NON-CONVEX PROXIMAL PAIRS ON HILBERT SPACES AND BEST PROXIMITY POINTS

S. RAJESH* AND P. VEERAMANI

Abstract

A sufficient condition is given for a non-convex proximal pair to be a proximal parallel pair on Hilbert spaces. Let (A, B) be a nonempty weakly compact non-convex proximal parallel pair in a Hilbert space X over the real field and $T: A \cup B \rightarrow X$ be a relatively nonexpansive map. We prove that there exists $x \in A \cup B$ such that $\|x-T x\|=\operatorname{dist}(A, B)$ whenever $A \cup B$ is a cyclic T-regular set. We also establish that there exists $(x, y) \in A \times B$ such that $T x=x, T y=y$ and $\|x-y\|=\operatorname{dist}(A, B)$, if $A \cup B$ is a $T-$ regular set, $T(A) \subseteq A$ and $T(B) \subseteq B$. In the above cases, we prove that the Kransnoel'skii1's iteration process yields a convergence result under suitable assumption.

1. Introduction

Let A and B be nonempty weakly compact convex subsets of a Banach space X such that (A, B) is a proximal pair having proximal normal structure. Let T : $A \cup B \rightarrow A \cup B$ be a map satisfying:

$$
\begin{align*}
\|T x-T y\| \leq & \|x-y\|, x \in A \text { and } y \in B \tag{1.1}\\
& T(A) \subseteq B \text { and } T(B) \subseteq A . \tag{1.2}
\end{align*}
$$

In [2] it is shown that there exists a point $x \in A \cup B$ such that $\|x-T x\|=\operatorname{dist}(A, B)$. Also, it is proved that [2, Theorem 2.2] if $T: A \cup B \rightarrow A \cup B$ satisfies the conditions:

$$
\begin{align*}
\|T x-T y\| & \leq\|x-y\|, x \in A \text { and } y \in B \\
T(A) & \subseteq A \text { and } T(B) \subseteq B . \tag{1.3}
\end{align*}
$$

Then there exists $(x, y) \in A \times B$ such that $T x=x, T y=y$ and $\|x-y\|=\operatorname{dist}(A, B)$.
If $A=B$, then the above problems boil down to the well known Browder-GöhdeKirk fixed point theorem. Also, it is easy to see that the pair (A, A) has proximal normal structure if and only if A has normal structure. Thus in this case, there exists a point $x \in A$ such that $T x=x$. A good account of Metric fixed point theory can be found in $[1,5]$.

It is quite easy to see that a nonempty non-convex set A, even in a Hilbert space need not have normal structure. But the Browder-Göhde-Kirk theorem depends on the normal structure. Here the following question arises. Is it possible to extend the above theorem to a non-convex weakly compact set?

In this direction, the notion of T - regular sets is introduced in [6] and the following result is proved, if A is a nonempty weakly compact T-regular set in a

[^0]uniformly convex Banach space and T is a nonexpansive map then $T x=x$, for some $x \in A$.

Motivated by the above results, we introduce a notion of cyclic T-regular sets and establish the following result. Suppose (A, B) is a nonempty non-convex weakly compact proximal pair in a Hilbert space.

If $A \cup B$ is a cyclic T-regular set and T is a relatively nonexpansive map, then there exists a point $x \in A \cup B$ such that $\|x-T x\|=\operatorname{dist}(A, B)$.

Also it is proved that if $A \cup B$ is a T-regular set and T is a relatively nonexpansive map which satisfies the condition (1.3), then there exists $(x, y) \in A \times B$ such that $T x=x, T y=y$, and $\|x-y\|=\operatorname{dist}(A, B)$.

We have observed some facts about nonempty weakly compact convex proximal pairs in Hilbert spaces which enable us to introduce the notion of non-convex proximal parallel pairs. We prove the aforesaid theorems for non-convex proximal parallel pairs.

Let X be a Banach space and A and B be nonempty subsets of X. We use the following notations:

$$
\begin{aligned}
r_{x}(B) & =\sup \{\|x-y\|: y \in B\}, x \in A \\
\delta(A, B) & =\sup \left\{r_{x}(B): x \in A\right\} \\
\delta(A) & =\sup \left\{r_{x}(A): x \in A\right\} \\
\operatorname{dist}(A, B) & =\inf \{\|x-y\|: x \in A, y \in B\}
\end{aligned}
$$

In section 2 we introduce the notion of cyclic T - regular sets and give definitions related to this work. We discuss some results related to the Chebyshev radius. In section 3 we prove a result about proximal pairs which enables us to extend the concept of proximal parallel pairs to a non-convex proximal pair satisfying some conditions. Also, we show that a relatively nonexpansive map defined on a nonconvex proximal pair has a best proximity point. We establish the existence of fixed points of a relatively nonexpansive map T defined on a non-convex proximal pair (A, B), if $A \cup B$ is a T-regular set and T satisfies the condition (1. 3). Moreover, in the above cases, we prove that the Kransnoel'skiu's iteration process yields a convergence result under suitable assumption.

We prefer to use the term proximal pair, see [2, Definition 1.1], which is labelled as proximinal pair in [4].

2. Preliminaries

Definition 2.1 ([2, 4]). Let A and B be nonempty subsets of a Banach space X. The pair (A, B) is said to be a proximal pair if for each $(x, y) \in A \times B$ there exists $\left(x_{1}, y_{1}\right) \in A \times B$ such that $\left\|x-y_{1}\right\|=\operatorname{dist}(A, B)=\left\|y-x_{1}\right\|$.

In addition, if for each $(x, y) \in A \times B,\left(x_{1}, y_{1}\right) \in A \times B$ is a unique point such that $\left\|x-y_{1}\right\|=\operatorname{dist}(A, B)=\left\|y-x_{1}\right\|$, then we say (A, B) is a sharp proximal pair.

Definition 2.2 ([4]). A pair (A, B) of nonempty subsets in a Banach space X is said to be a proximal parallel pair if
(i) (A, B) is a sharp proximal pair.
(ii) There exists a unique $h \in X$ such that $B=A+h$.

Remark 2.3. Let (A, B) be a nonempty convex proximal pair in a Banach space X. Let $x_{0} \in A$ and $x_{0}^{\prime} \in B$ be such that $\left\|x_{0}-x_{0}^{\prime}\right\|=\operatorname{dist}(A, B)$. In [4] it is shown that if X is a strictly convex Banach space, then $B=A+h$, where $h=x_{0}^{\prime}-x_{0}$. Further, if X is a Hilbert space, then it is quite easy to see that for every $x, y \in A$ or $B, x-y$ is orthogonal to h. That is $A-A(=B-B)$ is orthogonal to h.
Definition 2.4 ([2]). Let A and B be nonempty subsets of a Banach space X. A mapping $T: A \cup B \rightarrow X$ is said to be relatively nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for $x \in A$ and $y \in B$.
Definition $2.5([6])$. Let A and B be nonempty subsets of a Banach space X. Let T be a self map on $A \cup B$ such that $T(A) \subseteq A$ and $T(B) \subseteq B$. The set $A \cup B$ is said to be T-regular if $\frac{x+T x}{2} \in A$ for every $x \in A$ and $\frac{y+T y}{2} \in B$ for every $y \in B$.

Remark 2.6. If we assume A and B are nonempty convex subsets in the above definition, then it is clear that $A \cup B$ is a T-regular.

We introduce the following concept.
Definition 2.7. Let A and B be nonempty subsets of a Banach space X and let $T: A \cup B \rightarrow A \cup B$ be a mapping. The set $A \cup B$ is said to be cyclic T-regular if
(1) $T(A) \subseteq B$ and $T(B) \subseteq A$.
(2) $\frac{x+T x^{\prime}}{2} \in A$, for every $x \in A$, where $x^{\prime} \in B$ is such that $\left\|x-x^{\prime}\right\|=\operatorname{dist}(x, B)$.
(3) $\frac{y+T y^{\prime}}{2} \in B$, for every $y \in B$, where $y^{\prime} \in A$ is such that $\left\|y-y^{\prime}\right\|=\operatorname{dist}(y, A)$.

Example 2.8. In the Euclidean space \mathbb{R}^{2}, let $A=\left\{(0,0),\left(0, \frac{1}{2}\right),(0,1)\right\}$ and $B=A+$ $(1,0)$. Define $T: A \cup B \rightarrow A \cup B$ as follows, for $x \in A, T(x)= \begin{cases}(1,1) & \text { if } x=(0,0), \\ (1,0) & \text { if } x=(0,1), \\ \left(1, \frac{1}{2}\right) & \text { otherwise },\end{cases}$ and for $x \in B, T(x)= \begin{cases}(0,1) & \text { if } x=(1,0), \\ (0,0) & \text { if } x=(1,1), \\ \left(0, \frac{1}{2}\right) & \text { otherwise }\end{cases}$
Then T is a cyclic T-regular.
Remark 2.9. Let (A, B) be a nonempty convex proximal pair in a Banach space and $T: A \cup B \rightarrow A \cup B$ be a map satisfying: $T(A) \subseteq B$ and $T(B) \subseteq A$. Then $A \cup B$ is a cyclic T-regular.

The following fact is used in the proof of our main results.
Proposition 2.10 ([7]). Let (A, B) be a bounded convex proximal parallel pair in a Hilbert space X over \mathbb{R}. Then for every $x \in A$,

$$
r_{x}(B)=r_{x+h}(A)=\sqrt{\|h\|^{2}+\left(r_{x}(A)\right)^{2}}
$$

Remark 2.11. Let X be a normed linear space, K be a nonempty bounded subset of X and $F=\overline{c o}(K)$. Then for $x \in X, r_{x}(K)=r_{x}(F)$.

Proof. It suffices to show $r_{x}(F) \leq r_{x}(K)$. Suppose $y \in c o(K)$, then $y=\Sigma_{i=1}^{l} \alpha_{i} x_{i}$, for $i=1$ to $l, x_{i} \in K, \alpha_{i} \geq 0$ and $\Sigma_{i=1}^{l} \alpha_{1}=1$. Then $\|x-y\| \leq r_{x}(K)$. Hence $\left\|x-y_{0}\right\| \leq r_{x}(K)$, for all $y_{0} \in F$. Thus $r_{x}(F) \leq r_{x}(K)$.

The following result from [3] is used in the sequel.
Lemma 2.12 ([3]). Let A be a nonempty closed and convex subset and B be a nonempty closed subset of a uniformly convex Banach space. Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences in A and $\left\{y_{n}\right\}$ be a sequence in B satisfying:
(1) $\left\|x_{n}-y_{n}\right\|$ converges to $\operatorname{dist}(A, B)$,
(2) $\left\|z_{n}-y_{n}\right\|$ converges to $\operatorname{dist}(A, B)$.

Then $\left\|x_{n}-z_{n}\right\|$ converges to zero.

3. Main results

We throughout assume that X is a Hilbert space over \mathbb{R}.
Proposition 3.1. Let (A, B) be a nonempty weakly compact convex proximal pair in a Hilbert space X. Then there exists a smallest closed subspace X_{0} of X which satisfies the following:
(1) $A \subset x+X_{0}$ and $B \subset x^{\prime}+X_{0}$, for every $x \in A$, where $x^{\prime} \in B$ is such that $\left\|x-x^{\prime}\right\|=\operatorname{dist}(A, B)$.
(2) $\operatorname{dist}\left(x+X_{0}, x^{\prime}+X_{0}\right)=\operatorname{dist}(A, B)$.
(3) $\left(x+X_{0}, x^{\prime}+X_{0}\right)$ is a proximal pair.

Proof. Suppose (A, B) is a proximal pair in a Hilbert space X over \mathbb{R}. Then there exists $h \in X$ such that $B=A+h$ and h is orthogonal to both $A-A$ and $B-B$. Note that $B-B=A-A$.

Let $X_{0}=\overline{\operatorname{span}}(A-A)$. Then X_{0} is a closed subspace of X. It is easy to see that for every $x \in A, A \subset x+X_{0}$ and $B \subset x+h+X_{0}$. Fix $x \in A$. Let $H_{1}=x+X_{0}$ and $H_{2}=x+h+X_{0}$. Clearly $H_{1} \cap H_{2}=\emptyset$. For $z \in H_{1} \cap H_{2}$. Then $\exists y_{1}, y_{2} \in X_{0}$ such that $z=x+y_{1}$ and $z=x+h+y_{2}$. Then $x+y_{1}=x+h+y_{2}$. This implies that $y_{1}-y_{2}=h \in X_{0}$. But h is orthogonal to X_{0}.

Now it is claimed that $\operatorname{dist}\left(H_{1}, H_{2}\right)=\operatorname{dist}(A, B)$.

$$
\begin{aligned}
\operatorname{dist}\left(H_{1}, H_{2}\right) & =\inf \left\{\|x+y-(x+h+z)\|: y, z \in X_{0}\right\} \\
& =\inf \left\{\|y-h-z\|: y, z \in X_{0}\right\} \\
& =\inf \left\{\sqrt{\|y-z\|^{2}+\|h\|^{2}}: y, z \in X_{0}\right\} \\
& =\|h\|
\end{aligned}
$$

Also it is clear that $\left(H_{1}, H_{2}\right)$ is a proximal pair.
Suppose Y is another closed subspace of X satisfying the conclusions. Then $A-A \subset Y+Y=Y$ implies that $X_{0} \subseteq Y$.

Example 3.2. Consider the Hilbert space l_{2}. Let $A=\left\{e_{n}, 0: n \geq 2\right\}$ and $B=$ $\left\{e_{2 n-1}+e_{1}, e_{2 n}+e_{2}, e_{1}, e_{2}: n \geq 2\right\}$. Then, it is easy to see that A and B are weakly compact subsets of l_{2}, and (A, B) is a proximal pair, but there is no closed subspace of l_{2} satisfying the conclusion of the Proposition 3.1.

The previous example illustrates the fact that a non-convex proximal pair even in a Hilbert space need not be a proximal parallel pair. In the light of Proposition 3.1 we obtain a sufficient condition for a non-convex proximal pair to be a proximal parallel pair. The following result states that a non-convex proximal pair satisfying
some conditions should be a proximal parallel pair. That is these proximal pairs possess all the properties satisfied by the convex proximal parallel pairs.

Proposition 3.3. Let A and B be nonempty bounded subsets of a Hilbert space X and (A, B) be a proximal pair. Suppose there exists a closed subspace Y and points $x, y \in X$ such that $A \subset x+Y, B \subset y+Y$ and $\operatorname{dist}(x+Y, y+Y)=\operatorname{dist}(A, B)$. Then
(1) The pair $\left(K_{1}, K_{2}\right)=(\overline{c o}(A), \overline{c o}(B))$ is a proximal pair.
(2) For every $(x, y) \in A \times B$, there exists a unique $\left(x^{\prime}, y^{\prime}\right) \in A \times B$ such that $\left\|x-y^{\prime}\right\|=\operatorname{dist}(A, B)=\left\|y-x^{\prime}\right\|$.
(3) $B=A+h$, where $h \in X$ is such that $K_{2}=K_{1}+h$ and h is orthogonal to both $A-A$ and $B-B$.
Then the pair (A, B) is said to be a non-convex proximal parallel pair.
Proof. Suppose (A, B) is a proximal pair in X, let $d:=\operatorname{dist}(A, B)$. Suppose there exists a closed subspace Y of X and points $x, y \in X$ satisfying:
(1) $A \subset x+Y$ and $B \subset y+Y$.
(2) $\operatorname{dist}(x+Y, y+Y)=\operatorname{dist}(A, B)=d$.

Clearly $K_{1}:=\overline{c o}(A) \subseteq x+Y$ and $K_{2}:=\overline{c o}(B) \subseteq y+Y$ and $\operatorname{dist}\left(K_{1}, K_{2}\right)=d$.
Now let $F_{1}:=\left\{x \in K_{1}: \exists y \in K_{2}\right.$ such that $\left.\|x-y\|=d\right\}$ and $F_{2}:=\left\{y \in K_{2}:\right.$ $\exists x \in K_{1}$ such that $\left.\|x-y\|=d\right\}$. It is clear that F_{1} and F_{2} are non empty weakly compact convex subsets of X satisfying:
(1) $(A, B) \subseteq\left(F_{1}, F_{2}\right)$
(2) $\left(F_{1}, F_{2}\right)$ is a proximal pair and $\operatorname{dist}\left(F_{1}, F_{2}\right)=d$.

Since $(A, B) \subseteq\left(F_{1}, F_{2}\right)$ and $\left(F_{1}, F_{2}\right)$ is a weakly compact convex pair, hence $\left(K_{1}, K_{2}\right) \subseteq\left(F_{1}, F_{2}\right)$. Thus $\left(K_{1}, K_{2}\right)$ is a proximal pair in X. Therefore there exists $h \in X$, which satisfies $K_{2}=K_{1}+h$ and the sets $K_{1}-K_{1}$ and $K_{2}-K_{2}$ are orthogonal to h.

Hence the proximal pair $(A, B) \subset\left(K_{1}, K_{2}\right)$ inherits the properties of the proximal pair $\left(K_{1}, K_{2}\right)$.

Remark 3.4. Let (A, B) be a non-convex proximal parallel pair in a Hilbert space X. Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences in A and $\left\{y_{n}\right\}$ be a sequence in B satisfying:
(1) $\left\|x_{n}-y_{n}\right\|$ converges to $\operatorname{dist}(A, B)$,
(2) $\left\|z_{n}-y_{n}\right\|$ converges to $\operatorname{dist}(A, B)$.

Then $\left\|x_{n}-z_{n}\right\|$ converges to zero.
Proof. Let $K_{1}=\overline{c o}(A)$ and $K_{2}=\overline{c o}(B)$. Then by the Proposition $3.3\left(K_{1}, K_{2}\right)$ is a weakly compact convex proximal pair in X, and $\operatorname{dist}\left(K_{1}, K_{2}\right)=\operatorname{dist}(A, B)$. Now, $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ are sequences in K_{1} and $\left\{y_{n}\right\}$ is a sequence in K_{2} satisfying:
(1) $\left\|x_{n}-y_{n}\right\|$ converges to $\operatorname{dist}\left(K_{1}, K_{2}\right)$,
(2) $\left\|z_{n}-y_{n}\right\|$ converges to $\operatorname{dist}\left(K_{1}, K_{2}\right)$.

Hence by Lemma 2.12, $\left\|x_{n}-z_{n}\right\|$ converges to zero.
The following result claims that Proposition 2.10 holds for non-convex proximal pairs.

Proposition 3.5. Let (A, B) be a nonempty bounded proximal parallel pair in a Hilbert space X. Then for every $x \in A$,

$$
r_{x}(B)=r_{x+h}(A)=\sqrt{\|h\|^{2}+\left(r_{x}(A)\right)^{2}}
$$

Proof. For $x, y \in A$, as $(x-y) \perp h,\|x-(y+h)\|^{2}=\|h\|^{2}+\|x-y\|^{2}=\|x+h-y\|^{2}$. Hence

$$
\begin{aligned}
r_{x}(B) & =\sup \{\|x-(y+h)\|: y \in A\} \\
& =\sqrt{\sup \left\{\|h\|^{2}+\|x-y\|^{2}: y \in A\right\}} \\
& =\sqrt{\|h\|^{2}+\left(r_{x}(A)\right)^{2}}
\end{aligned}
$$

Similarly $r_{x+h}(A)=\sqrt{\sup \left\{\|x+h-y\|^{2}: y \in A\right\}}=\sqrt{\|h\|^{2}+\left(r_{x}(A)\right)^{2}}$.
Remark 3.6. Suppose $\left(K_{1}, K_{2}\right)$ is a nonempty weakly compact non-convex proximal parallel pair in a Hilbert space X. Then any proximal pair $(A, B) \subseteq\left(K_{1}, K_{2}\right)$ with $\operatorname{dist}(A, B)=\operatorname{dist}\left(K_{1}, K_{2}\right)$ inherits the properties of $\left(K_{1}, K_{2}\right)$.

We hereafter assume that A and B are nonempty weakly compact subsets of X.
Lemma 3.7. Let (A, B) be a non-convex proximal parallel pair in a Hilbert space X and let $T: A \cup B \rightarrow X$ be a relatively non-expansive mapping. Suppose $A \cup B$ is a cyclic T-regular set and the pair (A, B) does not contain any proper proximal pair which is cyclic T-regular. Then $(A, B) \subseteq(\overline{c o}(T(B)), \overline{c o}(T(A)))$.
Proof. Suppose (A, B) is a non-convex proximal parallel pair in a Hilbert space X. Then there exists $h \in X$ such that $B=A+h$ and $A-A$ is orthogonal to h.

Let $d:=\operatorname{dist}(A, B), K_{1}:=\overline{c o}(T(B)) \cap A$ and $K_{2}:=\overline{c o}(T(A)) \cap B$. Then K_{1} and K_{2} are weakly compact subsets of A and B, respectively.

Clearly $\operatorname{dist}\left(K_{1}, K_{2}\right) \geq d$. Let $\left(x, x^{\prime}\right) \in A \times B$. Then $\left(T x^{\prime}, T x\right) \in T(B) \times T(A) \subseteq$ $A \times B$ implies that $\left(T x^{\prime}, T x\right) \in K_{1} \times K_{2}$. But if $\left\|x-x^{\prime}\right\|=d$, then $\left\|T x-T x^{\prime}\right\| \leq d$ and hence $\operatorname{dist}\left(K_{1}, K_{2}\right)=d$.

It is claimed that $\left(K_{1}, K_{2}\right)$ is a proximal pair. It suffices to prove that for every $x \in \operatorname{co}(T(B)) \cap A$, there exits $y \in \operatorname{co}(T(A)) \cap B$ such that $\|x-y\|=d$.

Let $x \in \operatorname{co}(T(B)) \cap A$. Then $x \in A$ and $x=\sum_{i=1}^{n} \alpha_{i} T\left(y_{i}\right)$ where $y_{i} \in B$ and $\alpha_{i} \geq 0, \Sigma_{i=1}^{n} \alpha_{i}=1$.

Now for $i=1$ to n, there exists $y_{i}^{\prime} \in A$ such that $\left\|y_{i}-y_{i}^{\prime}\right\|=d$. Then $z=$ $\sum_{i=1}^{n} \alpha_{i} T\left(y_{i}^{\prime}\right) \in \operatorname{co}(T(A))$ and $\|x-z\|=d$. But (A, B) is a proximal parallel pair. Thus $z \in \operatorname{co}(T(A)) \cap B$. Hence $\left(K_{1}, K_{2}\right) \subseteq(A, B)$, is a proximal pair and clearly $\left(T\left(K_{2}\right), T\left(K_{1}\right)\right) \subseteq\left(K_{1}, K_{2}\right)$. This establishes the fact that $\left(K_{1}, K_{2}\right)=(A, B)$. That is $(A, B) \subseteq(\overline{c o}(T(B)), \overline{c o}(T(A)))$.

The following result can be proved in a similar manner.
Lemma 3.8. Let (A, B) be a non-convex proximal parallel pair in a Hilbert space X and let $T: A \cup B \rightarrow X$ be a relatively nonexpansive map satisfying $T(A) \subseteq A$ and $T(B) \subseteq B$. Further suppose $A \cup B$ is a T-regular set and the pair (A, B) does not contain any proper proximal pair which is T-regular. Then $(A, B) \subseteq$ $(\overline{c o}(T(A)), \overline{c o}(T(B)))$.

The next theorem establishes the fact that a relatively nonexpansive map defined on a non-convex proximal parallel pair has a best proximity point.

Theorem 3.9. Let (A, B) be a non-convex proximal parallel pair in a Hilbert space X and let $T: A \cup B \rightarrow X$ be a relatively nonexpansive mapping. Suppose $A \cup B$ is a cyclic T-regular set. Then T has a best proximity point in $A \cup B$.

Proof. Let \mathfrak{F} be the set of all nonempty weakly closed subsets $\left(K_{1}, K_{2}\right)$ of (A, B) satisfying: (i) $\left(K_{1}, K_{2}\right)$ is a proximal pair and $\operatorname{dist}\left(K_{1}, K_{2}\right)=d$, where $d=\operatorname{dist}(A, B)$.
(ii) $K_{1} \cup K_{2}$ is cyclic T-regular.

Define a relation \leq on \mathfrak{F} as follows $\left(K_{1}, K_{2}\right) \leq\left(F_{1}, F_{2}\right)$ iff $\left(F_{1}, F_{2}\right) \subseteq\left(K_{1}, K_{2}\right)$. Then \mathfrak{F} is a partially ordered set.

Suppose $\mathcal{T} \subseteq \mathfrak{F}$ is a totally ordered set. Then clearly \mathcal{T} has finite intersection property and hence $\left(F_{1}, F_{2}\right):=\bigcap_{\left(K_{1}, K_{2}\right) \in \mathcal{T}}\left(K_{1}, K_{2}\right)$ is a nonempty weakly compact proximal pair. Also $\left(F_{1}, F_{2}\right) \in \mathfrak{F}$. By Zorn's lemma \mathfrak{F} has a maximal element, say $\left(K_{1}, K_{2}\right)$. As $\left(K_{1}, K_{2}\right)$ is a proximal pair with $\operatorname{dist}\left(K_{1}, K_{2}\right)=d$, by Proposition 3.3, $\left(K_{1}, K_{2}\right)$ is a proximal parallel pair and $K_{1}-K_{1}\left(=K_{2}-K_{2}\right)$ is orthogonal to h, where $h \in X$ such that $B=A+h$.

Now from the Lemma 3.7, $\left(K_{1}, K_{2}\right) \subseteq\left(\overline{c o}\left(T\left(K_{2}\right)\right), \overline{c o}\left(T\left(K_{1}\right)\right)\right)$.
It is claimed that either $\delta\left(K_{1}, K_{2}\right)=\operatorname{dist}\left(K_{1}, K_{2}\right)$ or there exists a point $x \in$ $K_{1} \cup K_{2}$ such that $\|T x-x\|=\operatorname{dist}\left(K_{1}, K_{2}\right)$.

Suppose neither of them are true. Then $\delta\left(K_{1}, K_{2}\right)>\operatorname{dist}\left(K_{1}, K_{2}\right)$ and for every $x \in K_{1} \cup K_{2},\|x-T x\|>d$.

Fix $x_{0} \in K_{1}$. Since $\left(K_{1}, K_{2}\right)$ is a proximal parallel pair in a Hilbert space X, hence by Proposition $3.5, r_{x_{0}}\left(K_{2}\right)=r_{x_{0}+h}\left(K_{1}\right)=\sqrt{\|h\|^{2}+r_{x_{0}}\left(K_{1}\right)^{2}} \leq \delta\left(K_{1}, K_{2}\right)$. Also $r_{T\left(x_{0}+h\right)}\left(K_{2}\right) \leq \delta\left(K_{1}, K_{2}\right)$. Now by the uniform convexity of $X, r_{m}\left(K_{2}\right)=$ $\alpha \delta\left(K_{1}, K_{2}\right)$, for some $\alpha \in(0,1)$, where $m=\frac{x_{0}+T\left(x_{0}+h\right)}{2} \in K_{1}$.

Let $R:=\left(\frac{\alpha+1}{2}\right) \delta\left(K_{1}, K_{2}\right)$. Define $M_{1}:=\left\{x \in K_{1}: r_{x}\left(K_{2}\right) \leq R\right\}$ and $M_{2}:=\{y \in$ $\left.K_{2}: r_{y}\left(K_{1}\right) \leq R\right\}$. Then $(m, m+h) \in M_{1} \times M_{2}$ and by Proposition $3.5,\left(M_{1}, M_{2}\right)$ is a proximal pair. Also it is easy to see that $\left(M_{1}, M_{2}\right) \in \mathfrak{F}$. For $x \in M_{1}$, since $\left(K_{1}, K_{2}\right) \subseteq\left(\overline{c o}\left(T\left(K_{2}\right)\right), \overline{c o}\left(T\left(K_{1}\right)\right)\right)$

$$
\begin{aligned}
r_{T x}\left(K_{1}\right) & =\sup \left\{\|T x-z\|: z \in K_{1}\right\} \\
& \leq \sup \left\{\|x-y\|: y \in K_{2}\right\}=r_{x}\left(K_{2}\right) \leq R
\end{aligned}
$$

Thus $\left(T\left(M_{2}\right), T\left(M_{1}\right)\right) \subseteq\left(M_{1}, M_{2}\right)$ and this also implies that $M_{1} \cup M_{2}$ is a cyclic T-regular set. Therefore $\left(M_{1}, M_{2}\right) \in \mathfrak{F}$ and hence $\left(K_{1}, K_{2}\right)=\left(M_{1}, M_{2}\right)$. This forces that $\alpha=1$.

Hence either $\delta\left(K_{1}, K_{2}\right)=\operatorname{dist}\left(K_{1}, K_{2}\right)$ or there exists a point $x \in K_{1} \cup K_{2}$ such that $\|T x-x\|=\operatorname{dist}\left(K_{1}, K_{2}\right)$.

In view of Remark 2.9 we get the following result which is Theorem 2.1 in [2].
Corollary 3.10. Let (A, B) be a weakly compact convex proximal pair in a Hilbert space X and let $T: A \cup B \rightarrow A \cup B$ be a relatively nonexpansive map which satisfies $T(A) \subseteq B$ and $T(B) \subseteq A$. Then T has a best proximity point in $A \cup B$.

The following example illustrates the above theorem.
Example 3.11. Consider the Hilbert space l_{2}. Let $A=\left\{0, e_{n}, \frac{e_{n}+e_{n+1}}{2}: n \geq 2\right\}$ and $B=A+e_{1}$. Then A and B are weakly compact subsets of l_{2}. Also (A, B) is a proximal parallel pair.

Define $T: A \cup B \rightarrow A \cup B$ as follows: for $x \in A, T(x)= \begin{cases}e_{n+1}+e_{1} & \text { if } x=e_{n}, \\ x+e_{1} & \text { otherwise },\end{cases}$ and for $y \in B, T(y)= \begin{cases}e_{n+1} & \text { if } y=e_{n}+e_{1}, \\ y-e_{1} & \text { otherwise. }\end{cases}$
Then $A \cup B$ is a cyclic T-regular set and T is a relatively nonexpansive map on $A \cup B$. Hence by the Theorem 3.9, T has a best proximity point in $A \cup B$. Note that 0 is a best proximity point of T.

The next result shows that the Kransnoel'skiin's iteration process yields a convergence result, if the pair (A, B) and T are as in Theorem 3.9. We adopt the proof techniques from [2].

Theorem 3.12. Let (A, B) be a nonempty weakly compact proximal parallel pair in a Hilbert space X. Let $T: A \cup B \rightarrow X$ be a relatively nonexpansive map such that $A \cup B$ is a cyclic T-regular set. Let $\left(x_{0}, y_{0}\right) \in A \times B$ be such that $\left\|x_{0}-y_{0}\right\|=$ $\operatorname{dist}(A, B)$. Define $x_{n}=\frac{x_{n-1}+T\left(x_{n-1}^{\prime}\right)}{2}$ and $y_{n}=\frac{y_{n-1}+T\left(y_{n-1}^{\prime}\right)}{2}$, for $n \in \mathbb{N}$. Then $\left\|x_{n}-T\left(x_{n}^{\prime}\right)\right\|$ and $\left\|y_{n}-T\left(y_{n}^{\prime}\right)\right\|$ converge to zero, where x^{\prime} denotes the unique best approximant to $x \in A \cup B$.

If $\overline{T(B)}$ is a compact set, then $\left\{x_{n}\right\}$ converges to a and $\left\{y_{n}\right\}$ converges to a^{\prime}, where $a \in A$ is such that $\|a-T a\|=\operatorname{dist}(A, B)$.
Proof. Consider the sequences $\left\{x_{n}\right\} \subseteq A$ and $\left\{y_{n}\right\} \subseteq B$. By Proposition 3.3, there exists $h \in X$ such that $B=A+h$ and h is orthogonal to both $A-A$ and $B-B$.

It is enough to prove that $\left\|x_{n}-T\left(x_{n}^{\prime}\right)\right\|$ converges to zero.
By Theorem 3.9, there exists $z \in B$ such that $\|z-T z\|=d$, where $d=\operatorname{dist}(A, B)$. Note that $T z=z^{\prime}$ is also a best proximity point of T. Now

$$
\begin{align*}
\left\|x_{n}-z\right\| & \leq \frac{1}{2}\left\{\left\|x_{n-1}+T\left(x_{n-1}^{\prime}\right)-z-T\left(z^{\prime}\right)\right\|\right\} \longrightarrow \tag{*}\\
& \leq \frac{1}{2}\left\{\left\|x_{n-1}-z\right\|+\left\|x_{n-1}^{\prime}-z^{\prime}\right\|\right\}
\end{align*}
$$

But for all $n,\left\|x_{n}-z\right\|=\left\|x_{n}^{\prime}-z^{\prime}\right\|$. Hence $\left\{\left\|x_{n}-z\right\|\right\}$ is a non-increasing sequence. Let $r=\lim \left\|x_{n}-z\right\|$.

As $\left\|T\left(x_{n}^{\prime}\right)-z\right\| \leq\left\|x_{n}^{\prime}-z^{\prime}\right\|$, hence $\liminf \left\|T\left(x_{n}^{\prime}\right)-z\right\| \leq r, \lim \sup \left\|T\left(x_{n}^{\prime}\right)-z\right\| \leq r$. Now from eqn. $(*)$, $\lim \inf \left\|T\left(x_{n}^{\prime}\right)-z\right\| \geq r$. Hence $\lim \left\|T\left(x_{n}^{\prime}\right)-z\right\|=r$.

Suppose there exists $\epsilon_{0}>0$ and $\left\{n_{k}\right\} \subseteq \mathbb{N}$ such that $\left\|x_{n_{k}}-T\left(x_{n_{k}}^{\prime}\right)\right\| \geq \epsilon_{0}$.
Choose $\gamma \in(0,1)$ and ϵ such that $\epsilon_{0} / \gamma>r$ and $0<\epsilon<\min \left\{\frac{\epsilon_{0}}{\gamma}-r, \frac{r \delta(\gamma)}{1-\delta(\gamma)}\right\}$. As the modulus of convexity function $\delta($.$) is strictly increasing in the Hilbert space$ $X, 0<\delta(\gamma)<\delta\left(\frac{\epsilon_{0}}{r+\epsilon}\right)$. Also from the choice of ϵ, we have $\left[1-\delta\left(\frac{\epsilon_{0}}{r+\epsilon}\right)\right](r+\epsilon)<r$.

As $\left\|x_{n}-z\right\|$ and $\left\|T\left(x_{n}^{\prime}\right)-z\right\|$ converges to r, choose $N \in \mathbb{N}$ such that $\left\|x_{n}-z\right\|$, $\left\|T\left(x_{n}^{\prime}\right)-z\right\| \leq r+\epsilon$, for $n \geq N$. Now for $n_{k} \geq N$,

$$
\begin{aligned}
\left\|z-x_{n_{k}+1}\right\| & =\left\|z-\frac{x_{n_{k}}+T\left(x_{n_{k}}^{\prime}\right)}{2}\right\| \\
& \leq\left(1-\delta\left(\frac{\epsilon_{0}}{r+\epsilon}\right)\right)(r+\epsilon)
\end{aligned}
$$

This gives a contradiction. Hence $\left\|x_{n}-T\left(x_{n}^{\prime}\right)\right\| \rightarrow 0$.

Suppose $\overline{T(B)}$ is a compact set. Then $\left\{T\left(x_{n}^{\prime}\right)\right\}$ has a subsequence $\left\{T\left(x_{n_{k}}^{\prime}\right)\right\}$ which converges to $a \in \overline{T(B)}$. Hence $x_{n_{k}}$ converges to a, thus $\lim \left\|x_{n_{k}}-a^{\prime}\right\|=d$ and $\lim \left\|T\left(x_{n_{k}}^{\prime}\right)-a^{\prime}\right\|=d$.

Now,

$$
d \leq\left\|T\left(x_{n_{k}}^{\prime}\right)-T a\right\| \leq\left\|x_{n_{k}}^{\prime}-a\right\|=\left\|x_{n_{k}}-a^{\prime}\right\| .
$$

This implies that $\lim \left\|T\left(x_{n_{k}}^{\prime}\right)-T a\right\|=d$, and hence by Remark 3.4 $T a=a^{\prime}$. Since $\left\{\left\|x_{n}-a^{\prime}\right\|\right\}$ is non-increasing, $\lim \left\|x_{n}-a^{\prime}\right\|=d$. Hence by Remark 3.4, x_{n} converges to a. Now, note that

$$
d \leq\left\|x_{1}-y_{1}\right\| \leq \frac{1}{2}\left\|x_{0}+T\left(x_{0}^{\prime}\right)-y_{0}-T\left(y_{0}^{\prime}\right)\right\|=d
$$

By induction hypothesis $\left\|x_{n}-y_{n}\right\|=d$, for all $n \in \mathbb{N}$. Thus $\lim \left\|x_{n}-y_{n}\right\|=d$. Since $\lim \left\|x_{n}-a^{\prime}\right\|=d$, hence from Remark $3.4 \lim \left\|y_{n}-a^{\prime}\right\|=0$.

The following theorem proves that a relatively nonexpansive map T defined on $A \cup B$ has fixed points in A and B.
Theorem 3.13. Let (A, B) be a non-convex proximal parallel pair in a Hilbert space X. Let $T: A \cup B \rightarrow X$ be a relatively nonexpansive map satisfying $T(A) \subseteq A$ and $T(B) \subseteq B$. Further suppose $A \cup B$ is a T-regular set. Then there exists $(x, y) \in A \times B$ such that $T x=x, T y=y$ and $\|x-y\|=\operatorname{dist}(A, B)$.

Proof. Let \mathfrak{F} be the set of all nonempty weakly closed subsets (K_{1}, K_{2}) of (A, B) satisfying: (i) $\left(K_{1}, K_{2}\right)$ is a proximal pair and $\operatorname{dist}\left(K_{1}, K_{2}\right)=d$, where $d=\operatorname{dist}(A, B)$. (ii) $K_{1} \cup K_{2}$ is T-regular and $T\left(K_{i}\right) \subseteq K_{i}, i=1,2$.

Define a relation \leq on \mathfrak{F} as follows $\left(K_{1}, K_{2}\right) \leq\left(F_{1}, F_{2}\right)$ iff $\left(F_{1}, F_{2}\right) \subseteq\left(K_{1}, K_{2}\right)$. Then \mathfrak{F} is a partially ordered set. It is easy to see that every totally ordered subset \mathcal{T} of \mathfrak{F} has an upper bound. Hence by Zorn's lemma \mathfrak{F} has a maximal element say $\left(K_{1}, K_{2}\right)$.

As $\left(K_{1}, K_{2}\right)$ is a proximal pair with $\operatorname{dist}\left(K_{1}, K_{2}\right)=d$, by Proposition 3.6, $\left(K_{1}, K_{2}\right)$ is a proximal parallel pair and $K_{1}-K_{1}\left(=K_{2}-K_{2}\right)$ is orthogonal to h, where $h \in X$ such that $B=A+h$.

Now from the Lemma 3.8, $\left(K_{1}, K_{2}\right) \subseteq\left(\overline{c o}\left(T K_{1}\right), \overline{c o}\left(T K_{2}\right)\right)$. It is claimed that K_{1} and K_{2} are singleton sets, that is $\delta\left(K_{1}, K_{2}\right)=\operatorname{dist}\left(K_{1}, K_{2}\right)$.

Suppose $\delta\left(K_{1}, K_{2}\right)>\operatorname{dist}\left(K_{1}, K_{2}\right)$. As K_{1} and K_{2} are weakly compact sets, there exists $x_{0} \in K_{1}$ such that $r_{x_{0}}\left(K_{2}\right)=\inf _{x \in K_{1}} r_{x}\left(K_{2}\right)<\delta\left(K_{1}, K_{2}\right)$. Let $r_{x_{0}}\left(K_{2}\right)=$ $\alpha \delta\left(K_{1}, K_{2}\right), \alpha \in(0,1)$ and $R:=\left(\frac{\alpha+1}{2}\right) \delta\left(K_{1}, K_{2}\right)$.

Define $M_{1}:=\left\{x \in K_{1}: r_{x}\left(K_{2}\right) \leq R\right\}$ and $M_{2}:=\left\{y \in K_{2}: r_{y}\left(K_{1}\right) \leq R\right\}$. Then $\left(x_{0}, x_{0}+h\right) \in M_{1} \times M_{2}$ and by Proposition 3.5, $\left(M_{1}, M_{2}\right)$ is a proximal pair. It is claimed that $\left(M_{1}, M_{2}\right) \in \mathfrak{F}$. Let $x \in M_{1}$. Since $\left(K_{1}, K_{2}\right) \subseteq\left(\overline{c o}\left(T\left(K_{1}\right)\right), \overline{c o}\left(T\left(K_{2}\right)\right)\right)$

$$
\begin{aligned}
r_{T x}\left(K_{2}\right) & =\sup \left\{\|T x-z\|: z \in K_{2}\right\} \\
& \leq \sup \left\{\|x-y\|: y \in K_{2}\right\}=r_{x}\left(K_{2}\right) \leq R
\end{aligned}
$$

Thus $\left(T\left(M_{1}\right), T\left(M_{2}\right)\right) \subseteq\left(M_{1}, M_{2}\right)$ and it is clear that $M_{1} \cup M_{2}$ is a T-regular set. Hence $\left(M_{1}, M_{2}\right) \in \mathfrak{F}$.

Now the maximality of $\left(K_{1}, K_{2}\right)$ implies that $\left(K_{1}, K_{2}\right)=\left(M_{1}, M_{2}\right)$. This forces that $\alpha=1$, and hence $\delta\left(K_{1}, K_{2}\right)=\operatorname{dist}\left(K_{1}, K_{2}\right)$. Thus K_{1} and K_{2} are singleton sets and $T x=x$, for every $x \in K_{1} \cup K_{2}$.

The next result shows that the Kransnoel'skii's iteration process yields a convergence result, if the pair (A, B) and T are as in Theorem 3.13.
Theorem 3.14. Let (A, B) be a nonempty weakly compact proximal parallel pair in a Hilbert space X. Suppose $T: A \cup B \rightarrow A \cup B$ is a relatively nonexpansive map satisfying $T(A) \subseteq A$ and $T(B) \subseteq B$ and $A \cup B$ is a T-regular set. Let $\left(x_{0}, y_{0}\right) \in A \times B$ be such that $\left\|x_{0}-y_{0}\right\|=\operatorname{dist}(A, B)$. Define $x_{n+1}=\frac{x_{n}+T x_{n}}{2}$ and $y_{n+1}=\frac{y_{n}+T y_{n}}{2}$, for $n=0,1,2, \ldots$. Then $\left\|x_{n}-T x_{n}\right\|$ and $\left\|y_{n}-T y_{n}\right\|$ converge to zero.

If $\overline{T(A)}$ is a compact set, then $\left\{x_{n}\right\}$ converges to a and $\left\{y_{n}\right\}$ converges to b, where $a \in A$ and $b \in B$ are fixed points of T such that $\|a-b\|=\operatorname{dist}(A, B)$.

Proof. A similar proof can be given as that of Theorem 3.12.

References

[1] Y. Benyamini, and J. Lindenstrauss, Geometric Nonlinear Functional Analysis-Vol. 1, Amer. Math. Soc. colloquium publications, 48. Amer. Math. Soc., Providence, Rhode Island, 2000.
[2] A. A. Eldred, W. A. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math. 171 (2005), 283-293.
[3] A. A. Eldred, and P. Veeramani, Existence and Convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001-1006.
[4] R. Espínola, A new approach to relatively nonexpansive mappings, Proc. Amer. Math. Soc. 136 (2008), 1987-1995.
[5] K. Goebel, and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2008.
[6] P. Veeramani, On some fixed point theorems on uniformly convex Banach spaces, J. Math. Anal. Appl. 167 (1992), 160-166.
[7] S. Rajesh, and P. Veeramani. Chebyshev center and fixed point theorems, communicated.

Manuscript received May 13, 2013
revised July 27, 2013

S. Rajesh

Department of Mathematics, Indian Institute of Technology Madras, Chennai, India E-mail address: srajeshiitmdt@gmail.com
P. VEERAMANI

Department of Mathematics, Indian Institute of Technology Madras, Chennai, India E-mail address: pvmani@iitm.ac.in

[^0]: 2010 Mathematics Subject Classification. 47H10, 54H25, 46C20.
 Key words and phrases. Best proximity points, proximal pairs, relatively nonexpansive maps, T-regular sets, and cyclic T-regular sets.

 * thanks the University Grants Commission (India) for the financial support provided as a form of Senior Research Fellowship to carry out this research work at IIT Madras, Chennai.

