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uniformly convex Banach space and T is a nonexpansive map then Tx = x, for
some x ∈ A.

Motivated by the above results, we introduce a notion of cyclic T−regular sets
and establish the following result. Suppose (A,B) is a nonempty non-convex weakly
compact proximal pair in a Hilbert space.

If A ∪ B is a cyclic T−regular set and T is a relatively nonexpansive map, then
there exists a point x ∈ A ∪B such that ∥x− Tx∥ = dist(A,B).

Also it is proved that if A∪B is a T−regular set and T is a relatively nonexpansive
map which satisfies the condition (1.3), then there exists (x, y) ∈ A × B such that
Tx = x, Ty = y, and ∥x− y∥ = dist(A,B).

We have observed some facts about nonempty weakly compact convex proxi-
mal pairs in Hilbert spaces which enable us to introduce the notion of non-convex
proximal parallel pairs. We prove the aforesaid theorems for non-convex proximal
parallel pairs.

Let X be a Banach space and A and B be nonempty subsets of X. We use the
following notations:

rx(B) = sup{∥x− y∥ : y ∈ B}, x ∈ A;

δ(A,B) = sup{rx(B) : x ∈ A};
δ(A) = sup{rx(A) : x ∈ A};

dist(A,B) = inf{∥x− y∥ : x ∈ A, y ∈ B}.

In section 2 we introduce the notion of cyclic T− regular sets and give definitions
related to this work. We discuss some results related to the Chebyshev radius. In
section 3 we prove a result about proximal pairs which enables us to extend the
concept of proximal parallel pairs to a non-convex proximal pair satisfying some
conditions. Also, we show that a relatively nonexpansive map defined on a non-
convex proximal pair has a best proximity point. We establish the existence of fixed
points of a relatively nonexpansive map T defined on a non-convex proximal pair
(A,B), if A ∪ B is a T−regular set and T satisfies the condition (1. 3). Moreover,
in the above cases, we prove that the Kransnoel’skĭı’s iteration process yields a
convergence result under suitable assumption.

We prefer to use the term proximal pair, see [2, Definition 1.1], which is labelled
as proximinal pair in [4].

2. Preliminaries

Definition 2.1 ([2, 4]). Let A and B be nonempty subsets of a Banach space X.
The pair (A,B) is said to be a proximal pair if for each (x, y) ∈ A×B there exists
(x1, y1) ∈ A×B such that ∥x− y1∥ = dist(A,B) = ∥y − x1∥.

In addition, if for each (x, y) ∈ A × B, (x1, y1) ∈ A × B is a unique point such
that ∥x− y1∥ = dist(A,B) = ∥y−x1∥, then we say (A,B) is a sharp proximal pair.

Definition 2.2 ([4]). A pair (A,B) of nonempty subsets in a Banach space X is
said to be a proximal parallel pair if
(i) (A,B) is a sharp proximal pair.
(ii) There exists a unique h ∈ X such that B = A+ h.
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Remark 2.3. Let (A,B) be a nonempty convex proximal pair in a Banach space
X. Let x0 ∈ A and x′0 ∈ B be such that ∥x0 − x′0∥ = dist(A,B). In [4] it is shown
that if X is a strictly convex Banach space, then B = A + h, where h = x′0 − x0.
Further, if X is a Hilbert space, then it is quite easy to see that for every x, y ∈ A
or B, x− y is orthogonal to h. That is A−A(= B −B) is orthogonal to h.

Definition 2.4 ([2]). Let A and B be nonempty subsets of a Banach space X. A
mapping T : A∪B → X is said to be relatively nonexpansive if ∥Tx−Ty∥ ≤ ∥x−y∥
for x ∈ A and y ∈ B.

Definition 2.5 ([6]). Let A and B be nonempty subsets of a Banach space X. Let
T be a self map on A ∪ B such that T (A) ⊆ A and T (B) ⊆ B. The set A ∪ B is

said to be T−regular if x+Tx
2 ∈ A for every x ∈ A and y+Ty

2 ∈ B for every y ∈ B.

Remark 2.6. If we assume A and B are nonempty convex subsets in the above
definition, then it is clear that A ∪B is a T−regular.

We introduce the following concept.

Definition 2.7. Let A and B be nonempty subsets of a Banach space X and let
T : A ∪B → A ∪B be a mapping. The set A ∪B is said to be cyclic T−regular if

(1) T (A) ⊆ B and T (B) ⊆ A.

(2) x+Tx′

2 ∈ A, for every x ∈ A, where x′ ∈ B is such that ∥x−x′∥ = dist(x,B).

(3) y+Ty′

2 ∈ B, for every y ∈ B, where y′ ∈ A is such that ∥y− y′∥ = dist(y,A).

Example 2.8. In the Euclidean space R2, let A = {(0, 0), (0, 12), (0, 1)} and B = A+

(1, 0). Define T : A∪B → A∪B as follows, for x ∈ A, T (x) =


(1, 1) if x = (0, 0),
(1, 0) if x = (0, 1),
(1, 12) otherwise,

and for x ∈ B, T (x) =


(0, 1) if x = (1, 0),
(0, 0) if x = (1, 1),
(0, 12) otherwise.

Then T is a cyclic T−regular.

Remark 2.9. Let (A,B) be a nonempty convex proximal pair in a Banach space
and T : A∪B → A∪B be a map satisfying: T (A) ⊆ B and T (B) ⊆ A. Then A∪B
is a cyclic T−regular.

The following fact is used in the proof of our main results.

Proposition 2.10 ([7]). Let (A,B) be a bounded convex proximal parallel pair in
a Hilbert space X over R. Then for every x ∈ A,

rx(B) = rx+h(A) =
√

∥h∥2 + (rx(A))2.

Remark 2.11. Let X be a normed linear space, K be a nonempty bounded subset
of X and F = co(K). Then for x ∈ X, rx(K) = rx(F ).

Proof. It suffices to show rx(F ) ≤ rx(K). Suppose y ∈ co(K), then y = Σl
i=1αixi,

for i = 1 to l, xi ∈ K, αi ≥ 0 and Σl
i=1α1 = 1. Then ∥x − y∥ ≤ rx(K). Hence

∥x− y0∥ ≤ rx(K), for all y0 ∈ F. Thus rx(F ) ≤ rx(K). �
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The following result from [3] is used in the sequel.

Lemma 2.12 ([3]). Let A be a nonempty closed and convex subset and B be a
nonempty closed subset of a uniformly convex Banach space. Let {xn} and {zn} be
sequences in A and {yn} be a sequence in B satisfying:

(1) ∥xn − yn∥ converges to dist(A,B),
(2) ∥zn − yn∥ converges to dist(A,B).

Then ∥xn − zn∥ converges to zero.

3. Main results

We throughout assume that X is a Hilbert space over R.

Proposition 3.1. Let (A,B) be a nonempty weakly compact convex proximal pair
in a Hilbert space X. Then there exists a smallest closed subspace X0 of X which
satisfies the following:

(1) A ⊂ x +X0 and B ⊂ x′ +X0, for every x ∈ A, where x′ ∈ B is such that
∥x− x′∥ = dist(A, B).

(2) dist(x+X0, x
′ +X0) = dist(A,B).

(3) (x+X0, x
′ +X0) is a proximal pair.

Proof. Suppose (A,B) is a proximal pair in a Hilbert space X over R. Then there
exists h ∈ X such that B = A+ h and h is orthogonal to both A− A and B − B.
Note that B −B = A−A.

Let X0 = span(A−A). Then X0 is a closed subspace of X. It is easy to see that
for every x ∈ A, A ⊂ x +X0 and B ⊂ x + h +X0. Fix x ∈ A. Let H1 = x +X0

and H2 = x+ h+X0. Clearly H1 ∩H2 = ∅. For z ∈ H1 ∩H2. Then ∃ y1, y2 ∈ X0

such that z = x + y1 and z = x + h + y2. Then x + y1 = x + h + y2. This implies
that y1 − y2 = h ∈ X0. But h is orthogonal to X0.

Now it is claimed that dist(H1,H2) = dist(A,B).

dist(H1,H2) = inf{∥x+ y − (x+ h+ z)∥ : y, z ∈ X0}
= inf{∥y − h− z∥ : y, z ∈ X0}
= inf{

√
∥y − z∥2 + ∥h∥2 : y, z ∈ X0}

= ∥h∥
Also it is clear that (H1,H2) is a proximal pair.

Suppose Y is another closed subspace of X satisfying the conclusions. Then
A−A ⊂ Y + Y = Y implies that X0 ⊆ Y . �
Example 3.2. Consider the Hilbert space l2. Let A = {en, 0 : n ≥ 2} and B =
{e2n−1+e1, e2n+e2, e1, e2 : n ≥ 2}. Then, it is easy to see that A and B are weakly
compact subsets of l2, and (A,B) is a proximal pair, but there is no closed subspace
of l2 satisfying the conclusion of the Proposition 3.1.

The previous example illustrates the fact that a non-convex proximal pair even
in a Hilbert space need not be a proximal parallel pair. In the light of Proposition
3.1 we obtain a sufficient condition for a non-convex proximal pair to be a proximal
parallel pair. The following result states that a non-convex proximal pair satisfying
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some conditions should be a proximal parallel pair. That is these proximal pairs
possess all the properties satisfied by the convex proximal parallel pairs.

Proposition 3.3. Let A and B be nonempty bounded subsets of a Hilbert space X
and (A,B) be a proximal pair. Suppose there exists a closed subspace Y and points
x, y ∈ X such that A ⊂ x + Y , B ⊂ y + Y and dist(x + Y, y + Y ) = dist(A,B).
Then

(1) The pair (K1,K2) = (co(A), co(B)) is a proximal pair.
(2) For every (x, y) ∈ A × B, there exists a unique (x′, y′) ∈ A × B such that

∥x− y′∥ = dist(A,B) = ∥y − x′∥.
(3) B = A + h, where h ∈ X is such that K2 = K1 + h and h is orthogonal to

both A−A and B −B.

Then the pair (A,B) is said to be a non-convex proximal parallel pair.

Proof. Suppose (A,B) is a proximal pair in X, let d := dist(A,B). Suppose there
exists a closed subspace Y of X and points x, y ∈ X satisfying:

(1) A ⊂ x+ Y and B ⊂ y + Y .
(2) dist(x+ Y, y + Y ) = dist(A,B) = d.

Clearly K1 := co(A) ⊆ x+ Y and K2 := co(B) ⊆ y + Y and dist(K1,K2) = d.
Now let F1 := {x ∈ K1 : ∃ y ∈ K2 such that ∥x − y∥ = d} and F2 := {y ∈ K2 :

∃ x ∈ K1 such that ∥x− y∥ = d}. It is clear that F1 and F2 are non empty weakly
compact convex subsets of X satisfying:

(1) (A,B) ⊆ (F1, F2)
(2) (F1, F2) is a proximal pair and dist(F1, F2) = d.

Since (A,B) ⊆ (F1, F2) and (F1, F2) is a weakly compact convex pair, hence
(K1,K2) ⊆ (F1, F2). Thus (K1,K2) is a proximal pair in X. Therefore there exists
h ∈ X, which satisfies K2 = K1+h and the sets K1−K1 and K2−K2 are orthogonal
to h.

Hence the proximal pair (A,B) ⊂ (K1,K2) inherits the properties of the proximal
pair (K1,K2). �

Remark 3.4. Let (A,B) be a non-convex proximal parallel pair in a Hilbert space
X. Let {xn} and {zn} be sequences in A and {yn} be a sequence in B satisfying:

(1) ∥xn − yn∥ converges to dist(A,B),
(2) ∥zn − yn∥ converges to dist(A,B).

Then ∥xn − zn∥ converges to zero.

Proof. Let K1 = co(A) and K2 = co(B). Then by the Proposition 3.3 (K1,K2) is
a weakly compact convex proximal pair in X, and dist(K1,K2) = dist(A,B). Now,
{xn} and {zn} are sequences in K1 and {yn} is a sequence in K2 satisfying:

(1) ∥xn − yn∥ converges to dist(K1,K2),
(2) ∥zn − yn∥ converges to dist(K1,K2).

Hence by Lemma 2.12, ∥xn − zn∥ converges to zero. �

The following result claims that Proposition 2.10 holds for non-convex proximal
pairs.
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Proposition 3.5. Let (A,B) be a nonempty bounded proximal parallel pair in a
Hilbert space X. Then for every x ∈ A,

rx(B) = rx+h(A) =
√

∥h∥2 + (rx(A))2.

Proof. For x, y ∈ A, as (x− y)⊥h, ∥x− (y+h)∥2 = ∥h∥2+ ∥x− y∥2 = ∥x+h− y∥2.
Hence

rx(B) = sup{∥x− (y + h)∥ : y ∈ A}
=

√
sup{∥h∥2 + ∥x− y∥2 : y ∈ A}

=
√
∥h∥2 + (rx(A))2

Similarly rx+h(A) =
√

sup{∥x+ h− y∥2 : y ∈ A} =
√

∥h∥2 + (rx(A))2. �
Remark 3.6. Suppose (K1,K2) is a nonempty weakly compact non-convex proxi-
mal parallel pair in a Hilbert space X. Then any proximal pair (A,B) ⊆ (K1,K2)
with dist(A,B) = dist(K1,K2) inherits the properties of (K1,K2).

We hereafter assume that A and B are nonempty weakly compact subsets of X.

Lemma 3.7. Let (A,B) be a non-convex proximal parallel pair in a Hilbert space
X and let T : A ∪ B → X be a relatively non-expansive mapping. Suppose A ∪ B
is a cyclic T−regular set and the pair (A,B) does not contain any proper proximal
pair which is cyclic T−regular. Then (A,B) ⊆ (co(T (B)), co(T (A))).

Proof. Suppose (A,B) is a non-convex proximal parallel pair in a Hilbert space X.
Then there exists h ∈ X such that B = A+ h and A−A is orthogonal to h.

Let d := dist(A,B), K1 := co(T (B))∩A and K2 := co(T (A))∩B. Then K1 and
K2 are weakly compact subsets of A and B, respectively.

Clearly dist(K1,K2) ≥ d. Let (x, x′) ∈ A×B. Then (Tx′, Tx) ∈ T (B)× T (A) ⊆
A×B implies that (Tx′, Tx) ∈ K1 ×K2. But if ∥x− x′∥ = d, then ∥Tx− Tx′∥ ≤ d
and hence dist(K1,K2) = d.

It is claimed that (K1,K2) is a proximal pair. It suffices to prove that for every
x ∈ co(T (B)) ∩A, there exits y ∈ co(T (A)) ∩B such that ∥x− y∥ = d.

Let x ∈ co(T (B)) ∩ A. Then x ∈ A and x = Σn
i=1αiT (yi) where yi ∈ B and

αi ≥ 0,Σn
i=1αi = 1.

Now for i = 1 to n, there exists y′i ∈ A such that ∥yi − y′i∥ = d. Then z =
Σn
i=1αiT (y

′
i) ∈ co(T (A)) and ∥x − z∥ = d. But (A,B) is a proximal parallel pair.

Thus z ∈ co(T (A)) ∩ B. Hence (K1,K2) ⊆ (A,B), is a proximal pair and clearly
(T (K2), T (K1)) ⊆ (K1,K2). This establishes the fact that (K1,K2) = (A,B). That
is (A,B) ⊆ (co(T (B)), co(T (A))). �

The following result can be proved in a similar manner.

Lemma 3.8. Let (A,B) be a non-convex proximal parallel pair in a Hilbert space
X and let T : A ∪ B → X be a relatively nonexpansive map satisfying T (A) ⊆ A
and T (B) ⊆ B. Further suppose A ∪ B is a T−regular set and the pair (A,B)
does not contain any proper proximal pair which is T−regular. Then (A,B) ⊆
(co(T (A)), co(T (B))).

The next theorem establishes the fact that a relatively nonexpansive map defined
on a non-convex proximal parallel pair has a best proximity point.
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Theorem 3.9. Let (A,B) be a non-convex proximal parallel pair in a Hilbert space
X and let T : A ∪B → X be a relatively nonexpansive mapping. Suppose A ∪B is
a cyclic T−regular set. Then T has a best proximity point in A ∪B.

Proof. Let F be the set of all nonempty weakly closed subsets (K1,K2) of (A,B) sat-
isfying: (i) (K1,K2) is a proximal pair and dist(K1,K2) = d, where d = dist(A,B).
(ii) K1 ∪K2 is cyclic T−regular.

Define a relation ≤ on F as follows (K1,K2) ≤ (F1, F2) iff (F1, F2) ⊆ (K1,K2).
Then F is a partially ordered set.

Suppose T ⊆ F is a totally ordered set. Then clearly T has finite intersection
property and hence (F1, F2) :=

∩
(K1,K2)∈T (K1,K2) is a nonempty weakly compact

proximal pair. Also (F1, F2) ∈ F. By Zorn’s lemma F has a maximal element, say
(K1,K2). As (K1,K2) is a proximal pair with dist(K1,K2) = d, by Proposition 3.3,
(K1,K2) is a proximal parallel pair and K1 −K1(= K2 − K2) is orthogonal to h,
where h ∈ X such that B = A+ h.

Now from the Lemma 3.7, (K1,K2) ⊆ (co(T (K2)), co(T (K1))).
It is claimed that either δ(K1,K2) = dist(K1,K2) or there exists a point x ∈

K1 ∪K2 such that ∥Tx− x∥ = dist(K1,K2).
Suppose neither of them are true. Then δ(K1,K2) > dist(K1,K2) and for every

x ∈ K1 ∪K2, ∥x− Tx∥ > d.
Fix x0 ∈ K1. Since (K1,K2) is a proximal parallel pair in a Hilbert space X,

hence by Proposition 3.5, rx0(K2) = rx0+h(K1) =
√

∥h∥2 + rx0(K1)2 ≤ δ(K1,K2).
Also rT (x0+h)(K2) ≤ δ(K1,K2). Now by the uniform convexity of X, rm(K2) =

αδ(K1,K2), for some α ∈ (0, 1), where m = x0+T (x0+h)
2 ∈ K1.

Let R := (α+1
2 )δ(K1,K2). Define M1 := {x ∈ K1 : rx(K2) ≤ R} and M2 := {y ∈

K2 : ry(K1) ≤ R}. Then (m,m+ h) ∈ M1 ×M2 and by Proposition 3.5, (M1,M2)
is a proximal pair. Also it is easy to see that (M1,M2) ∈ F. For x ∈ M1, since
(K1,K2) ⊆ (co(T (K2)), co(T (K1)))

rTx(K1) = sup{∥Tx− z∥ : z ∈ K1}
≤ sup{∥x− y∥ : y ∈ K2} = rx(K2) ≤ R

Thus (T (M2), T (M1)) ⊆ (M1,M2) and this also implies that M1 ∪ M2 is a cyclic
T−regular set. Therefore (M1,M2) ∈ F and hence (K1,K2) = (M1,M2). This
forces that α = 1.

Hence either δ(K1,K2) = dist(K1,K2) or there exists a point x ∈ K1 ∪K2 such
that ∥Tx− x∥ = dist(K1,K2). �

In view of Remark 2.9 we get the following result which is Theorem 2.1 in [2].

Corollary 3.10. Let (A,B) be a weakly compact convex proximal pair in a Hilbert
space X and let T : A∪B → A∪B be a relatively nonexpansive map which satisfies
T (A) ⊆ B and T (B) ⊆ A. Then T has a best proximity point in A ∪B.

The following example illustrates the above theorem.

Example 3.11. Consider the Hilbert space l2. Let A = {0, en, en+en+1

2 : n ≥ 2}
and B = A+ e1. Then A and B are weakly compact subsets of l2. Also (A,B) is a
proximal parallel pair.
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Define T : A∪B → A∪B as follows: for x ∈ A, T (x) =

{
en+1 + e1 if x = en,
x+ e1 otherwise,

and for y ∈ B, T (y) =

{
en+1 if y = en + e1,
y − e1 otherwise.

Then A ∪ B is a cyclic T−regular set and T is a relatively nonexpansive map on
A ∪ B. Hence by the Theorem 3.9, T has a best proximity point in A ∪ B. Note
that 0 is a best proximity point of T .

The next result shows that the Kransnoel’skĭı’s iteration process yields a conver-
gence result, if the pair (A,B) and T are as in Theorem 3.9. We adopt the proof
techniques from [2].

Theorem 3.12. Let (A,B) be a nonempty weakly compact proximal parallel pair
in a Hilbert space X. Let T : A ∪ B → X be a relatively nonexpansive map such
that A∪B is a cyclic T−regular set. Let (x0, y0) ∈ A×B be such that ∥x0 − y0∥ =

dist(A,B). Define xn =
xn−1+T (x′

n−1)

2 and yn =
yn−1+T (y′n−1)

2 , for n ∈ N. Then
∥xn − T (x′n)∥ and ∥yn − T (y′n)∥ converge to zero, where x′ denotes the unique best
approximant to x ∈ A ∪B.

If T (B) is a compact set, then {xn} converges to a and {yn} converges to a′,
where a ∈ A is such that ∥a− Ta∥ = dist(A,B).

Proof. Consider the sequences {xn} ⊆ A and {yn} ⊆ B. By Proposition 3.3, there
exists h ∈ X such that B = A+ h and h is orthogonal to both A−A and B −B.

It is enough to prove that ∥xn − T (x′n)∥ converges to zero.
By Theorem 3.9, there exists z ∈ B such that ∥z−Tz∥ = d, where d = dist(A,B).

Note that Tz = z′ is also a best proximity point of T . Now

∥xn − z∥ ≤ 1

2
{∥xn−1 + T (x′n−1)− z − T (z′)∥} −→ (∗)

≤ 1

2
{∥xn−1 − z∥+ ∥x′n−1 − z′∥}

But for all n, ∥xn− z∥ = ∥x′n− z′∥. Hence {∥xn− z∥} is a non-increasing sequence.
Let r = lim ∥xn − z∥.

As ∥T (x′n)−z∥ ≤ ∥x′n−z′∥, hence lim inf ∥T (x′n)−z∥ ≤ r, lim sup ∥T (x′n)−z∥ ≤ r.
Now from eqn.(∗), lim inf ∥T (x′n)− z∥ ≥ r. Hence lim ∥T (x′n)− z∥ = r.

Suppose there exists ϵ0 > 0 and {nk} ⊆ N such that ∥xnk
− T (x′nk

)∥ ≥ ϵ0.

Choose γ ∈ (0, 1) and ϵ such that ϵ0/γ > r and 0 < ϵ < min{ ϵ0
γ − r, rδ(γ)

1−δ(γ)}.
As the modulus of convexity function δ(.) is strictly increasing in the Hilbert space
X, 0 < δ(γ) < δ( ϵ0

r+ϵ). Also from the choice of ϵ, we have [1− δ( ϵ0
r+ϵ)](r + ϵ) < r.

As ∥xn − z∥ and ∥T (x′n)− z∥ converges to r, choose N ∈ N such that ∥xn − z∥,
∥T (x′n)− z∥ ≤ r + ϵ, for n ≥ N. Now for nk ≥ N ,

∥z − xnk+1∥ = ∥z −
xnk

+ T (x′nk
)

2
∥

≤ (1− δ(
ϵ0

r + ϵ
))(r + ϵ)

This gives a contradiction. Hence ∥xn − T (x′n)∥ → 0.
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Suppose T (B) is a compact set. Then {T (x′n)} has a subsequence {T (x′nk
)}

which converges to a ∈ T (B). Hence xnk
converges to a, thus lim ∥xnk

− a′∥ = d
and lim ∥T (x′nk

)− a′∥ = d.
Now,

d ≤ ∥T (x′nk
)− Ta∥ ≤ ∥x′nk

− a∥ = ∥xnk
− a′∥.

This implies that lim ∥T (x′nk
)− Ta∥ = d, and hence by Remark 3.4 Ta = a′. Since

{∥xn−a′∥} is non-increasing, lim ∥xn−a′∥ = d. Hence by Remark 3.4, xn converges
to a. Now, note that

d ≤ ∥x1 − y1∥ ≤ 1
2∥x0 + T (x′0)− y0 − T (y′0)∥ = d

By induction hypothesis ∥xn − yn∥ = d, for all n ∈ N. Thus lim ∥xn − yn∥ = d.
Since lim ∥xn − a′∥ = d, hence from Remark 3.4 lim ∥yn − a′∥ = 0. �

The following theorem proves that a relatively nonexpansive map T defined on
A ∪B has fixed points in A and B.

Theorem 3.13. Let (A,B) be a non-convex proximal parallel pair in a Hilbert
space X. Let T : A∪B → X be a relatively nonexpansive map satisfying T (A) ⊆ A
and T (B) ⊆ B. Further suppose A ∪ B is a T−regular set. Then there exists
(x, y) ∈ A×B such that Tx = x, Ty = y and ∥x− y∥ = dist(A,B).

Proof. Let F be the set of all nonempty weakly closed subsets (K1,K2) of (A,B) sat-
isfying: (i) (K1,K2) is a proximal pair and dist(K1,K2) = d, where d = dist(A,B).
(ii) K1 ∪K2 is T−regular and T (Ki) ⊆ Ki, i = 1, 2.

Define a relation ≤ on F as follows (K1,K2) ≤ (F1, F2) iff (F1, F2) ⊆ (K1,K2).
Then F is a partially ordered set. It is easy to see that every totally ordered subset
T of F has an upper bound. Hence by Zorn’s lemma F has a maximal element say
(K1,K2).

As (K1,K2) is a proximal pair with dist(K1,K2) = d, by Proposition 3.6, (K1,K2)
is a proximal parallel pair and K1−K1(= K2−K2) is orthogonal to h, where h ∈ X
such that B = A+ h.

Now from the Lemma 3.8, (K1,K2) ⊆ (co(TK1), co(TK2)). It is claimed that K1

and K2 are singleton sets, that is δ(K1,K2) = dist(K1,K2).
Suppose δ(K1,K2) > dist(K1,K2). As K1 and K2 are weakly compact sets, there

exists x0 ∈ K1 such that rx0(K2) = infx∈K1 rx(K2) < δ(K1,K2). Let rx0(K2) =
αδ(K1,K2), α ∈ (0, 1) and R := (α+1

2 )δ(K1,K2).
Define M1 := {x ∈ K1 : rx(K2) ≤ R} and M2 := {y ∈ K2 : ry(K1) ≤ R}. Then

(x0, x0 + h) ∈ M1 ×M2 and by Proposition 3.5, (M1,M2) is a proximal pair. It is
claimed that (M1,M2) ∈ F. Let x ∈ M1. Since (K1,K2) ⊆ (co(T (K1)), co(T (K2)))

rTx(K2) = sup{∥Tx− z∥ : z ∈ K2}
≤ sup{∥x− y∥ : y ∈ K2} = rx(K2) ≤ R

Thus (T (M1), T (M2)) ⊆ (M1,M2) and it is clear that M1 ∪M2 is a T−regular set.
Hence (M1,M2) ∈ F.

Now the maximality of (K1,K2) implies that (K1,K2) = (M1,M2). This forces
that α = 1, and hence δ(K1,K2) = dist(K1,K2). Thus K1 and K2 are singleton
sets and Tx = x, for every x ∈ K1 ∪K2. �
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The next result shows that the Kransnoel’skĭı’s iteration process yields a conver-
gence result, if the pair (A,B) and T are as in Theorem 3.13.

Theorem 3.14. Let (A,B) be a nonempty weakly compact proximal parallel pair
in a Hilbert space X. Suppose T : A ∪ B → A ∪ B is a relatively nonexpansive
map satisfying T (A) ⊆ A and T (B) ⊆ B and A ∪ B is a T−regular set. Let
(x0, y0) ∈ A × B be such that ∥x0 − y0∥ = dist(A,B). Define xn+1 = xn+Txn

2 and

yn+1 = yn+Tyn
2 , for n = 0, 1, 2, .... Then ∥xn − Txn∥ and ∥yn − Tyn∥ converge to

zero.
If T (A) is a compact set, then {xn} converges to a and {yn} converges to b, where

a ∈ A and b ∈ B are fixed points of T such that ∥a− b∥ = dist(A,B).

Proof. A similar proof can be given as that of Theorem 3.12. �
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