V ) ∩ ∂C .

In particular, (p1) (resp. (p2)) holds when 0 = inf I (resp. 0 = sup I) .

Proof. Consider the multifunction F : I → 2X defined by

F (λ) = {x ∈ X : f(x) + λg(x) ∈ C}
for all λ ∈ I. Observe that, taking λ0 = 0, F satisfies the assumptions of Theorem
2. Indeed, if we consider on f−1(C) the weakest topology for which both f and g
are continuous in f−1(C), then, in view of (a1), f

−1(C) turns out to be compact in
that topology. So, (i) is satisfied. Since Y carries a vector topology, for each λ ∈ R,
the function f + λg is continuous in f−1(C), and so also (ii) is satisfied since C is
closed. Finally, for each x ∈ X, we have

I \ F−(x) = {λ ∈ I : f(x) + λg(x) ∈ Y \ C}
which is an interval open I, in view of (a2) and of the fact that Y \ C is open
and convex. Therefore, Theorem 2 ensures the existence of a compact interval
[a∗, b∗] ⊆ I such that either (F (a∗) ∩ F (0)) \ F (]a∗, b∗[) ̸= ∅ and F|]a∗,b∗[ is non-
decreasing with respect to the inclusion, or (F (b∗) ∩ F (0)) \ F (]a∗, b∗[) ̸= ∅ and
F|]a∗,b∗[ is non-increasing with respect to the inclusion. Assume, for instance, that
(F (a∗) ∩ F (0)) \ F (]a∗, b∗[) ̸= ∅ and F|]a∗,b∗[ is non-decreasing with respect to the

inclusion. Pick x∗ ∈ (F (a∗)∩F (0))\F (]a∗, b∗[). So, x∗ ∈ f−1(C), f(x∗)+a∗g(x∗) ∈
C and f(x∗)+λg(x∗) ∈ Y \C for all λ ∈]a∗, b∗[. Now, let us show that (f+a∗g)(V )∩



544 BIAGIO RICCERI

C ⊆ ∂C. So, let x ∈ V be such that f(x) + a∗g(x) ∈ C. Fix λ ∈]a∗, b∗[ such that
f(x) + λg(x) ∈ Y \ C. Arguing by contradiction, suppose that f(x) + a∗g(x) ∈
int(C). Then, we could find δ ∈]a∗, λ[ so that f(x) + δg(x) ∈ int(C). But this
contradicts the fact that f(x) + δg(x) ⊆ Y \ C as F (δ) ⊆ F (λ). Now, let us show
that (f + a∗g)(V ) ∩ C ⊆ ∂(f + a∗g)(V ). So, let z ∈ (f + a∗g)(V ) ∩ C. Arguing
by contradiction again, assume that z ∈ int((f + a∗g)(V )). Since Y \ C is open
and convex and z ∈ ∂(Y \ C), there exists φ ∈ Y ∗ \ {0} such that φ(z) ≤ φ(u)
for all u ∈ Y \ C. Hence, the set φ−1(] −∞, φ(z)[) is an open set contained in C
which meets int((f + a∗g)(V )) since φ has no local minima being linear, and this is
impossible for what seen above. The proof is complete. �
Remark 7. Let us recall that a function h : X → Y between topological spaces is
said to be open at x0 ∈ X if there exists a fundamental system V of neighbourhoods
of x0 such that, for each V ∈ V, the set h(V ) is a neighbourhood of h(x0). Now, in
connection with Theorem 6, if τ is any topology on X containing the family

{{x ∈ X : f(x) + λg(x) ∈ Y \ C}}λ∈I ,
it follows that at least one of the functions f + a∗g, f + b∗g is not τ -open at the
point x∗.

Among the corollaries of Theorem 6, it is worth noticing the following

Theorem 8. Let φ ∈ Y ∗ \ {0} and r ∈ R be such that the set

K := {x ∈ X : φ(f(x)) ≤ r}
is non-empty. Assume also that the set {(f(x), g(x)) : x ∈ K} is compact in Y × Y
and that g(K) ∩ φ−1(0) = ∅.

Then, there exist a compact interval [a∗, b∗] ⊆ R and a point x∗ ∈ K satisfying

φ(f(x∗) + λg(x∗)) > r

for all λ ∈]a∗, b∗[, such that, if we put

V =
∪

λ∈]a∗,b∗[

{x ∈ X : φ(f(x) + λg(x)) > r} ,

at least one of the following assertions holds:

(q1) φ(f(x
∗) + a∗g(x∗)) = r and

(f + a∗g)(V ) ∩ φ−1(]−∞, r]) ⊆ ∂(f + a∗g)(V ) ∩ φ−1(r) ;

(q2) φ(f(x
∗) + b∗g(x∗)) = r and

(f + b∗g)(V ) ∩ φ−1(]−∞, r]) ⊆ ∂(f + b∗g)(V ) ∩ φ−1(r) .

Proof. It is enough to apply Theorem 6 taking I = R and C = φ−1(] −∞, r]), so
that ∂C = φ−1(r). �

If we apply Theorem 6 jointly with [2], we obtain:

Theorem 9. Let Y be a finite-dimensional Banach space and let ψ : Y → Y be
a continuous function such that ψ−1(C) is non-empty and compact. Assume also
that, for each x ∈ Y , there exists λ ∈ R such that

ψ(x) + λx ∈ Y \ C .
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Then, there exist x∗ ∈ ψ−1(C) and µ∗ ∈ R such that

ψ(x∗) + (1 + µ∗)x∗ ∈ ∂C

and

sup
∥x−x∗∥≤r

∥ψ(x)− ψ(x∗) + µ∗(x− x∗)∥ ≥ r

for each r > 0 small enough.

Proof. Apply Theorem 6 taking X = Y , I = R, f = ψ and g =id. Then, there
exist x∗ ∈ ψ−1(C), λ∗ ∈ R and a neighbourhood V of x∗ such that

ψ(x∗) + λ∗x∗ ∈ ∂(ψ + λ∗id)(V ) ∩ ∂C .

Now, from the proof of Theorem 1 of [2], we know that if r > 0 is such that

sup
∥x−x∗∥≤r

∥ψ(x)− ψ(x∗) + (λ∗ − 1)(x− x∗)∥ < r ,

then, for some r0 > 0 and for every y ∈ X satisfying ∥ψ(x∗)+λ∗x∗− y∥ < r0, there
exists x ∈ X, with ∥x− x∗∥ ≤ r, such that

ψ(x) + λ∗x = y .

As a consequence, for every r > 0 for which the closed ball centered at x∗, of radius
r, is contained in V , we have

sup
∥x−x∗∥≤r

∥ψ(x)− ψ(x∗) + (λ∗ − 1)(x− x∗)∥ ≥ r .

Now, the conclusion follows taking µ∗ = λ∗ − 1. �

The last consequence of Theorem 6 that we point out is as follows:

Theorem 10. Let X be an open set in a real Banach space, let Y be a Banach space
and let f, g be continuously Fréchet differentiable. Assume that (a1), (a2) hold.

Then, there exist x∗ ∈ X and λ∗ ∈ I such that

f(x∗) + λ∗g(x∗) ∈ ∂C

and the continuous linear operator f ′(x∗) + λ∗g′(x∗) is not invertible.

Proof. By Theorem 6, there exists x∗ ∈ X and λ∗ ∈ I such that

f(x∗) + λ∗g(x∗) ∈ ∂C

and f + λ∗g is not open at x∗ (Remark 7). This just implies that f ′(x∗) + λ∗g′(x∗)
is not invertible, since, otherwise, f + λ∗g would be a local homeomorphism at x∗

by the inverse function theorem. �
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