REVISITING A THEOREM ON MULTIFUNCTIONS OF ONE REAL VARIABLE

BIAGIO RICCERI
Dedicated to Professor Simeon Reich, with esteem, on his 65th birthday

Abstract

In this paper, we intend to revisit Theorem 2 of [3] formulating it in a way that, weakening the hypotheses and, at the same time, highlighting the richer conclusion allowed by the proof, it can potentially be applicable to a broader range of different situations. Samples of such applications are also given.

Some years ago, we established a certain theorem ([3], Theorem 2) on a class of multifunctions depending on a real variable whose formulation was heavily conditioned by the application of it to minimax theory which just was the core of [3].

In the present paper, we intend to revisit that result formulating it in a way that, weakening the hypotheses and, at the same time, highlighting the richer conclusion allowed by the proof, it can potentially be applicable to a broader range of different situations.

So, after establishing the main result (Theorem 2), we give a sample of application of it (Theorem 6) that cannot be deduced by Theorem 2 of [3]. In turn, we highlight a series of consequences of Theorem 6 essentially dealing with the existence of some kind of "singular" points for functions of the type $f+\lambda g$, with $\lambda \in \mathbf{R}$.

In the sequel, the term "interval" means a non-empty connected subset of \mathbf{R} with more than one point.

For a multifunction $F: I \rightarrow 2^{X}$, as usual, for $A \subseteq I$ and $B \subseteq X$, we set

$$
F(A)=\cup_{x \in A} F(x)
$$

and

$$
F^{-}(B)=\{\lambda \in I: F(\lambda) \cap B \neq \emptyset\}
$$

When I is an interval, F is said to be non-decreasing (resp. non-increasing) with respect to the inclusion if $F(\lambda) \subseteq F(\mu)$ (resp. $F(\mu) \subseteq F(\lambda)$) for all $\lambda, \mu \in I$, with $\lambda<\mu$.

We start by proving the following
Proposition 1. Let X, Y be two non-empty sets, $D \subseteq Y, F: X \rightarrow 2^{Y}$ a multifunction such that $F(x) \cap D \neq \emptyset$ for all $x \in X$. Assume also that there exist $y_{0} \in Y$ and a topology on $X \backslash F^{-}\left(y_{0}\right)$ such that $X \backslash F^{-}\left(y_{0}\right)$ is sequentially compact (resp. compact) and $X \backslash F^{-}\left(\left\{y, y_{0}\right\}\right)$ is sequentially closed (resp. closed) in $X \backslash F^{-}\left(y_{0}\right)$ for all $y \in D$.

2010 Mathematics Subject Classification. 49J53, 49J50, 52A07, 46A30, 46A55.
Key words and phrases. Multifunction, compactness, co-convex set, openness, singular point.

Then, for every non-decreasing sequence $\left\{Y_{n}\right\}$ of subsets of Y, with $\cup_{n \in \mathbf{N}} Y_{n}=Y$, there exists $\tilde{n} \in \mathbf{N}$ such that $F(x) \cap Y_{\tilde{n}} \neq \emptyset$ for all $x \in X$.

Proof. Let $\left\{Y_{n}\right\}$ be a non-decreasing sequence of subsets of Y, with $\cup_{n \in \mathbf{N}} Y_{n}=Y$. Fix $\nu \in \mathbf{N}$ so that $y_{0} \in Y_{\nu}$. Arguing by contradiction, assume that, for each $n \in \mathbf{N}$, there exists $x_{n} \in X$ such that

$$
\begin{equation*}
F\left(x_{n}\right) \cap Y_{n}=\emptyset \tag{1}
\end{equation*}
$$

First, consider the "sequentially compact, sequentially closed" case. Hence, for each $n \geq \nu$, one has $y_{0} \notin F\left(x_{n}\right)$, that is $x_{n} \in X \backslash F^{-}\left(y_{0}\right)$. So, there exists a subsequence $\left\{x_{n_{k}}\right\}$ converging to a point $x^{*} \in X \backslash F^{-}\left(y_{0}\right)$. Now, fix $y^{*} \in F\left(x^{*}\right) \cap D$ and $h \geq \nu$ such that $y^{*} \in Y_{h}$. By assumption, $F^{-}\left(y^{*}\right) \cap\left(X \backslash F^{-}\left(y_{0}\right)\right)$ is sequentially open in $X \backslash F^{-}\left(y_{0}\right)$, and hence $x_{n_{k}} \in F^{-}\left(y^{*}\right)$ for all k large enough. Then, if we choose k so that $n_{k} \geq h$, we have $y^{*} \in F\left(x_{n_{k}}\right) \cap Y_{n_{k}}$, against (1). Now, consider the "compact, closed" case. Let $A \subseteq D$ be a finite set. Fix $p \geq \nu$ so that $A \subseteq Y_{p}$. Hence, in view of (1), we have

$$
X \backslash F^{-}\left(A \cup\left\{y_{0}\right\}\right) \neq 0
$$

In other words, the family $\left\{\left(X \backslash F^{-}(y)\right) \cap\left(X \backslash F^{-}\left(y_{0}\right)\right)\right\}_{y \in D}$ has the finite intersection property. But then, since each member of this family is closed in $X \backslash F^{-}\left(y_{0}\right)$ which is compact, we have

$$
X \backslash F^{-}\left(D \cup\left\{y_{0}\right\}\right) \neq 0
$$

This is against the assumption that $F^{-}(D)=X$, and the proof is complete.
Our main result is as follows.
Theorem 2. Let X be a non-empty set, $I \subseteq \mathbf{R}$ an interval and $F: I \rightarrow 2^{X}$ a multifunction satisfying the following conditions:
(i) there exist $\lambda_{0} \in I$, with $F\left(\lambda_{0}\right) \neq \emptyset$, and a topology on $F\left(\lambda_{0}\right)$ such that $F\left(\lambda_{0}\right)$ is sequentially compact (resp. compact);
(ii) the set
$D=:\left\{\lambda \in I: F(\lambda) \cap F\left(\lambda_{0}\right)\right.$ is sequentially closed (resp. closed) in $\left.F\left(\lambda_{0}\right)\right\}$
is dense in I;
(iii) for each $x \in X$, the set $I \backslash F^{-}(x)$ is an interval open in I.

Under such hypotheses, there exists a compact interval $\left[a^{*}, b^{*}\right] \subseteq I$ such that either $\left(F\left(a^{*}\right) \cap F\left(\lambda_{0}\right)\right) \backslash F(] a^{*}, b^{*}[) \neq \emptyset$ and $F_{\mid] a^{*}, b^{*}[}$ is non-decreasing with respect to the inclusion, or $\left(F\left(b^{*}\right) \cap F\left(\lambda_{0}\right)\right) \backslash F(] a^{*}, b^{*}[) \neq \emptyset$ and $F_{[] a^{*}, b^{*}[}$ is non-increasing with respect to the inclusion. In particular, the first (resp. second) occurrence is true when $\lambda_{0}=\inf I\left(\right.$ resp. $\left.\lambda_{0}=\sup I\right)$.

Proof. For each $x \in X$, put

$$
\Phi(x)=I \backslash F^{-}(x)
$$

Clearly

$$
\Phi^{-}(\lambda)=X \backslash F(\lambda)
$$

for all $\lambda \in I$. In view of Proposition 1 , there exists a compact interval $[a, b] \subseteq I$, with $\lambda_{0} \in[a, b]$, such that

$$
\Phi(x) \cap[a, b] \neq \emptyset
$$

for all $x \in X$. Therefore, each set $\Phi(x) \cap[a, b]$ is an interval open in $[a, b]$. For each $x \in X$, put

$$
\alpha(x)=\inf (\Phi(x) \cap[a, b])
$$

and

$$
\beta(x)=\sup (\Phi(x) \cap[a, b]) .
$$

Clearly, for each $x_{0} \in F\left(\lambda_{0}\right)$ and each $\left.r \in\right] \alpha\left(x_{0}\right), \beta\left(x_{0}\right)[\cap D$ one has

$$
x_{0} \in \Phi^{-}(r)
$$

and

$$
\alpha(x)<r<\beta(x)
$$

for all $x \in \Phi^{-}(r)$. Since, by assumption, $\Phi^{-}(r) \cap F\left(\lambda_{0}\right)$ is sequentially open (resp. open) in $F\left(\lambda_{0}\right)$ and D is dense in I, we then infer that $\alpha_{\mid F\left(\lambda_{0}\right)}$ is sequentially upper semicontinuous (resp. upper semicontinuous) at x_{0}, while $\beta_{\mid F\left(\lambda_{0}\right)}$ is sequentially lower semicontinuous (resp. lower semicontinuous) at x_{0}. Now, suppose that $\lambda_{0} \in$]a, b [. Observe that

$$
\begin{equation*}
F\left(\lambda_{0}\right)=\alpha^{-1}\left(\left[\lambda_{0},+\infty[) \cup \beta^{-1}(]-\infty, \lambda_{0}\right]\right) \tag{2}
\end{equation*}
$$

Since $F\left(\lambda_{0}\right) \neq \emptyset$, we have either $\alpha^{-1}\left(\left[\lambda_{0},+\infty[) \neq \emptyset\right.\right.$ or $\left.\left.\beta^{-1}(]-\infty, \lambda_{0}\right]\right) \neq \emptyset$. First, assume that $\alpha^{-1}\left(\left[\lambda_{0},+\infty[) \neq \emptyset\right.\right.$. Then, since $F\left(\lambda_{0}\right)$ is sequentially compact (resp. compact) and $\alpha_{\mid F\left(\lambda_{0}\right)}$ is sequentially upper semicontinuous (resp. upper semicontinuous), in view of (2), there is $x^{*} \in F\left(\lambda_{0}\right)$ such that $\alpha\left(x^{*}\right)=\sup _{X} \alpha$. Since $\alpha\left(x^{*}\right) \geq \lambda_{0}$, we have $\left.\alpha\left(x^{*}\right) \in\right] a, b\left[\right.$. This implies, in particular, that $\alpha\left(x^{*}\right)$ does not belong to $\Phi\left(x^{*}\right) \cap[a, b]$, since this set is open in $[a, b]$. As a consequence, we have $x^{*} \in F\left(\alpha\left(x^{*}\right)\right.$). Now, fix $\left.\lambda, \mu \in\right] \alpha\left(x^{*}\right), \beta\left(x^{*}\right)\left[\right.$, with $\lambda<\mu$. Clearly, $\mu \notin F^{-}\left(x^{*}\right)$ and hence $x^{*} \notin F(\mu)$. Next, for each $x \in \Phi^{-}(\mu)$, we have

$$
\alpha(x) \leq \alpha\left(x^{*}\right)<\lambda<\mu \leq \beta(x)
$$

Hence, $\lambda \notin F^{-}(x)$ that is $x \in \Phi^{-}(\lambda)$. Therefore, we have

$$
x^{*} \in F\left(\alpha\left(x^{*}\right)\right) \backslash F(] \alpha\left(x^{*}\right), \beta\left(x^{*}\right)[)
$$

as well as

$$
\Phi^{-}(\mu) \subseteq \Phi^{-}(\lambda)
$$

that is

$$
F(\lambda) \subseteq F(\mu)
$$

So, in the current case, the conclusion is satisfied taking $a^{*}=\alpha\left(x^{*}\right)$ and $b^{*}=\beta\left(x^{*}\right)$. Now, assume that $\left.\left.\beta^{-1}(]-\infty, \lambda_{0}\right]\right)$ is non-empty. This time, due to the sequential lower semicontinuity (resp. lower semicontinuity) of $\beta_{\mid F\left(\lambda_{0}\right)}$, there exists $\hat{x} \in X$ such that $\beta(\hat{x})=\inf _{X} \beta$. As before, one realizes that $\hat{x} \in F(\beta(\hat{x}))$. Fix $\left.\lambda, \mu \in\right] \alpha(\hat{x}), \beta(\hat{x})[$ with $\lambda<\mu$. Clearly, $\hat{x} \notin F(\lambda)$. For each $x \in \Phi^{-}(\lambda)$, we have

$$
\alpha(x) \leq \lambda<\mu<\beta(\hat{x}) \leq \beta(x)
$$

and so $x \in \Phi^{-}(\mu)$. Therefore, we have

$$
\hat{x} \in F(\alpha(\hat{x})) \backslash F(] \alpha(\hat{x}), \beta(\hat{x})[)
$$

as well as

$$
\Phi^{-}(\lambda) \subseteq \Phi^{-}(\mu)
$$

that is

$$
F(\mu) \subseteq F(\lambda)
$$

So, in this case, the conclusion is satisfied taking $a^{*}=\alpha(\hat{x})$ and $b^{*}=\beta(\hat{x})$. Now, assume $\lambda_{0}=a$ (in particular, this occurs when $\lambda_{0}=\inf I$). If $\sup _{X} \alpha>a$, then since

$$
\alpha^{-1}([a,+\infty[) \subseteq F(a)
$$

and $F(a)$ is sequentially compact (resp. compact), α attains its supremum (larger than a), and so we are exactly in the first sub-case considered when $\left.\lambda_{0} \in\right] a, b[$. If $\sup _{X} \alpha=a$, we still reach the conclusion, as in the first sub-case considered when $\left.\lambda_{0} \in\right] a, b\left[\right.$, taking $a^{*}=a$ and $b^{*}=\beta\left(x^{*}\right)$, where x^{*} is any point in $F(a)$. In doing so, notice simply that $x^{*} \in F\left(\alpha\left(x^{*}\right)\right)$ as $\alpha\left(x^{*}\right)=a$. Finally, let $\lambda_{0}=b$ (in particular, this occurs when $\sup I=b$). If $\inf _{X} \beta<b$, then since

$$
\left.\left.\beta^{-1}(]-\infty, b\right]\right) \subseteq F(b)
$$

and $F(b)$ is sequentially compact (resp. compact), β attains its supremum (smaller than b), and so we are exactly in the second sub-case considered when $\left.\lambda_{0} \in\right] a, b[$. If $\inf _{X} \beta=b$, we still reach the conclusion, as in the second sub-case considered when $\left.\lambda_{0} \in\right] a, b\left[\right.$, taking $a^{*}=\alpha(\hat{x})$ and $b^{*}=b$, where \hat{x} is any point in $F(b)$. The proof is complete.

We now give a purely set-theoretical reformulation of Theorem 2 in the "compact, closed" case. We first need the following definition.

Definition 3. Let Y be a non-empty set and \mathcal{F} a family of subsets of Y. We say that \mathcal{F} has the compactness-like property if every subfamily of \mathcal{F} satisfying the finite intersection property has a non-empty intersection.

We have the following characterization which is due to C. Costantini ([1]):
Proposition 4. Let Y be a non-empty set, let \mathcal{F} be a family of subsets of Y and let τ be the topology on Y generated by the family $\{Y \backslash C\}_{C \in \mathcal{F}}$. Then, the following assertions are equivalent:
(a) Each member of \mathcal{F} is τ-compact.
(b) The family \mathcal{F} has the compactness-like property.
(c) The space Y is τ-compact.

Here is the reformulation of Theorem 2.
Theorem 5. Let X be a non-empty set, $I \subseteq \mathbf{R}$ a interval and $F: I \rightarrow 2^{X}$ a multifunction such that, for each $x \in X$, the set $X \backslash F^{-}(x)$ is an interval open in I. Moreover, assume that, for some $\lambda_{0} \in I$, with $F\left(\lambda_{0}\right) \neq \emptyset$, and some set $D \subseteq I$ dense in I, the family $\left\{F(\lambda) \cap F\left(\lambda_{0}\right)\right\}_{\lambda \in D}$ has the compactness-like property.

Then, the same conclusion as that of Theorem 2 holds.
Proof. In view of Proposition 4, if we consider the topology on $F\left(\lambda_{0}\right)$ generated by the family $\left\{F\left(\lambda_{0}\right) \backslash F(\lambda)\right\}_{y \in D}$, all the assumptions of Theorem 2 (for the "compact, closed" case) are satisfied, and the conclusion follows.

Now, we are going to present an application of Theorem 2.
In the sequel, X is a non-empty set, Y is a real Hausdorff locally convex topological vector space, C is a closed subset of Y such that $Y \backslash C$ is convex, $I \subseteq \mathbf{R}$ is an interval containing 0 and f, g are two functions from X into Y. The symbol ∂ stands for boundary.

Here is the above mentioned application.
Theorem 6. Assume that the following conditions are satisfied:
$\left(a_{1}\right)$ the set $f^{-1}(C)$ is non-empty and the set $\left\{(f(x), g(x)): x \in f^{-1}(C)\right\}$ is compact in $Y \times Y$;
$\left(a_{2}\right)$ for each $x \in X$, there exists $\lambda \in I$ such that

$$
f(x)+\lambda g(x) \in Y \backslash C
$$

Then, there exist a compact interval $\left[a^{*}, b^{*}\right] \subseteq I$ and a point $x^{*} \in f^{-1}(C)$ satisfying

$$
f\left(x^{*}\right)+\lambda g\left(x^{*}\right) \in Y \backslash C
$$

for all $\lambda \in] a^{*}, b^{*}[$, such that, if we put

$$
V=\bigcup_{\lambda \in] a^{*}, b^{*}[}\{x \in X: f(x)+\lambda g(x) \in Y \backslash C\}
$$

at least one of the following assertions holds:
$\left(p_{1}\right) f\left(x^{*}\right)+a^{*} g\left(x^{*}\right) \in \partial C$ and

$$
\left(f+a^{*} g\right)(V) \cap C \subseteq \partial\left(f+a^{*} g\right)(V) \cap \partial C
$$

$\left(p_{2}\right) f\left(x^{*}\right)+b^{*} g\left(x^{*}\right) \in \partial C$ and

$$
\left(f+b^{*} g\right)(V) \cap C \subseteq \partial\left(f+b^{*} g\right)(V) \cap \partial C
$$

In particular, $\left(p_{1}\right)$ (resp. $\left.\left(p_{2}\right)\right)$ holds when $0=\inf I($ resp. $0=\sup I)$.
Proof. Consider the multifunction $F: I \rightarrow 2^{X}$ defined by

$$
F(\lambda)=\{x \in X: f(x)+\lambda g(x) \in C\}
$$

for all $\lambda \in I$. Observe that, taking $\lambda_{0}=0, F$ satisfies the assumptions of Theorem 2. Indeed, if we consider on $f^{-1}(C)$ the weakest topology for which both f and g are continuous in $f^{-1}(C)$, then, in view of $\left(a_{1}\right), f^{-1}(C)$ turns out to be compact in that topology. So, (i) is satisfied. Since Y carries a vector topology, for each $\lambda \in \mathbf{R}$, the function $f+\lambda g$ is continuous in $f^{-1}(C)$, and so also $(i i)$ is satisfied since C is closed. Finally, for each $x \in X$, we have

$$
I \backslash F^{-}(x)=\{\lambda \in I: f(x)+\lambda g(x) \in Y \backslash C\}
$$

which is an interval open I, in view of $\left(a_{2}\right)$ and of the fact that $Y \backslash C$ is open and convex. Therefore, Theorem 2 ensures the existence of a compact interval $\left[a^{*}, b^{*}\right] \subseteq I$ such that either $\left(F\left(a^{*}\right) \cap F(0)\right) \backslash F(] a^{*}, b^{*}[) \neq \emptyset$ and $F_{\mid] a^{*}, b^{*}[}$ is nondecreasing with respect to the inclusion, or $\left(F\left(b^{*}\right) \cap F(0)\right) \backslash F(] a^{*}, b^{*}[) \neq \emptyset$ and $F_{[] a^{*}, b^{*}[}$ is non-increasing with respect to the inclusion. Assume, for instance, that $\left(F\left(a^{*}\right) \cap F(0)\right) \backslash F(] a^{*}, b^{*}[) \neq \emptyset$ and $F_{\mid] a^{*}, b^{*}[}$ is non-decreasing with respect to the inclusion. Pick $x^{*} \in\left(F\left(a^{*}\right) \cap F(0)\right) \backslash F(] a^{*}, b^{*}[)$. So, $x^{*} \in f^{-1}(C), f\left(x^{*}\right)+a^{*} g\left(x^{*}\right) \in$ C and $f\left(x^{*}\right)+\lambda g\left(x^{*}\right) \in Y \backslash C$ for all $\left.\lambda \in\right] a^{*}, b^{*}\left[\right.$. Now, let us show that $\left(f+a^{*} g\right)(V) \cap$
$C \subseteq \partial C$. So, let $x \in V$ be such that $f(x)+a^{*} g(x) \in C$. Fix $\left.\lambda \in\right] a^{*}, b^{*}[$ such that $f(x)+\lambda g(x) \in Y \backslash C$. Arguing by contradiction, suppose that $f(x)+a^{*} g(x) \in$ $\operatorname{int}(C)$. Then, we could find $\delta \in] a^{*}, \lambda[$ so that $f(x)+\delta g(x) \in \operatorname{int}(C)$. But this contradicts the fact that $f(x)+\delta g(x) \subseteq Y \backslash C$ as $F(\delta) \subseteq F(\lambda)$. Now, let us show that $\left(f+a^{*} g\right)(V) \cap C \subseteq \partial\left(f+a^{*} g\right)(V)$. So, let $z \in\left(f+a^{*} g\right)(V) \cap C$. Arguing by contradiction again, assume that $z \in \operatorname{int}\left(\left(f+a^{*} g\right)(V)\right)$. Since $Y \backslash C$ is open and convex and $z \in \partial(Y \backslash C)$, there exists $\varphi \in Y^{*} \backslash\{0\}$ such that $\varphi(z) \leq \varphi(u)$ for all $u \in Y \backslash C$. Hence, the set $\varphi^{-1}(]-\infty, \varphi(z)[)$ is an open set contained in C which meets $\operatorname{int}\left(\left(f+a^{*} g\right)(V)\right)$ since φ has no local minima being linear, and this is impossible for what seen above. The proof is complete.

Remark 7. Let us recall that a function $h: X \rightarrow Y$ between topological spaces is said to be open at $x_{0} \in X$ if there exists a fundamental system \mathcal{V} of neighbourhoods of x_{0} such that, for each $V \in \mathcal{V}$, the set $h(V)$ is a neighbourhood of $h\left(x_{0}\right)$. Now, in connection with Theorem 6 , if τ is any topology on X containing the family

$$
\{\{x \in X: f(x)+\lambda g(x) \in Y \backslash C\}\}_{\lambda \in I},
$$

it follows that at least one of the functions $f+a^{*} g, f+b^{*} g$ is not τ-open at the point x^{*}.

Among the corollaries of Theorem 6, it is worth noticing the following
Theorem 8. Let $\varphi \in Y^{*} \backslash\{0\}$ and $r \in \mathbf{R}$ be such that the set

$$
K:=\{x \in X: \varphi(f(x)) \leq r\}
$$

is non-empty. Assume also that the set $\{(f(x), g(x)): x \in K\}$ is compact in $Y \times Y$ and that $g(K) \cap \varphi^{-1}(0)=\emptyset$.

Then, there exist a compact interval $\left[a^{*}, b^{*}\right] \subseteq \mathbf{R}$ and a point $x^{*} \in K$ satisfying

$$
\varphi\left(f\left(x^{*}\right)+\lambda g\left(x^{*}\right)\right)>r
$$

for all $\lambda \in] a^{*}, b^{*}[$, such that, if we put

$$
V=\bigcup_{\lambda \in] a^{*}, b^{*}[}\{x \in X: \varphi(f(x)+\lambda g(x))>r\}
$$

at least one of the following assertions holds:
$\left(q_{1}\right) \varphi\left(f\left(x^{*}\right)+a^{*} g\left(x^{*}\right)\right)=r$ and

$$
\left.\left.\left(f+a^{*} g\right)(V) \cap \varphi^{-1}(]-\infty, r\right]\right) \subseteq \partial\left(f+a^{*} g\right)(V) \cap \varphi^{-1}(r)
$$

$\left(q_{2}\right) \varphi\left(f\left(x^{*}\right)+b^{*} g\left(x^{*}\right)\right)=r$ and

$$
\left.\left.\left(f+b^{*} g\right)(V) \cap \varphi^{-1}(]-\infty, r\right]\right) \subseteq \partial\left(f+b^{*} g\right)(V) \cap \varphi^{-1}(r)
$$

Proof. It is enough to apply Theorem 6 taking $I=\mathbf{R}$ and $\left.\left.C=\varphi^{-1}(]-\infty, r\right]\right)$, so that $\partial C=\varphi^{-1}(r)$.

If we apply Theorem 6 jointly with [2], we obtain:
Theorem 9. Let Y be a finite-dimensional Banach space and let $\psi: Y \rightarrow Y$ be a continuous function such that $\psi^{-1}(C)$ is non-empty and compact. Assume also that, for each $x \in Y$, there exists $\lambda \in \mathbf{R}$ such that

$$
\psi(x)+\lambda x \in Y \backslash C
$$

Then, there exist $x^{*} \in \psi^{-1}(C)$ and $\mu^{*} \in \mathbf{R}$ such that

$$
\psi\left(x^{*}\right)+\left(1+\mu^{*}\right) x^{*} \in \partial C
$$

and

$$
\sup _{\left\|x-x^{*}\right\| \leq r}\left\|\psi(x)-\psi\left(x^{*}\right)+\mu^{*}\left(x-x^{*}\right)\right\| \geq r
$$

for each $r>0$ small enough.
Proof. Apply Theorem 6 taking $X=Y, I=\mathbf{R}, f=\psi$ and $g=\mathrm{id}$. Then, there exist $x^{*} \in \psi^{-1}(C), \lambda^{*} \in \mathbf{R}$ and a neighbourhood V of x^{*} such that

$$
\psi\left(x^{*}\right)+\lambda^{*} x^{*} \in \partial\left(\psi+\lambda^{*} \mathrm{id}\right)(V) \cap \partial C .
$$

Now, from the proof of Theorem 1 of [2], we know that if $r>0$ is such that

$$
\sup _{\left\|x-x^{*}\right\| \leq r}\left\|\psi(x)-\psi\left(x^{*}\right)+\left(\lambda^{*}-1\right)\left(x-x^{*}\right)\right\|<r,
$$

then, for some $r_{0}>0$ and for every $y \in X$ satisfying $\left\|\psi\left(x^{*}\right)+\lambda^{*} x^{*}-y\right\|<r_{0}$, there exists $x \in X$, with $\left\|x-x^{*}\right\| \leq r$, such that

$$
\psi(x)+\lambda^{*} x=y
$$

As a consequence, for every $r>0$ for which the closed ball centered at x^{*}, of radius r, is contained in V, we have

$$
\sup _{\left\|x-x^{*}\right\| \leq r}\left\|\psi(x)-\psi\left(x^{*}\right)+\left(\lambda^{*}-1\right)\left(x-x^{*}\right)\right\| \geq r .
$$

Now, the conclusion follows taking $\mu^{*}=\lambda^{*}-1$.
The last consequence of Theorem 6 that we point out is as follows:
Theorem 10. Let X be an open set in a real Banach space, let Y be a Banach space and let f, g be continuously Fréchet differentiable. Assume that $\left(a_{1}\right),\left(a_{2}\right)$ hold.

Then, there exist $x^{*} \in X$ and $\lambda^{*} \in I$ such that

$$
f\left(x^{*}\right)+\lambda^{*} g\left(x^{*}\right) \in \partial C
$$

and the continuous linear operator $f^{\prime}\left(x^{*}\right)+\lambda^{*} g^{\prime}\left(x^{*}\right)$ is not invertible.
Proof. By Theorem 6, there exists $x^{*} \in X$ and $\lambda^{*} \in I$ such that

$$
f\left(x^{*}\right)+\lambda^{*} g\left(x^{*}\right) \in \partial C
$$

and $f+\lambda^{*} g$ is not open at x^{*} (Remark 7). This just implies that $f^{\prime}\left(x^{*}\right)+\lambda^{*} g^{\prime}\left(x^{*}\right)$ is not invertible, since, otherwise, $f+\lambda^{*} g$ would be a local homeomorphism at x^{*} by the inverse function theorem.

References

[1] C. Costantini, Personal communication.
[2] M. Reichbach, Fixed points and openness, Proc. Amer. Math. Soc. 12 (1961), 734-736.
[3] B. Ricceri, A further improvement of a minimax theorem of Borenshtein and Shul'man, J. Nonlinear Convex Anal. 2 (2001), 279-283.

Manuscript received May 10, 2013
revised September 26, 2013
Biagio Ricceri
Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy E-mail address: ricceri@dmi.unict.it

