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Figure 1: Voronoi diagram of 8
point sites in a square in (R2, ℓ2).
The neutral region does not ex-
ist.

Figure 2: The zone diagram
[and hence a double zone dia-
gram and a (double) territory di-
agram], of the same sites given
in Figure 1. The (black) neutral
region is clearly seen.

their distance to the other sites Pj , j ̸= k, in the case of a zone diagram the region
Rk is the set of all the points in the space whose distance to Pk is not greater to
their distance to the other regions Rj , j ̸= k. This somewhat implicit definition
implies, after some thinking, that a zone diagram is a solution to a certain fixed
point equation involving sets.

The above mentioned pioneering works have opened the way to a considerable
amount of related investigation. New properties have been established and new
objects have been introduced. See, for instance, [1, 8, 9, 11,13–15,22,25].

Returning back to zone diagrams, although their existence is not obvious in ad-
vance (even in the original setting of the Euclidean plane with point sites), it seems
intuitively clear that if a zone diagram does exist, then it should induce a decompo-
sition of the space into the regions (zones) Rk, and an additional region: the neutral
one. See Figure 2. As a matter of fact, the very first works discussing the concept
of a zone diagram used the terminology “a Voronoi diagram with neutral zones” [4]
and “Voronoi diagram with neutral zone” (see the 2006 conference version of [2] and
the footnote on [3, p. 1182]) for describing the concept of zone diagrams. However,
neither there nor in other places it has been formally proved that a neutral region
must exist in the case of zone diagrams.

In Section 3 we prove that the above claim about the existence of a neutral
region holds in a wide class of spaces (geodesic metric spaces) but not in general.
We discuss similar phenomena occurring with variations (actually generalizations)
of zone diagrams called double zone diagrams [25], territory diagrams [9] (called
“subzone diagrams” or “mollified zone diagrams” in the conference version of [9]),
and double territory diagrams which are introduced here (we also generalize the
definition of territory diagrams from the original setting of the Euclidean plane
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with point sites). As in the case of zone diagrams, the existence of a neutral zone
in the case of territory diagrams was claimed (in [9]) without providing a proof.

An interesting interpretation of the concept of zone diagrams is a certain equi-
librium between mutually hostile opponents. This interpretation was mentioned
without full justification in [3, 25]. As shown in Section 4, at least in the setting of
geodesic metric spaces the neutral region can be used to justify this interpretation.
The relation between this kind of equilibrium and the well-known Nash equilib-
rium is explained. Another concept related to the neutral region is the concept of
“forbidden zone” [7, 9]. The relation is briefly explained in Section 5.

2. Preliminaries

In this section we present our notation and basic definitions, as well as additional
details and examples related to the relevant notions. Throughout the text we will
make use of tuples, the components of which are sets (which are subsets of a given
set X). Every operation or relation between such tuples, or on a single tuple,
is done component-wise. Hence, for example, if K ̸= ∅ is a set of indices, and
if R = (Rk)k∈K and S = (Sk)k∈K are two tuples of subsets of X, then R ⊆ S
means Rk ⊆ Sk for each k ∈ K. When R is a tuple, the notation (R)k is the k-th
component of R, i.e, (R)k = Rk.

Definition 2.1. Let (X, d) be a metric space. Given two nonempty subsets P,A ⊆
X, the dominance region dom(P,A) of P with respect to A is the set of all x ∈ X
whose distance to P is not greater than their distance to A, i.e.,

(2.1) dom(P,A) = {x ∈ X : d(x, P ) ≤ d(x,A)}.

Here

(2.2) d(x,A) = inf{d(x, a) : a ∈ A}

and in general, for any subsets A1, A2 we denote

d(A1, A2) = inf{d(a1, a2) : a1 ∈ A1, a2 ∈ A2}.

with the agreement that d(A1, A2) = ∞ if A1 = ∅ or A1 = ∅.

Definition 2.2. Let (X, d) be a metric space. Let K be a set of at least 2 elements
(indices), possibly infinite. Given a tuple (Pk)k∈K of nonempty subsets Pk ⊆ X,
called the generators or the sites, the Voronoi diagram induced by this tuple is the
tuple (Rk)k∈K of nonempty subsets Rk ⊆ X, such that for all k ∈ K,

(2.3) Rk = dom(Pk,
∪
j ̸=k

Pj) = {x ∈ X : d(x, Pk) ≤ d(x, Pj) ∀j ̸= k, j ∈ K}.

In other words, each Rk, called a Voronoi cell or a Voronoi region, is the set of all
x ∈ X whose distance to Pk is not greater than their distance to the other sites Pj,
j ̸= k. The set X\(

∪
k∈K Rk) is called the neutral region.

Definition 2.3. Let (X, d) be a metric space. Let K be a set of at least 2 elements
(indices), possibly infinite. Given a tuple (Pk)k∈K of nonempty subsets Pk ⊆ X, a
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zone diagram with respect to that tuple is a tuple R = (Rk)k∈K of nonempty subsets
Rk ⊆ X satisfying

Rk = dom(Pk,
∪
j ̸=k

Rj) ∀k ∈ K.

In other words, if we define Xk = {C : Pk ⊆ C ⊆ X}, then a zone diagram is a
fixed point of the mapping Dom :

∏
k∈K

Xk →
∏
k∈K

Xk, defined by

(2.4) Dom(R) = (dom(Pk,
∪
j ̸=k

Rj))k∈K .

A tuple R = (Rk)k∈K is called a double zone diagram if it is the fixed point of the
second iteration Dom ◦ Dom, i.e., R = Dom2(R). A tuple R = (Rk)k∈K is called
a territory diagram if R ⊆ Dom(R) and it is called a double territory diagram if
R ⊆ Dom2(R).

Remark 2.4. Some of the concepts mentioned in Definition 2.3 are related (see
also Figures 3-6). Any zone diagram is obviously a territory diagram. It is also
a double zone diagram as can be seen by applying Dom on R = Dom(R). Any
double zone diagram is obviously a double territory diagram. A double territory
diagram is not necessarily a territory diagram: take X = {−1, 0, 1} ⊂ R, let d be
the absolute value distance, and let (P1, P2) = ({−1}, {1}), R = ({−1, 0}, {0, 1});
then Dom(R) = ({−1}, {1}) and Dom2(R) = R, but R $ Dom(R). A terri-
tory diagram is not necessarily a double territory diagram: take X = [−1, 1] ⊂
R, (P1, P2) = ({−1}, {1}), R = ([−1, 0], {1}); then Dom(R) = ([−1, 0], [0.5, 1]),
Dom2(R) = ([−1,−0.25], [0.5, 1]), and hence R $ Dom2(R). But R ⊆ Dom(R).

Remark 2.5. The components of any territory and double territory diagrams are
contained in the Voronoi regions of their sites. Indeed, the Voronoi regions cor-
responding to the tuple P = (Pk)k∈K of sites are nothing but the components of
Dom(P ). By the definition Dom and the space

∏
k∈K Xk of tuples we have P ⊆ R

and P ⊆ Dom(R) for each tuple R in this space. Thus the anti monotonicity of Dom
(see Lemma 3.1(a)) implies that Dom(R) ⊆ Dom(P ) and Dom2(R) ⊆ Dom(P ) and
the assertion follows by taking R to be a territory or a double territory diagram.

Remark 2.6. Examples (illustrations) of zone diagrams in various settings can be
found in [3, 11, 14, 22, 25]. Examples of double zone diagrams which are not zone
diagrams can be found in [22, 25]. Examples (including illustrations) of territory
diagrams which are not zone diagrams can be found in [9]. Additional illustrations
can be found in Figures 2, 3-6.

Existence (and sometimes uniqueness) proofs of zone diagrams in certain settings
can be found in [3, 13, 14, 25]. Double zone diagrams always exist [25] (in a setting
called m-spaces which is even general than a metric space: the distance function
can be negative and does not necessarily satisfy the triangle inequality). However,
for our purposes we only need to know that territory diagrams and double territory
diagrams always exist, and, as a matter of fact, it is quite easy to construct explicit
examples of them. Indeed, we can simply start with P = (Pk)k∈K and iterate it
using Dom. As explained in Remark 2.5, for each tuple R one has P ⊆ Dom(R)
and P ⊆ Dom2(R). Now, since Dom is antimonotone and since Dom2 is monotone
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the inequality

P ⊆ Dom2(P ) ⊆ Dom4(P ) ⊆ · · · ⊆ · · · ⊆ Dom3(P ) ⊆ Dom(P )

follows. Hence any even power is a territory and a double territory diagram [which
is usually not a (double) zone diagram].

We finish this section with the definition of geodesic metric spaces.

Definition 2.7. Let x, y ∈ S ⊆ X. The subset S is called a geodesic segment (or
a metric segment) between x and y if there exists an isometric function γ (that is,
a distance preserving mapping) which maps a real line segment [r1, r2] onto S and
satisfying γ(r1) = x and γ(r2) = y. We denote S = [x, y]γ, or simply S = [x, y]. If
between all points x, y ∈ X there exists a geodesic segment, then (X, d) is called a
geodesic metric space. The sets [x, y) = [x, y]\{y}, (x, y] = [x, y]\{x}, and (x, y) =
[x, y]\{x, y} represent the half open segments and open segments respectively.

Simple and familiar examples of geodesic metric spaces are: the Euclidean plane,
any normed space, any convex subset of a normed space, Euclidean spheres, com-
plete Riemannian manifolds [12, pp. 25-28], and hyperbolic spaces [26, pp. 538-9].

3. The existence of a neutral region

In this section we prove the existence of a neutral region (zone) in the context of
zone diagrams, double zone diagrams, and (double) territory diagrams. The proof is
based on several lemmas, the first of them is taken (each part separately) from [25,
Lemma 5.4] (see also [3, p. 1184]) and [22] (Lemma 9.3(c) and Lemma 9.9(c) in the
current arXiv version (v3)).

Lemma 3.1. Let (X, d) be a metric space and let P = (Pk)k∈K be a tuple of
nonempty subsets in X.

(a) Dom is antimonotone (order reversing), i.e., Dom(R) ⊆ Dom(S) whenever
S ⊆ R; Dom2 is monotone, that is, R ⊆ S ⇒ Dom2(R) ⊆ Dom2(S).

(b) Dom(R) = Dom(R).
(c) Suppose that (X, d) is a geodesic metric space and that

(3.1) rk := inf{d(Pk, Pj) : j ̸= k} > 0 ∀k ∈ K.

Then (rk/8) + (rj/8) ≤ d((DomγP )k, (DomγP )j) for any j, k ∈ K,j ̸= k and
any γ ≥ 2.

Lemma 3.2. Let (X, d) be a metric space, let P = (Pk)k∈K be a tuple of nonempty
subsets of X. Suppose that R = (Rk)k∈K satisfies Pk ⊆ Rk ⊆ X for each k ∈ K.

(a) Suppose that R ⊆ Dom(R). If Pk
∩

Pj = ∅ whenever j ̸= k, then Rk
∩

Rj = ∅
for each j, k ∈ K, j ̸= k.

(b) Suppose that (3.1) holds. If R ⊆ Dom(R), then the components of R satisfy
max{rk, rj}/3 ≤ d(Rk, Rj) for each j, k ∈ K, k ̸= j.

(c) Suppose that R ⊆ Dom2(R), that (X, d) is a geodesic metric space, and that
(3.1) holds. Then the components of R satisfy (rk/8) + (rj/8) ≤ d(Rk, Rj) for
each j, k ∈ K, k ̸= j.
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Proof. (a) Suppose by way of contradiction that x ∈ Rk
∩

Rj for some j, k ∈ K,
j ̸= k. Since x ∈ Rk ⊆ (DomR)k we have d(x, Pk) ≤ d(x,

∪
i̸=k Ri) ≤ d(x,Rj) =

0, so x ∈ Pk. In the same way x ∈ Pj , a contradiction.
(b) Let j, k ∈ K, j ̸= k and x ∈ Rk ⊆ dom(Pk,

∪
i̸=k Ri), y ∈ Rj ⊆ dom(Pj ,

∪
i̸=j Ri).

This implies that d(x, Pk) ≤ d(x,Rj) ≤ d(x, y) and d(y, Pj) ≤ d(x, y). Therefore

rk ≤ d(Pk, Pj) ≤ d(Pk, x) + d(x, y) + d(y, Pj) ≤ 3d(x, y).

Thus rk/3 ≤ d(Rk, Rj). Similarly, rj/3 ≤ d(Rk, Rj).
(c) From the monotonicity of Dom2 (Lemma 3.1(a)) we have R ⊆ Dom2(R) ⊆

Dom4(R). This, Lemma 3.1 parts (a)-(b), the inclusion P ⊆ R ⊆ (X)k∈K ,
and P = Dom(X)k∈K imply that R ⊆ Dom4(X)k∈K = Dom3(P ) = Dom3(P ).
From Lemma 3.1(c) we conclude that

d(Rk, Rj) ≥ d((Dom3P )k, (Dom3P )j) ≥ (rk/8) + (rj/8)

for each j, k ∈ K, k ̸= j.
�

Lemma 3.3. Let B = (Bk)k∈K be a tuple of nonempty subsets in a geodesic metric
space (X, d) and suppose that

(3.2) ρk := inf{d(Bk, Bj) : j ∈ K, j ̸= k} > 0 ∀k ∈ K.

Then N := X\
∪

k∈K Bk ̸= ∅. Moreover,
∪

k∈K Sk ⊆ N where

(3.3) Sk = {x ∈ X : d(x,Bk) < ρk, x /∈ Bk}.

Proof. Let j, k ∈ K, j ̸= k and let x ∈ Bk, y ∈ Bj . SinceX is a geodesic metric space
there exists an isometry γ : [0, d(x, y)] → X satisfying γ(0) = x and γ(d(x, y)) = y.
Let E be the inverse image of the part of the (geodesic) segment [x, y] which does
not meet Bk anymore, i.e.,

E := {t ∈ [0, d(x, y)] : [γ(s), y] ∩Bk = ∅ ∀s ∈ [t, d(x, y)]}.

Since y ∈ Bj and y /∈ Bk (by (3.2)) it follows that d(x, y) ∈ E. Thus E ̸= ∅. Let

a = inf E. If a = 0, then γ(a) = x ∈ Bk. Otherwise a > 0. Assume by way of
contradiction that γ(a) /∈ Bk. Since Bk is closed it follows that a small ball around
γ(a) does not intersect Bk. Because γ is continuous, for all t in a small segment
around a the point γ(t) is inside this ball and thus does not belong to Bk. This
contradicts the minimality of a. Therefore γ(a) ∈ Bk.

Consider the segment (γ(a), y]. Its length is at least ρk by (3.2) (since the distance
between two sets is the distance between their closures). Since γ is an isometry the
length of [a, d(x, y)] is at least ρk. Let s ∈ (0, ρk) and let z = γ(a + s). Then
z ∈ (γ(a), y] and d(z,Bk) ≤ d(z, γ(a)) = s < ρk. From the definition of a there
exists b ∈ (a, a + s) ∩ E. Thus [γ(b), y] ∩ Bk = ∅ and in particular z /∈ Bk. Since
d(z,Bk) < ρk it follows from (3.2) that z /∈

∪
i̸=k Bi. Therefore z ∈ N and in

particular N ̸= ∅.
Finally, let Sk be the shell defined in (3.3) and let x ∈ Sk. From (3.2) we see that

x /∈ Bj for j ̸= k, j ∈ K. In addition, x /∈ Bk by the definition of Sk. Hence x ∈ N
and Sk ⊆ N for each k ∈ K. �
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Theorem 3.4. Let (X, d) be a geodesic metric space and let (Pk)k∈K be a tuple of
nonempty subsets of X. Assume that (3.1) holds. Let R = (Rk)k∈K satisfy Pk ⊆
Rk ⊆ X for each k ∈ K and suppose that either R ⊆ Dom(R) or R ⊆ Dom2(R).
Then there exists a neutral region in X, i.e., N := X\

∪
k∈K Rk ̸= ∅. In particular

this is true when R is a zone or a double zone diagram. Moreover, let

βk =

{
rk/3, if R ⊆ Dom(R),
(rk + inf{rj : j ∈ K, j ̸= k})/8, ifR ⊆ Dom2(R)

for each k ∈ K. Then
∪

k∈K Sk ⊆ N , where for each k ∈ K,

(3.4) Sk = {x ∈ X : d(x,Rk) < βk, x /∈ Rk}.

Proof. This is a simple consequence of Lemma 3.3 with B = R and ρk = βk since
(3.2) is satisfied by Lemma 3.2(b)-(c). �

Example 3.5. An illustration of Theorem 3.4 is given in Figures 3-6 which also
show some of the differences between the various notions. In all of these figures
the setting is X = [−6, 6]2, P1 = {(2, 1), (−2,−1)}, P2 = {(−2, 1), (2,−1)}, and
the distance is the 2-dimensional ℓ1 distance. The (black) neutral region is clearly
seen. Figures 3, 5, and 6 were produced using the method described in [22] (which
is based on the algorithm for computing Voronoi diagrams in a general setting
described in [21]) and Figure 4 was produced directly.

Example 3.6. From the proof of Lemma 3.3 and Theorem 3.4 one obtains points
in the neutral region by looking at certain parts of geodesic segments connecting
points located in different sites. The example described here shows that sometimes
the neutral zone is nothing more than such a segment. In particular this example
shows that the shells Sk located around the components of the (double) territory
diagram (see (3.4)) can be very small.

Indeed, let X1 = {0} × (−2, 3], X2 = {x ∈ R2 : ∥x − (0,−3)∥ ≤ 1}, and X =
X1 ∪X2, where ∥ · ∥ is the Euclidean norm. Define a metric d on X by d(x, y) =
∥x − y∥ if x and y belong to the same component Xi, i = 1, 2, and d(x, y) =
∥x−(0,−2)∥+∥y−(0,−2)∥ otherwise. Then (X, d) is a geodesic metric space. Now
let P1 = {(0, 3)}, P2 = {(0,−3)}, R1 = {0}× [1, 3], and R2 = X2∪ ({0}× (−2,−1]).
Then R = (R1, R2) is a zone diagram with respect to P = (P1, P2) and the neutral
region is {0} × (−1, 1). See Figure 7.

Example 3.7. LetX = {−1, 0, 1} be a subset of R with the standard absolute value
metric. Let P1 = {−1}, P2 = {1}. Let R1 = P1, R2 = {0, 1}. Then R = (R1, R2)
is a zone diagram (and hence also a territory diagram) but R1 ∪R2 = X, violating
Theorem 3.4. This is not surprising sinceX is not a geodesic metric space. However,
R1∩R2 = ∅, as predicted by Lemma 3.2(a). This setting was mentioned in a different
context in [25, Example 2.3].

In the same way, if S1 = {−1, 0} and S2 = {0, 1}, then S = (S1, S2) is a double
zone diagram as a simple check shows (starting with observing that Dom(S) =
(P1, P2)). Now not only S1 ∪ S2 = X, but also S1 ∩ S2 ̸= ∅.

Example 3.8. Condition (3.1) is necessary. Indeed, let X = R with the standard
absolute value metric d(x, y) = |x − y|, let K = X, and let Pk = k, k ∈ K.
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Figure 3: The neutral region in-
duced by a zone diagram of two
sites, each consists of 2 points,
in a square in (R2, ℓ1) (Exam-
ple 3.5).
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Figure 4: The neutral region in-
duced by a territory diagram R
of the setting of Example 3.5.
The second component of R is
P2 and R is not a double terri-
tory diagram.
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Figure 5: The neutral region in-
duced by the least double zone
diagram R of the setting of Ex-
ample 3.5. R is not a zone dia-
gram.

12

21

Figure 6: The neutral region
induced by the greatest double
zone diagram R of the setting of
Example 3.5. R is a double terri-
tory diagram but not a territory
diagram.

Let R = (Pk)k∈K . Then (X, d) is a geodesic metric space, R = Dom(R), but
X\(

∪
k∈K Rk) = ∅.
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Figure 7: The neutral region de-
scribed in Example 3.6.

4. Justifying the equilibrium interpretation of zone diagrams

One of the interpretations of zone diagrams, first suggested in [3] and then ex-
tended in [25], is a a certain equilibrium between mutually hostile kingdoms compet-
ing over territory. Kingdom number k has a territory Rk which has to be defended
against attacks from the other kingdoms. Its site Pk is interpreted as a castle, or,
more generally, as a collection of army camps, castles, cities, and so forth. The
sites remain unchanged and they are assumed to be located inside the kingdom and
hence separated from each other. Due to various considerations (resources, field
conditions, etc.), the defending army is located only in (part of) the corresponding
site (unless the kingdom moves forces to attack another kingdom).

Assuming the time to move armed forces between two points is proportional to
the distance between the points (with the same proportion relation allover X), it
seems intuitively clear that if R = (Rk)k∈K is a zone diagram, then each point in
each kingdom can be defended at least as fast as it takes to attack it from any other
kingdom, and no kingdom can enlarge its territory without violating this condition.
More precisely, given any index k ∈ K and any nonempty subset Ak ⊂ X satisfying

(4.1) Ak

∩
Rk = ∅ = Ak

∩
(
∪
j ̸=k

Pj),

if we let R̃k = Rk
∪

Ak and R̃j = Rj\Ak for any j ̸= k, then there exist points

in R̃k which cannot be defended fast enough by armed forces emanating from Pk:

there is some kingdom R̃j , j ̸= k which can send secretly its forces to its borders,
and, after exiting Rj , they will arrive to these points before the defending forces

from Pk will arrive. In other words, it is not true that R̃k ⊆ dom(Pk,
∪

j ̸=k R̃j).

(The second assumption in (4.1), namely Ak
∩
(
∪

j ̸=k Pj) = ∅, is assumed in order
to make sure that the original sites do not change after the enlarging attempt. This
casts a slight restriction on the full generality of the possible enlarging attempt,
but at least intuitively this condition seems quite clear because the sites are located
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strictly inside their corresponding kingdoms and a kingdom cannot send its forces
to a site by jumping on them “out of the blue”.)

It also seems clear that the various territories are separated by a no-man’s land:
the neutral territory. This was said explicitly in [3, p. 1183] where the setting was
the Euclidean plane and each site was a point. In [25] the setting was general and
it was noted that counterexamples may exist in a discrete setting, but no further
investigation of the whole interpretation has been carried out.

The goal of this section is to give a more rigorous justification to the above
interpretation. It turns out that when the setting is similar to that of Theorem 3.4,
then the interpretation holds.

Theorem 4.1. Let (X, d) be a geodesic metric space and let P = (Pk)k∈K be a tuple
of nonempty subsets of X. Assume that (3.1) holds. Suppose that R = (Rk)k∈K is a
zone diagram corresponding to P . Then R is an equilibrium in the above mentioned
sense and there exists a neutral region separating its components.

Proof. The existence of a neutral region N was proved in Theorem 3.4. The proof
actually shows that N separates the regions Rk, k ∈ K in the sense that each
region Rk is surrounded by a shell Sk (defined in (3.4)) contained in N and any
path connecting two points located in different regions goes through N .

As for the equilibrium interpretation, let x be a point in some region Rk. By
definition, d(x, Pk) ≤ d(x,

∪
j ̸=k Rj). Since the time to move armed forces between

any two points is proportional to the distance between them, this shows that armed
forces emanating from Pk will arrive at x before any armed forces emanating from
another kingdom will arrive at x. This last fact is true in general, even in m-
spaces [25] (in which the distance function can be, e.g., negative) and even if the
sites are not mutually disjoint, although in this general case the interpretation looses
something from its intuitiveness.

It remains to prove that no kingdom can enlarge its territory without violating the
fast defense condition. As already mentioned (around (4.1)), the precise meaning
of this is that given any index k ∈ K and any nonempty subset Ak ⊂ X satisfying

(4.2) Ak

∩
Rk = ∅ = Ak

∩
(
∪
j ̸=k

Pj),

if we let R̃k = Rk
∪

Ak and R̃j = Rj\Ak for all j ̸= k, then it is not true that

R̃k ⊆ dom(Pk,
∪

j ̸=k R̃j).

To prove this, let Ak ̸= ∅ satisfy (4.2) and suppose for a contradiction that for
some x ∈ Ak we have

(4.3) d(x, Pk) ≤ d(x,
∪
j ̸=k

R̃j).

First, by (4.2) it follows that x /∈ Rk. It must be that x /∈ Rj for each j ̸= k.
Indeed, assume by way of negation that x ∈ Rj for some j ̸= k. In particular
d(x, Pj) ≤ d(x,Rk) since R is a zone diagram. By Lemma 3.2 we also know that
x /∈ Rk. Now observe the simple fact that the neighborhood B(Pk, rk/4) = {y ∈
X : d(y, Pk) < rk/4} is contained in Rk. A proof can be found in [22] (Lemma
9.9(a) and Lemma 9.2(b) in the current arXiv version (v3)) and a related claim also
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in [13, Observation 2.2]. Let p ∈ Pk satisfy d(x, p) < d(x, Pk)+(rk/16). The segment
[p, x] starts at a point in B(Pk, rk/4) and ends at a point outside this neighborhood
and therefore the intermediate value theorem implies that it intersects the boundary
of B(Pk, rk/4) in at least one point y. The point y is of distance at least rk/4 from
p, otherwise it will be strictly inside B(Pk, rk/4). The discussion above implies that

(rk/16) + d(x, Pk) > d(x, p) = d(x, y) + d(y, p) ≥ d(x,Rk) + (rk/4)

and hence, recalling that d(x,Rk) ≥ d(x, Pj), we have

d(x, Pk) > d(x,Rk) + (3rk/16) ≥ d(x, Pj) + (3rk/16) > d(x, Pj).

But this is impossible since we assumed in (4.3) that d(x, Pk) ≤ d(x,
∪

i̸=k R̃i) and

from (4.2) we know that Pj ⊆ R̃j ⊆
∪

i ̸=k R̃i. This contradiction proves that x /∈ Rj

for each j ̸= k and hence Ak
∩
(
∪

j ̸=k Rj) = ∅.
Finally x cannot be in the (original) neutral region N = X\(

∪
j∈K Rj). Indeed,

if x is there, then in particular x /∈ Rk = dom(Pk,
∪

j ̸=k Rj), i.e., d(x,Rj) < d(x, Pk)

for some j ̸= k. But Rj = R̃j since Ak ∩Rj = ∅ as proved above. Thus d(x, R̃j) <
d(x, Pk), a contradiction to (4.3). In conclusion, x /∈ Rk

∪
(
∪

j ̸=k Rj)
∪

N = X, an

obvious contradiction. Thus (4.3) does not hold, i.e., d(x, Pk) > d(x,
∪

j ̸=k R̃j) and
x cannot be defended fast enough, as initially claimed. �
Remark 4.2. When the space is no geodesic anymore a kingdom can enlarge its
territory without violating the fast defense condition: just consider for instance
Example 3.7 where X = {−1, 0, 1} (or, if we allow attacks on the sites, even the
more simple example where X = {−1, 1}, P1 = R1 = {−1}, P2 = R2 = {1}). Here
it is worthwhile to kingdom 1 to try to capture the point 0. However, one can argue
against this example that the armed forces must jump out of the space in order
to arrive at the other kingdoms and if they do manage to do this, then they seem
to appear there “out of the blue”. Hence it is implicitly assumed in the original
interpretation that the space is “continuous”, or, in more precise terms, that it is a
geodesic metric space or even a convex subset of a normed space.

Remark 4.3. Another type of interpretation was suggested to zone diagrams: again
as a certain equilibrium, but now in a discrete setting related to a certain combina-
torial game. See [25, Section 4].

Remark 4.4. It is interesting to compare the equilibrium induced by a zone dia-
gram (as described in Theorem 4.1) to the well-known Nash equilibrium [16–18,20].
A Nash equilibrium is a certain equilibrium between n ≥ 2, n ∈ N players. More
precisely, each player has his (or her) own set of strategies and each player obtains
a payoff for each vector of strategies (that is, the payoff of player k depends on the
player’s own chosen strategy and on all the other strategies). Each player knows
the other players strategies and he can decide to change his strategy in order to
enlarge his payoff. This may result in an instable situation where each player tries
to maximize his own payoff just to realize that the payoff has changed because the
other players change their strategies too and the payoff depends on all strategies.
However, if, given a vector of strategies, each player cannot enlarge his payoff by
changing his own strategy while the remaining strategies (the remaining components
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of the given vector) are fixed, then this vector of strategies is called a Nash equilib-
rium: instead of the previous mentioned dynamical situation the obtained situation
is static. Nash equilibrium can be defined as a fixed point of a certain multivalued
function and its common proofs are based on either the Kakutani [16,17,20] or the
Brouwer [18] fixed point theorems.

Similarly, the situation leading to the interpretation of a zone diagram can be
considered as a game between given (possibly infinite) players. Instead of a strategy
each player has a kingdom. The payoff each player obtains is somewhat abstract.
For example, if we consider player k, then he “obtains more” for a kingdom Rk,2

than for a kingdom Rk,1 whenever Rk,1 ( Rk,2. (One can try to use also a kind of a
measure function such as area together with the abstract payoff of set inclusion; a
measure function alone cannot replace set inclusion, because, for instance, the area
of one set can be greater than another even when neither of these sets is contained
in the other one.)

A given player may want to enlarge his kingdom. However, because of the hostility
between the players and the way they move their forces, the new enlarged kingdom
may have parts which cannot be efficiently defended. In this case there is a certain
(very large) penalty which enforces the player to abandon these parts from the
kingdom. This will lead to a dynamical situation in which the players enlarge and
reduce their kingdoms depending on the other players’ kingdoms. A zone diagram
is a special vector (tuple) of kingdoms in which each player cannot obtain a larger
kingdom than he has now while still having a kingdom whose all parts are safe.

5. A short remark about forbidden zones

The goal of this short section is to discuss very briefly the relation between the
neutral region and a concept called “the forbidden zone”, a concept which was
introduced in [9] and was further investigated in [7] . Given two nonempty subsets
P (the “site”) and R (the “region”), the forbidden zone with region R and a site P
is the set

(5.1) F (R,P ) = {z ∈ X : d(z, y) < d(y, P ) for some y ∈ R}.

Originally [9], the setting was a subset R in the Euclidean space Rm and P was a
point in R, but the same definition holds with respect to any given subsets contained
in any metric space. In fact, the distance function can be completely general (for
instance, for the sake of the proof of the following proposition, it merely needs to be
symmetric; positivity is not needed), but we will confine ourselves to metric spaces.
The relation to the neutral region is described in the following proposition.

Proposition 5.1. Let (X, d) be a metric space. Suppose that (Rk)k∈K is a territory
diagram with respect to the tuple (Pk)k∈K . Then the union

∪
k∈K F (Rk, Pk)\Rk is

contained in the (possibly empty) neutral region.

Proof. Suppose for a contradiction that there exist k ∈ K and z ∈ F (Rk, Pk)\Rk

such that z is not in the neutral region. Hence z ∈
∪

j ̸=k Rj , i.e., z ∈ Rj for some

j ̸= k. Because z ∈ F (Pk, Rk) there exists y ∈ Rk satisfying d(z, y) < d(y, Pk).
Because (Ri)i∈K is a territory diagram we have y ∈ Rk ⊆ dom(Pk,

∪
i̸=k Ri). This
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and z ∈ Rj imply that d(y, Pk) ≤ d(y,Rj) ≤ d(y, z). Hence d(z, y) < d(y, z), a
contradiction which proves the assertion. �

6. Concluding remarks

We finish this note with some remarks about possible future lines of investigation.
First, we believe that it is possible to prove the existence of a neutral region in a
context more general than Theorem 3.4, with some caution (because of the coun-
terexamples), e.g., in the case where several sites intersect, but at the moment we
do not have any result in this direction. It may be of interest to establish additional
properties of the neutral region and to find applications to this concept. Investigat-
ing more the interpretation of a zone diagram as a certain equilibrium, including
making some computer based simulations related to it and to the dynamical system
it induces, may be of interest too. Finding other relations between the neutral re-
gion and other concepts and also suggesting interesting interpretations to the other
concepts (double zone diagrams, territory and double territory diagrams, forbidden
zones, and also new interpretations to zone diagrams) and investigating them can
be interesting too. Introducing the neutral region in other settings and investigating
this concept there might be interesting too, and in fact we do have something in
this direction (concerning a neutral Voronoi region) which will be considered in a
companion paper [24].
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