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ABSTRACT. In this paper, we intend to revisit Theorem 2 of [3] formulating it
in a way that, weakening the hypotheses and, at the same time, highlighting
the richer conclusion allowed by the proof, it can potentially be applicable to a
broader range of different situations. Samples of such applications are also given.

Some years ago, we established a certain theorem ([3], Theorem 2) on a class of
multifunctions depending on a real variable whose formulation was heavily condi-
tioned by the application of it to minimax theory which just was the core of [3].

In the present paper, we intend to revisit that result formulating it in a way that,
weakening the hypotheses and, at the same time, highlighting the richer conclusion
allowed by the proof, it can potentially be applicable to a broader range of different
situations.

So, after establishing the main result (Theorem 2), we give a sample of application
of it (Theorem 6) that cannot be deduced by Theorem 2 of [3]. In turn, we highlight
a series of consequences of Theorem 6 essentially dealing with the existence of some
kind of “singular” points for functions of the type f + Ag, with A € R.

In the sequel, the term “interval” means a non-empty connected subset of R with
more than one point.

For a multifunction F : I — 2% as usual, for A C I and B C X, we set

F(A) = UgeaF(x)
and
F-(B)y={\Nel:F(\)NB#0}.

When I is an interval, F is said to be non-decreasing (resp. non-increasing) with
respect to the inclusion if F(A) C F(u) (resp. F(u) C F(X)) for all A\, u € I, with
A< p.

We start by proving the following

Proposition 1. Let X,Y be two non-empty sets, D C Y, F : X — 2¥ a multi-
function such that F(x)ND # 0 for allx € X. Assume also that there exist yo € Y
and a topology on X \ F~(yo) such that X \ F~(yo) is sequentially compact (resp.
compact) and X \ F~({y,yo}) is sequentially closed (resp. closed) in X \ F~(yo)
forally e D.
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Then, for every non-decreasing sequence {Y,} of subsets of Y, with UpenYn =Y,
there exists n € N such that F(z) Yz # 0 for all z € X.

Proof. Let {Y,,} be a non-decreasing sequence of subsets of Y, with U,enY,, =Y.
Fix v € N so that yg € Y,,. Arguing by contradiction, assume that, for each n € N,
there exists x,, € X such that

(1) Flx,)NY,=0.

First, consider the “sequentially compact, sequentially closed” case. Hence, for each
n > v, one has yo € F(zy,), that is x,, € X \ F~(y0). So, there exists a subsequence
{zp, } converging to a point z* € X \ F'~(yo). Now, fix y* € F(z*) N D and h > v
such that y* € Y},. By assumption, F~(y*) N (X \ F~(yo)) is sequentially open in
X\ F~(y0), and hence z,,, € F~(y*) for all k large enough. Then, if we choose k so
that ny > h, we have y* € F(x,,) NY,,, against (1). Now, consider the “compact,
closed” case. Let A C D be a finite set. Fix p > v so that A C Y),. Hence, in view
of (1), we have
X\ F(AU{yo}) #0.

In other words, the family {(X\ F~(y))N(X\F~(yo)) }yep has the finite intersection
property. But then, since each member of this family is closed in X \ F~(yo) which
is compact, we have

X\F7(DU{yo}) #0 .
This is against the assumption that F~ (D) = X, and the proof is complete. g

Our main result is as follows.

Theorem 2. Let X be a non-empty set, I C R an interval and F : I — 2% ¢
multifunction satisfying the following conditions:
(i) there exist \g € I, with F(A\o) # 0, and a topology on F(\o) such that F(\o)
is sequentially compact (resp. compact);
(ii) the set

D =:{\el:F(\)NF(\) is sequentially closed (resp. closed) in F(\o)}

is dense in I ;
(i7i) for each x € X, the set I\ F~(z) is an interval open in I .

Under such hypotheses, there exists a compact interval [a*,b*] C I such that either
(F(a*) N F(Xo)) \ F(Ja*,b*[) # 0 and Fjjg« y=[ is non-decreasing with respect to the
inclusion, or (F'(b*) N F(Xo)) \ F(la*,0*[) # 0 and Fjjg y+[ is non-increasing with
respect to the inclusion. In particular, the first (resp. second) occurrence is true
when Ao = inf I (resp. \g =supl) .
Proof. For each z € X, put

O(zx)=1\F (x).
Clearly

o (A) = X\ F())
for all A € I. In view of Proposition 1, there exists a compact interval [a,b] C I,
with Ao € [a,b], such that

O(z) N [a,b] # 0
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for all x € X. Therefore, each set ®(x) N [a,b] is an interval open in [a, b]. For each
r € X, put
a(x) = inf(®(z) N [a, b])
and
B(x) = sup(®(x) Na,b]) .
Clearly, for each g € F(\g) and each r €]a(xg), 5(z¢)[ND one has
xo € P (r)
and
alz) <r < f(x)
for all z € ®~(r). Since, by assumption, &~ (r) N F(\g) is sequentially open (resp.
open) in F'(\g) and D is dense in I, we then infer that a|r(y,) is sequentially upper
semicontinuous (resp. upper semicontinuous) at xo, while BiF(xe) 18 sequentially

lower semicontinuous (resp. lower semicontinuous) at xp. Now, suppose that A\g €
la,b]. Observe that

(2) F(Xo) = a™ ([Ao, +o0)) U F7H(] — 00, Ad)) -

Since F()\g) # (), we have either a~([A\g, +00[) # 0 or B71(] — 00, Ag]) # 0. First,
assume that a~1([Ag, +0o[) # (). Then, since F(\g) is sequentially compact (resp.
compact) and «p(y,) is sequentially upper semicontinuous (resp. upper semicon-
tinuous), in view of (2), there is 2* € F(\g) such that «(z*) = supy a. Since
a(z*) > N, we have a(z*) €]a,b[. This implies, in particular, that a(z*) does not
belong to ®(z*) N [a, b], since this set is open in [a,b]. As a consequence, we have
z* € F(a(z*)). Now, fix A\, p €]a(z*), B(x*)[, with A < p. Clearly, u ¢ F~(z*) and
hence z* ¢ F(u). Next, for each € &~ (u), we have

alz) <alz) <A< p < B(z) .
Hence, A ¢ F~(z) that is € &~ (\). Therefore, we have
et € Fla(z?)) \ F(la(z), B(27))

as well as

o7 () S 2 (N)
that is

F(X) € F(p) -
So, in the current case, the conclusion is satisfied taking a* = a(z*) and b* = B(x™).
Now, assume that 37!(] — 0o, Ag]) is non-empty. This time, due to the sequential
lower semicontinuity (resp. lower semicontinuity) of 8|(y,), there exists # € X such
that §(2) = infx . As before, one realizes that & € F(3(2)). Fix A\, u €]a(z), B(Z)[
with A < p. Clearly, & & F(\). For each x € ®~(\), we have

a(r) <A <p<p@) < B(z)
and so x € &~ (u). Therefore, we have

& € Fla()) \ F(la(z), 5(2)[)
as well as

$~(\) C & ()
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that is
F(u) € F(N) .

So, in this case, the conclusion is satisfied taking a* = a(Z) and b* = 3(z). Now,
assume \g = a (in particular, this occurs when A\g = inf I). If supy a > a, then
since

oY ([a, +o0]) € Fla) |

and F(a) is sequentially compact (resp. compact), « attains its supremum (larger
than a), and so we are exactly in the first sub-case considered when X\g €|a, b[. If
supy o = a, we still reach the conclusion, as in the first sub-case considered when
Ao €]a, b, taking a* = a and b* = (2*), where z* is any point in F'(a). In doing so,
notice simply that z* € F(a(z*)) as a(z*) = a. Finally, let Ay = b ( in particular,
this occurs when sup I = b). If infx 8 < b, then since

BH] — 00,b]) C F(b)

and F'(b) is sequentially compact (resp. compact), 8 attains its supremum (smaller
than b), and so we are exactly in the second sub-case considered when g €]a, b[. If
inf x B = b, we still reach the conclusion, as in the second sub-case considered when
Ao €la, b], taking a* = «(&) and b* = b, where Z is any point in F'(b). The proof is
complete. O

We now give a purely set-theoretical reformulation of Theorem 2 in the “compact,
closed” case. We first need the following definition.

Definition 3. Let Y be a non-empty set and F a family of subsets of Y. We say
that F has the compactness-like property if every subfamily of F satisfying the
finite intersection property has a non-empty intersection.

We have the following characterization which is due to C. Costantini ([1]):

Proposition 4. Let Y be a non-empty set, let F be a family of subsets of Y and
let T be the topology on'Y generated by the family {Y \ C}tcer. Then, the following
assertions are equivalent:

(a) Each member of F is T-compact.
(b) The family F has the compactness-like property.
(¢) The space Y is T-compact.

Here is the reformulation of Theorem 2.

Theorem 5. Let X be a non-empty set, I C R a interval and F : I — 2% q

multifunction such that, for each x € X, the set X \ F~(x) is an interval open in

I. Moreover, assume that, for some Ao € I, with F(\g) # 0, and some set D C T

dense in I, the family {F(X) N F(X\o)}rep has the compactness-like property.
Then, the same conclusion as that of Theorem 2 holds.

Proof. In view of Proposition 4, if we consider the topology on F'(\o) generated by
the family {F(Xo) \ F' () }yep, all the assumptions of Theorem 2 (for the “compact,
closed” case) are satisfied, and the conclusion follows. |
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Now, we are going to present an application of Theorem 2.

In the sequel, X is a non-empty set, Y is a real Hausdorff locally convex topo-
logical vector space, C' is a closed subset of Y such that Y \ C' is convex, I C R is
an interval containing 0 and f, g are two functions from X into Y. The symbol 0
stands for boundary.

Here is the above mentioned application.

Theorem 6. Assume that the following conditions are satisfied:
(a1) the set f~1(C) is non-empty and the set {(f(z),g(z)) : * € f71(CO)} is
compact inY XY ;
(ag) for each x € X, there exists A € I such that

fx)+Xg(z) e Y\ C .
Then, there exist a compact interval [a*,b*] C I and a point x* € f~1(C) satisfying
@) +xg(2") e Y\ C
for all X €la*,b*[, such that, if we put
V= |J {zeX :f@)+X(z) eV \C},
A€]a*,b*|
at least one of the following assertions holds:
(p1) f(z*)+a*g(z*) € OC and
(f+a"g)(V)NC CO(f +a*g)(V)NIC ;
(p2) f(z*)+b*g(x*) € OC and
(f +59)(V) N C C a(f + b g)(V) N oC |
In particular, (p1) (resp. (p2)) holds when 0 =infI (resp. 0 =supl) .
Proof. Consider the multifunction F : I — 2% defined by
F\)={zeX: f(x)+Xg(z) € C}

for all A € I. Observe that, taking A\g = 0, F' satisfies the assumptions of Theorem
2. Indeed, if we consider on f~1(C) the weakest topology for which both f and g
are continuous in f~1(C), then, in view of (a1), f~!(C) turns out to be compact in
that topology. So, (i) is satisfied. Since Y carries a vector topology, for each A € R,
the function f + Ag is continuous in f~1(C), and so also (i) is satisfied since C' is
closed. Finally, for each x € X, we have

INF (x)={NeTl: f(x)+ Mg(x) e Y \C}

which is an interval open I, in view of (a2) and of the fact that Y \ C is open
and convex. Therefore, Theorem 2 ensures the existence of a compact interval
[a*,b*] C I such that either (F(a*) N F(0)) \ F(Ja*,b*[) # 0 and Fj4« 4+ is non-
decreasing with respect to the inclusion, or (F(b*) N F(0)) \ F(Ja*,b*[) # 0 and
Fjjq [ 1s non-increasing with respect to the inclusion. Assume, for instance, that
(F(a*) N F(0)) \ F(Ja*,b*[) # 0 and Fjjg« 3+[ is non-decreasing with respect to the
inclusion. Pick 2* € (F(a*)NF(0))\ F(Ja*,b*]). So, z* € f~YC), f(x*)+a*g(x*) €
C and f(x*)+Ag(z*) € Y\C for all X €]a*, b*[. Now, let us show that (f+a*g)(V)N
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C C 0C. So, let x € V be such that f(z) + a*g(z) € C. Fix X\ €]a*,b*[ such that
f(x) + Mg(xz) € Y \ C. Arguing by contradiction, suppose that f(x) + a*g(x) €
int(C). Then, we could find § €]a*, \[ so that f(x) + dg(x) € int(C). But this
contradicts the fact that f(x)+ dg(z) C Y \ C as F(§) C F(A\). Now, let us show
that (f +a*g)(V)NC C O(f +a*g)(V). So, let z € (f +a*g)(V)NC. Arguing
by contradiction again, assume that z € int((f + a*¢)(V)). Since Y \ C is open
and convex and z € J(Y \ C), there exists ¢ € Y*\ {0} such that ¢(z) < p(u)
for all u € Y \ C. Hence, the set ¢~ 1(] — 00, ¢(z)]) is an open set contained in C
which meets int((f +a*g)(V)) since ¢ has no local minima being linear, and this is
impossible for what seen above. The proof is complete. O

Remark 7. Let us recall that a function h : X — Y between topological spaces is
said to be open at xg € X if there exists a fundamental system V of neighbourhoods
of zg such that, for each V' € V, the set h(V) is a neighbourhood of h(z). Now, in
connection with Theorem 6, if 7 is any topology on X containing the family

{{fee X : f(@)+ Ag(x) € Y\ Clhrer

it follows that at least one of the functions f + a*g, f + b*g is not 7-open at the
point x*.

Among the corollaries of Theorem 6, it is worth noticing the following
Theorem 8. Let p € Y*\ {0} and r € R be such that the set

K= {zeX:p(f(x) <r}

is non-empty. Assume also that the set {(f(z),g(x)):x € K} is compact in Y XY
and that g(K) N ¢~ 1(0) = 0.

Then, there exist a compact interval [a*,b*] C R and a point x* € K satisfying

o(f(@") + Ag(z¥)) > r
for all X €la*,b*[, such that, if we put
V= {zeX:o(f@)+rg(x)>r},
AE)a*,b*|

at least one of the following assertions holds:

(@) @(f(z") +a"g(z")) =7 and

(f +a*g)(V) N~ (] —o0,r]) CA(f +a"g)(V) N (r) 5
(92) o(f(2") +b"g(2")) =7 and
(f+")(V) N (] —00,7]) CO(f +b"g)(V) N~ (r) -

Proof. Tt is enough to apply Theorem 6 taking I = R and C = ¢~ (] — o0, 7]), so
that 0C = ¢~ 1(r). O

If we apply Theorem 6 jointly with [2], we obtain:

Theorem 9. Let Y be a finite-dimensional Banach space and let ¢ :' Y — Y be
a continuous function such that 1¥~(C) is non-empty and compact. Assume also
that, for each x € Y, there exists A € R such that

Y(x)+ Az eY \C .
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Then, there exist x* € = 1(C) and p* € R such that
(") + (14 p')z" € 0C

and

sup [¢(x) — (") + p(z -2t = r

lz—z*||<r
for each r > 0 small enough.

Proof. Apply Theorem 6 taking X =Y, I = R, f = ¢ and g =id. Then, there
exist 2% € »~1(C), A* € R and a neighbourhood V of x* such that

Y(x*) + Nz" € 0(y + N*id)(V)noC .
Now, from the proof of Theorem 1 of [2], we know that if 7 > 0 is such that

sup  [o(z) — (") + (A = D)@ —2%)| <7,

[z—z*||<r

then, for some 79 > 0 and for every y € X satisfying |[¢(z*) + \*z* — y|| < 19, there
exists x € X, with ||z — 2*|| < r, such that

Y(z)+Nr=y.

As a consequence, for every r > 0 for which the closed ball centered at x*, of radius
r, is contained in V', we have

sup  [[¢(x) = (") + (A" =)z —a)[| = r .

[x—z*||<r

Now, the conclusion follows taking p* = A\* — 1. O

The last consequence of Theorem 6 that we point out is as follows:

Theorem 10. Let X be an open set in a real Banach space, let Y be a Banach space
and let f,g be continuously Fréchet differentiable. Assume that (a1), (a2) hold.
Then, there exist x* € X and \* € I such that

f(z*)+ Ag(z*) € 0C
and the continuous linear operator f'(x*) 4+ X*¢'(x*) is not invertible.
Proof. By Theorem 6, there exists * € X and A\* € I such that
f(z*)+ Ng(z*) € 0C
and f 4+ A\*g is not open at z* (Remark 7). This just implies that f’'(z*) + \*¢(z*)

is not invertible, since, otherwise, f + A*¢g would be a local homeomorphism at z*
by the inverse function theorem. O
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