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2. Preliminaries

Throughout this paper, the standard notations and terminologies in nonlinear
analysis are used, see for example W.A. Kirk, B. Sims [53], I.A. Rus, A. Petruşel,
G. Petruşel [111], A. Petruşel [76], I.A. Rus, A. Petruşel, A. Ŝıntămărian [112].

Let X be a nonempty set. Then we denote

P(X) := {Y | Y is a subset of X}, P (X) := {Y ∈ P(X)| Y is nonempty}.

Let (X, d) be a metric space. Then we denote

Pb(X) := {Y ∈ P (X)| Y is bounded }, Pcl(X) := {Y ∈ P (X)| Y is closed},

Pcp(X) := {Y ∈ P (X)| Y is compact}, Pop(X) := {Y ∈ P (X)| Y is open }.

Let T : X → P (X) be a multivalued operator. Then, the operator T̂ : P (X) →
P (X) defined by

T̂ (Y ) :=
∪
x∈Y

T (x), for Y ∈ P (X)

is called the fractal operator generated by T . It is known that if (X, d) is a metric
spaces and T : X → Pcp(X), then the following conclusions hold:

(a) if T is upper semicontinuous, then T (Y ) ∈ Pcp(X), for every Y ∈ Pcp(X);

(b) the continuity of T implies the continuity of T̂ : Pcp(X) → Pcp(X).

The set of all nonempty invariant subsets of T is denoted by I(T ), i.e.,

I(T ) := {Y ∈ P (X)|T (Y ) ⊂ Y }.

A sequence of successive approximations of T starting from x ∈ X is a sequence
(xn)n∈N of elements in X with x0 = x, xn+1 ∈ T (xn), for n ∈ N.

If T : Y ⊆ X → P (X) then FT := {x ∈ Y | x ∈ T (x)} denotes the fixed point set
of T , while (SF )T := {x ∈ Y | {x} = T (x)} is the strict fixed point set of T . By

Graph(T ) := {(x, y) ∈ Y ×X : y ∈ T (x)}

we denote the graphic of the multivalued operator T .
If T : X → P (X), then T 0 := 1X , T

1 := T, . . . , Tn+1 = T ◦ Tn, n ∈ N denote
the iterate operators of T .

By definition (see [66]), a periodic point for a multivalued operator T : X →
Pcp(X) is an element p ∈ X such that p ∈ FTm , for some integer m ≥ 1, i.e.,

p ∈ T̂m({p}) for some integer m ≥ 1. In the same setting, a strict periodic point
for T is an element p ∈ X such that p ∈ (SF )Tm , for some integer m ≥ 1, i.e.,

{p} = T̂m({p}) for some integer m ≥ 1.
If T : X → Pb,cl(X), then p ∈ X is a periodic point for T provided that there

are finitely many elements p0 = p, p1, . . . , pm in X such that pi ∈ T (pi−1), for each
i ∈ {1, 2, . . . ,m} and p ∈ T (pm).

Let (X, d) be a metric space. The following (generalized) functionals are used in
the main sections of the paper.

The gap functional generated by d

(1) Dd : P(X)× P(X) → R+ ∪ {+∞}
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Dd(A,B) =

 inf{d(a, b)| a ∈ A, b ∈ B}, A ̸= ∅ ̸= B
0, A = ∅ = B
+∞, otherwise

The diameter generalized functional generated by d

(2) δd : P(X)× P(X) → R+ ∪ {+∞},

δd(A,B) =

{
sup{d(a, b)| a ∈ A, b ∈ B}, A ̸= ∅ ̸= B
0, otherwise

In particular, we denote δd(A) := δd(A,A).

The excess generalized functional generated by d

(3) ρd : P(X)× P(X) → R+ ∪ {+∞}

ρd(A,B) =

 sup{Dd(a,B)| a ∈ A}, A ̸= ∅ ̸= B
0, A = ∅
+∞, B = ∅ ̸= A

The Pompeiu-Hausdorff generalized functional generated by d

(4) Hd : P(X)× P(X) → R+ ∪ {+∞}

Hd(A,B) =

 max{ρd(A,B), ρd(B,A)}, A ̸= ∅ ̸= B
0, A = ∅ = B
+∞, othewise

We will avoid the subscript d in the above notations when no confusion is possible.
For other details and basic results concerning the above notions see, for example,

[15, 17,45,46,48,53,66,77,111,119,128], . . .

For basic notions and results on the theory of weakly Picard and Picard operators
see [76,82,84,87,103,111,112].

Finally, a few words on comparison functions, concept which appears in some
metrical conditions on multivalued operators.

Let φ : R+ → R+ be a function. By definition (see [98] p. 41-42, [18] p. 41-42)
1) φ is called a comparison function if φ is increasing and φn(t) → 0 as n→ ∞,

for all t ∈ R+.
2) φ is called a strict comparison function if φ is a comparison function and

t− φ(t) → ∞ as t→ ∞.
3) φ is called a strong comparison function if φ is a comparison function and∑

n∈N
φn(t) < +∞, for all t ∈ R+.

Notice that if φ is a comparison function, then φ(0) = 0 and φ(t) < t for all
t > 0. Moreover, each iterate φk, k ≥ 1, is a comparison function.

Let φ : R5
+ → R+ and define ψφ : R+ → R+ by ψφ(t) := φ(t, t, t, t, t).

Consider on R5
+ the usual component-wise ordering ≼. Then, by definition:

1) φ is called a comparison function if φ is increasing (i.e., t, s ∈ (R5
+,≼) with

t ≼ s implies φ(t) ≤ φ(s)) and ψφ is a comparison function.
2) φ is called a strict comparison function if φ is increasing and ψφ is a strict

comparison function.
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3) φ is called a strong comparison function if φ is increasing and ψφ is a strong
comparison function.

3. Basic problems of the metric fixed point theory for multivalued
operators

We start our considerations by presenting some general problems of the fixed
point theory for multivalued operators.

If is not differently stated, we will suppose, through this paper, that (X, d) is a
metric space and T : X → P (X) is a multivalued operator.

Problem 3.1. Which are the metric conditions on T which imply that FT ̸= ∅ ?

The fundamental results for this problem were given by: S.B. Nadler jr. (1967),
J.T. Markin (1968), S.B. Nadler jr. (1969), H. Covitz and S.B. Nadler jr. (1970),
C. Avramescu (1970), H. Schirmer (1970), R.E. Smithson (1971), S. Reich (1972),

L.B. Ćirić (1974), T.C. Lin (1974), I.A. Rus (1975, 1978, 1991), R. Manka (1978),
S. Czerwik (1980), J. Andres and L. Gorniewicz (2001), . . .

As examples, we present some existence results for contraction type multivalued
operators.

Nadler’s Theorem. Let (X, d) be a complete metric space and T : X → Pcl(X)
be a multivalued k-contraction, i.e., k ∈ [0, 1[ and

Hd(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X.

Then FT ̸= ∅.
Reich’s Theorem. Let (X, d) be a complete metric space and let T : X → Pcl(X)
be a multivalued operator such that there exist a, b, c ∈ R+ with a + b + c < 1 such
that

Hd (T (x) , T (y)) ≤ ad (x, y) + bDd(x, T (x)) + cDd(y, T (y)), for all x, y ∈ X.

Then FT ̸= ∅.
Smithson’s Theorem. Let (X, d) be a compact metric space and T : X → Pcl(X)
be a multivalued contractive operator, i.e.,

Hd(T (x), T (y)) < d(x, y), for all x, y ∈ X with x ̸= y.

Then FT ̸= ∅.
Lim’s Theorem. Let (X, ∥ · ∥) be a uniformly convex Banach space and Y ∈
Pb,cl,cv(X). Let T : Y → Pcp(Y ) be a multivalued nonexpansive operator, i.e.,

Hd∥·∥(T (x), T (y)) ≤ ∥x− y∥, for all x, y ∈ Y.

Then FT ̸= ∅.
Rus’ Theorem. Let (X, d) be a complete metric space and T : X → P(X) be a
multivalued operator with closed graph. We suppose that there exist a, b ∈ R+ with
a+ b < 1 such that

Hd (T (x) , T (y)) ≤ ad (x, y) + bD(y, T (y)), for all (x, y) ∈ Graph(T ).



METRIC FIXED POINT THEORY FOR MULTIVALUED OPERATORS 497

Then FT ̸= ∅.

References: [15,25,28,29,32,39–41,46–48,53,61,63,65,72,76,91,93,111,118,120,
124,130], . . .

As a new result, we present the following.

Theorem 3.1.1 Let (X, d) be a complete metric space and T : X → P (X) be a
multivalued operator with closed graph. We suppose that there exists φ : R+ → R+

such that:

(i) φ is strictly increasing;
(ii) φ is a strong comparison function;
(iii) Hd (T (x) , T (y)) ≤ φ(d (x, y)), for all (x, y) ∈ Graph(T ).

Then FT ̸= ∅.

Proof. Let x0 ∈ X and x1 ∈ T (x0). Then, by the properties of the functional Hd,
there exists q1 > 1 and x2 ∈ T (x1) such that

d(x1, x2) ≤ q1H(T (x0), T (x1)) and q1φ(d(x0, x1)) < d(x0, x1).

Then, we get that

d(x1, x2) ≤ q1H(T (x0), T (x1)) ≤ q1φ(d(x0, x1)) < d(x0, x1).

From the above relation and as a consequence of the fact that φ is strictly increasing
we obtain that

φ(d(x1, x2)) < φ(d(x0, x1)).

In a similar way, there exist q2 > 1 and x3 ∈ T (x2) such that

d(x2, x3) ≤ q2H(T (x1), T (x2)) ≤ q2φ(d(x1, x2)) < φ(d(x0, x1)).

Since φ is strictly increasing we obtain that

φ(d(x2, x3)) < φ2(d(x0, x1)).

Thus, by induction, there exist xn+1 ∈ T (xn) (for each n ∈ N) such that

d(xn+1, xn+2) ≤ φn(d(x0, x1)), for each n ∈ N.

by (ii), it follows that the sequence (xn)N is Cauchy and, thus, convergent to an
element x∗ ∈ X. Since T has closed graph we immediately get that x∗ ∈ T (x∗). �

By a similar approach, we get a more general theorem, as follows.

Theorem 3.1.2 Let (X, d) be a complete metric space and T : X → P (X) be a
multivalued operator with closed graph. We suppose that there exists φ : R+ → R+

such that:

(i) φ is strictly increasing;
(ii) φ is a strong comparison function;

(iii)′ Dd(y, T (y)) ≤ φ(d (x, y)), for all (x, y) ∈ Graph(T ).
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Then FT ̸= ∅.
This result gives rise to the following open question.

Problem 3.1.3 Which generalized multivalued contractions satisfy the condition
(iii)′ ?

Remark 3.1.4 (see [19,30,35], . . . ) . Let (X,≤) be an ordered set with at least a
maximal element x∗ ∈ X. Let T : X → P (X) be a multivalued operator such that,
for each x ∈ X there exists y ∈ T (x) such that x ≤ y. Then x∗ ∈ FT .

This remark gives rise to the following question.

Problem 3.1.5 Given a complete metric space (X, d) and a multivalued operator
T : X → P (X) find a partial order on X such that:

(i) (X, d,≤) is an ordered metric space;
(ii) (X,≤) has at least one maximal element;
(iii) for each x ∈ X there is y ∈ T (x) such that x ≤ y.

For this problem, the following result in [30] is very useful.

Theorem 3.1.6 Let (X, d,≤) be an ordered metric space. If, for each increasing
sequence

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ,
we have that

d(xn, xn+1) → 0 as n→ +∞,

then there exists at least one maximal element in (X,≤).

For other considerations on this problem see [19,30,36,86,109,125], . . .

Problem 3.2. Which are the metric conditions on T which imply that (SF )T ̸= ∅ ?

Problem 3.3. Which are the metric conditions on T which imply that FT =
(SF )T ̸= ∅ ?

Problem 3.4. Which are the metric conditions on T which imply that (SF )T =
{x∗} ?

Problem 3.5. Which are the metric conditions on T which imply that FT =
(SF )T = {x∗} ?

Problem 3.6. In which metric conditions on T the following implication holds:

(SF )T ̸= ∅ =⇒ FT = (SF )T = {x∗} ?

The basic results concerning the above problems were given by S. Reich (1972),

Lj.B. Ćirić (1974), K. Iseki (1974), I.A. Rus (1975, 1978, 1997), H.W. Corley (1986),
A. Ŝıntămărian (1997), etc.

For example, we have the following results.
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Reich’s Theorem. Let (X, d) be a complete metric space and let T : X → Pb(X)
be a multivalued operator such that there exist a, b, c ∈ R+ with a + b + c < 1 such
that

δd (T (x) , T (y)) ≤ ad (x, y) + bδd(x, T (x)) + cδd(y, T (y)), for all x, y ∈ X.

Then (SF )T = {x∗}.

Rus’ Theorem. Let (X, d) be a complete metric space and T : X → Pcl(X) be a
multivalued k-contraction. If (SF )T ̸= ∅, then FT = (SF )T = {x∗}.

For Problem 3.5 we have the following general result (see [100]).

Theorem 3.5.1 Let (X, d) be a complete metric space, T : X → Pb(X) be a
multivalued operator and φ : R5

+ → R+. be a function. We suppose that:

(i) φ is increasing;
(ii) there exists p > 1 such that the function ψ : R+ → R+ defined by

ψ(t) := φ(t, pt, pt, t, t), t ∈ R+

is a strict comparison function;
(iii) φ is continuous;
(iv) δd(T (x), T (y)) ≤ φ(d(x, y), δd(x, T (x)), δd(y, T (y)), Dd(x, T (y)), Dd(y, T (x))),

for all x, y ∈ X.

Then FT = (SF )T = {x∗}.

References: [16, 19,27,30,38,63,72,76,81,91,98–101,107,111,114], . . .

Problem 3.7. Which metric conditions imply that FT = FTn ̸= ∅ for all n ∈ N∗ ?

Problem 3.8. Which metric conditions imply that (SF )T = (SF )Tn ̸= ∅ for all
n ∈ N∗ ?

Problem 3.9. Which metric conditions imply that
∩
n∈N

Tn(X) = {x∗} ?

References: [41, 60,61,76,81], . . .

Problem 3.10. Which conditions assure that T (FT ) = FT ?

For the above problem we have the following result.

Theorem 3.10.1 Let (X, d) be a metric space and T : X → Pcl(X) be a multivalued
operator. We suppose that there exists φ : R4

+ → R+ such that:

(i) the function ψ : R+ × R+ → R+ defined by

ψ(t, s) := φ(0, t, 0, s) is increasing;

(ii) r ≤ φ(0, r, 0, r) implies r = 0;
(iii) H(T (x), T (y)) ≤ φ(D(x, T (x)), D(y, T (y)), D(x, T (y)), D(y, T (x))), for all

x, y ∈ X.

Then T (FT ) = FT .
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Proof. Suppose that FT ̸= ∅. On the other hand, notice that

D(x, T (x)) ≤ H(T (x), T (y)), for all x ∈ FT and all y ∈ X

and
D(y, T (y)) ≤ H(T (x), T (y)), for all x ∈ X and all y ∈ T (x).

From (iii) we get that H(T (x), T (y)) < +∞, for all x, y ∈ X. Now, for x ∈ FT and
y ∈ T (x), using (i) and (iii), we obtain that

H(T (x), T (y)) ≤ φ(0,H(T (x), T (y)), 0, H(T (x), T (y))).

Using (ii), we get that H(T (x), T (y)) = 0. Thus, T (x) = T (y), for each x ∈ FT and
y ∈ T (x). This means that y ∈ FT . �
Remark 3.10.2 For the case of multivalued operators T : X → Pb,cl(X) see [97].

References: [4, 12,64,97], . . .

Problem 3.11. Which are the metric conditions on T implying that
(1) FT = (SF )T = {x∗}
(2) Tn(x)

H→ {x∗} as n→ +∞, uniformly with respect to x ∈ X.

By definition, an operator T satisfying the above two conditions is called a mul-
tivalued Picard operator (MP operator).

Concerning the above problem, we have the following result.

Theorem 3.11.1 Let (X, d) be a complete metric space and T : X → Pcp(X) be a
multivalued φ-contraction, i.e., φ : R+ → R+ is a comparison function and

H(T (x), T (y)) ≤ φ(d(x, y)), for all x, y ∈ X.

If, additionally, (SF )T ̸= ∅, then T is a MP operator.

Proof. Let x∗ ∈ (SF )T and let y ∈ FT be arbitrary chosen. Then

d(x∗, y) = H(T (x∗), y) ≤ H(T (x∗), T (y)) ≤ φ(d(x∗, y)).

By the properties of the comparison function φ we get that d(x∗, y) = 0 and thus
FT = (SF )T . For the second conclusion, notice first that, for Y1, Y2 ∈ Pcp(X), we
have (see, for example, [29], [6], [81])

H(T (Y1), T (Y2)) ≤ φ(Y1, Y2).

Then, we have:

H(x∗, Tn(x)) = H(Tn(x∗), Tn(x)) ≤ φn(d(x∗, x)) → 0 as n→ +∞, for each x ∈ X.

�
References: [57, 76,81,84,98,111], . . .

Problem 3.12. Which are metric conditions which imply the following conclusion:
for each x ∈ X and each y ∈ T (x) there exists a sequence (xn)n∈N in X such

that:
(1) x0 = x, x1 = y;
(2) xn+1 ∈ T (xn), for all n ∈ N;
(3) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .
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By definition, an operator T : X → P (X) satisfying the above conditions is called
a multivalued weakly Picard operator (briefly MWP operator).

For a MWP operator T : X → P (X) we define the multivalued operator T∞ :
Graph(T ) → P (FT ) by the formula T∞(x, y) = { z ∈ FT | there exists a sequence
of successive approximations of T starting from (x, y) that converges to z }

Problem 3.13. If T : X → P (X) is a MP operator, in which conditions there
exists a function ψ : R+ → R+ increasing, continuous in 0 and for which ψ(0) = 0
such that

d(x, x∗) ≤ ψ(Hd(x, T (x))), for all x ∈ X?

By definition, an operator T satisfying the above conditions is called a ψ-MP
operator.

Problem 3.14. If T : X → P (X) is a MWP operator, in which conditions there
exists a selection t∞ : Graph(T ) → X of T∞ and there is an increasing function
ψ : R+ → R+ which is also continuous in 0 and with ψ(0) = 0 such that

d(x, t∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph(T )?

By definition, an operator T satisfying the above conditions is called a ψ-MWP
operator.

Notice first that the multivalued operators satisfying the assumptions from Nadler’s
Theorem, Reich’s Theorem and Rus’ Theorem from Problem 3.1 are MWP opera-
tors. (see [76]). For other examples, see [76], [81], [112]. For some applications of
the MWP operator theory see Problem 3.17 and Problem 3.19.

References: [20, 33,70,76,80–82,84,87,111,112], . . .

Problem 3.15. In which conditions on the multivalued operator T : X → P (X)
for all sequences (xn)n∈N in X such that xn+1 ∈ T (xn) for n ∈ N, we have that

T (xn)
H→ FT as n→ +∞ ?

Problem 3.16. In which conditions a multivalued operator T : X → P (X) is a
MWP operator and T (y) = FT , for all y ∈ FT ?

An aswer to this problem is the following theorem.

Theorem 3.16.1 Let (X, d) be a complete metric space and T : X → Pcl(X) be a
multivalued Kannan type operator, i.e., there exists α ∈ [0, 12 [ such that

H(T (x), T (y)) ≤ α(D(x, T (x)) +D(y, T (y))), for all x, y ∈ X.

Then:

(a) T is a 1−α
1−2α -MWP operator;

(b) T (y) = FT , for all y ∈ FT .

Proof. (a) Indeed, for any (x0, x1) ∈ Graph(T ) and for arbitrary q ∈]1, 1−α
1−2α [, we

can choose x2 ∈ T (x1) such that d(x1, x2) ≤ qH(T (x0), T (x1)) ≤ qα(D(x0, T (x0))+
D(x1, T (x1))) ≤ qα(d(x0, x1)+d(x1, x2)).Hence we get that d(x1, x2) ≤ qα

1−qαd(x0, x1).
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By induction, we can prove that there exists a sequence (xn)n∈N of successive ap-
proximations for T starting from (x0, x1) such that

d(xn, xn+1) ≤ (
qα

1− qα
)nd(x0, x1), for each n ∈ N∗.

By a classical approach, we obtain that the sequence (xn)n∈N is Cauchy and, hence,
it converges to x∗ ∈ X. Moreover, x∗ is a fixed point for T and d(x0, x

∗) ≤
1−α
1−2αd(x0, x1), proving that T is a 1−α

1−2α -MWP operator.

(b) For the second conclusion, if y ∈ FT we will show that T (y) = FT . Indeed,
let v ∈ T (y). Then H(T (v), T (y)) ≤ α(D(v, T (v))+D(y, T (y))) ≤ αH(T (y), T (v)),
which implies that v ∈ FT . On the other hand, if we choose w ∈ FT , then we get
that D(w, T (y)) ≤ H(T (w), T (y)) ≤ α(D(w, T (w)) +D(y, T (y))) = 0, proving that
w ∈ T (y). �

References: [41, 60,61], . . .

We will present now some data dependence problems for multivalued operators.

Problem 3.17. Let T, S : X → P (X) be two multivalued operators such that and
FT and FS are nonempty. In which conditions there exists an increasing function
θ : R+ → R+ which is also continuous in 0 and with θ(0) = 0 such that the following
implication holds:

η > 0 and H(S(x), T (x)) ≤ η, for each x ∈ X =⇒ H(FS , FT ) ≤ θ(η) ?

We present now an answer to this problem.

Theorem 3.17.1 Let (X, d) be a metric space and T, S : X → Pcl(X) be two ψ-
MWP operators. Let η > 0 such that H(S(x), T (x)) ≤ η, for each x ∈ X. Suppose
also that, for each q > 1, we have ψ(qη) ≤ qψ(η). Then

H(FS , FT ) ≤ ψ(η).

Proof. Let x∗ ∈ FS be arbitary chosen. Then

d(x∗, t∞(x∗, y)) ≤ ψ(d(x∗, y)), for each y ∈ T (x∗).

Let q > 1 be arbitrary. Then, there exists y∗ ∈ T (x∗) such that d(x∗, y∗) ≤
qH(S(x∗), T (x∗)). Thus

d(x∗, t∞(x∗, y∗)) ≤ ψ(qH(S(x∗), T (x∗))) ≤ ψ(qη).

By a similar procedure we can prove that, for each u∗ ∈ FT there exists v∗ ∈ S(u∗)
such that

d(u∗, s∞(u∗, v∗)) ≤ ψ(qη).

Hence, the above two relations together imply that

H(FS , FT ) ≤ ψ(qη) ≤ qψ(η), for every q > 1.

Letting q ↘ 1, we get the conclusion. �
References: [33, 40,54,58,59,84,100,111,112,123], . . .
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Problem 3.18. Let T, Tn : X → P (X) (n ∈ N) be multivalued operators such
that:

(a) FT ̸= ∅ and FTn ̸= ∅, for all n ∈ N;
(b) Tn converges uniformly to T .
Which are the metric conditions which imply that H(FTn , FT ) → 0 as n→ ∞ ?

The following result is an answer for the above problem.

Theorem 3.18.1 Let (X, d) be a metric space and Tn, T : X → Pcl(X) be ψ-MWP

operators. Suppose that Tn(x)
H→ T (x) as n → +∞, uniformly with respect to

x ∈ X. Suppose also that, for each q > 1, we have ψ(qt) ≤ qψ(t), for each t ∈ R+.
Then H(FTn , FT ) → 0 as n→ +∞.

Proof. Let ε > 0. Since Tn(x)
H→ T (x) as n→ +∞, uniformly with respect to each

x ∈ X, there exists Nε ∈ N such that

sup
x∈X

H(Tn(x), T (x)) < ε, for each n ≥ Nε.

Then, by Theorem 3.17.1 we get that H(FTn , FT ) ≤ ψ(ε), for each n ≥ Nε. Since

ψ is continuous in 0 and ψ(0) = 0, we obtain that FTn

H→ FT . �

References: [59, 76,82,123], . . .

Problem 3.19. Let (X, d) be a metric space and T : X → P (X) be a multivalued
operator. Let us consider the fixed point inclusion

x ∈ T (x), x ∈ X

and, for η > 0, consider the inequation

D(y, T (y)) ≤ η, y ∈ X.

In which conditions there exists an increasing function θ : R+ → R+ which is also
continuous in 0 with θ(0) = 0 such that for each solution y∗ ∈ X of the above
inequation there exists a solution x∗ ∈ X of the fixed point inclusion having the
following property

d(x∗, y∗) ≤ θ(η) ?

By definition, a fixed point inclusion which satisfies the above condition is called
generalized Ulam-Hyers stable. If θ(t) = ct (with some c > 0), then the fixed point
inclusion is called Ulam-Hyers stable.

Theorem 3.19.1 (see [105]) . Let (X, d) be a metric space and T : X → Pcp(X) be
a multivalued ψ-weakly Picard operator. Then, the fixed point inclusion

x ∈ T (x), x ∈ X

is generalized Ulam-Hyers stable.

Proof. Let ε > 0 and y∗ ∈ X be a ε-solution of (3), i.e., D(y∗, T (y∗)) ≤ ε. By the
compactness assumption on T (y∗), there exists u∗ ∈ T (y∗) such that d(y∗, u∗) ≤ ε.
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Since T is a multivalued ψ-weakly Picard operator, for each (x, y) ∈ Graph(T ) we
have

d(x, t∞(x, y)) ≤ ψ(d(x, y)).

Thus, if we define x∗ := f∞(y∗, u∗) ∈ FT , we get

d(y∗, x∗) ≤ ψ(d(y∗, u∗)) ≤ ψ(ε).

�
References: [84, 102,105], . . .

Problem 3.20. Let T : X → P (X) be a multivalued operator such that FT = {x∗}.
In which conditions the following implication holds:

(xn)n∈N ⊂ X with Dd(xn, T (xn)) → 0 as n→ ∞ =⇒ (xn)n∈N → x∗ as n→ ∞.

By definition, if the above condition is satisfied, then we say that the fixed point
inclusion (3.19) is well-posed with respect to Dd.

An abstract theorem on the above problem is the following.

Theorem 3.20.1 Let (X, d) be a metric space and T : X → Pcl(X) be a multivalued
operator such that FT = {x∗}. Suppose that there exists an increasing function
γ : R+ → R+ continuous in 0 with γ(0) = 0 such that

d(x, x∗) ≤ γ(D(x, T (x))), for each x ∈ X.

Then the fixed point problem is well-posed for T with respect to D.
As a particular case, we have.

Theorem 3.20.2 Let (X, d) be a complete metric space and T : X → Pcl(X)

be a Ćirić type multivalued operator, i.e., there exists α ∈]0, 1[ such that for each
x, y ∈ X

H(T (x), T (y)) ≤ αmax
{
d(x, y), D(x, T (x)), D(y, T (y)),

1

2
(D(x, T (y))+D(y, T (x)))

}
.

Suppose (SF )T ̸= ∅. Then the fixed point problem is well-posed with respect to D
and with respect to H.

Problem 3.21. Let T : X → P (X) be a multivalued operator such that (SF )T =
{x∗}. In which conditions the following implication holds:

(xn)n∈N ⊂ X with Hd(xn, T (xn)) → 0 as n→ ∞ =⇒ (xn)n∈N → x∗ as n→ ∞.

By definition, if the above condition is satisfied, then we say that the fixed point
inclusion (3.19) is well-posed with respect to Hd.

A general result concerning the above problem is the following.

Theorem 3.21.1 Let (X, d) be a metric space and T : X → Pcl(X) be a multivalued
operator such that (SF )T = {x∗}. Suppose that there exists an increasing function
γ : R+ → R+ continuous in 0 with γ(0) = 0 such that

d(x, x∗) ≤ γ(H(x, T (x))), for each x ∈ X.

Then the fixed point problem is well-posed for T with respect to H.
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As an example we have the following theorem

Theorem 3.21.2 Let (X, d) be a complete metric space and T : X → Pb(X) be a

multivalued (δ, α)-contraction of Ćirić type, i.e., α ∈]0, 1[ and, for all x, y ∈ X, we
have

δ(T (x), T (y)) ≤ αmax
{
d(x, y), δ(x, T (x)), δ(y, T (y)),

1

2
(D(x, T (y))+D(y, T (x)))

}
.

Then the fixed point problem is well-posed with respect to H.

Proof. By Ćirić [26] we have that FT = (SF )T = {x∗}. Let x ∈ X be arbitary.
Then

d(x, x∗) ≤ δ(x, T (x)) + δ(T (x), T (x∗)) ≤

H(x, T (x)) + αmax
{
d(x, x∗), δ(x, T (x)), 0,

1

2
(D(x, T (x∗)) +D(x∗, T (x)))

}
≤

H(x, T (x)) + αmax
{
d(x, x∗),H(x, T (x)),

1

2
(2d(x, x∗) +H(x, T (x)))

}
.

Then

d(x, x∗) ≤ 1

1− α
H(x, T (x)), for all x ∈ X.

The conclusion follows now by the above theorem for γ(t) = 1
1−α t. �

References: [26, 80,83,84,104,129],. . .

Problem 3.22. Let T : X → P (X) be a multivalued operator. In which conditions
the following implication holds:

(yn)n∈N ⊂ X with Dd(yn+1, T (yn) → 0 as n → ∞ =⇒ there exists a sequence
(xn)n∈N of Picard iterations (i.e., xn+1 ∈ T (xn)) such that d(xn, yn) → 0 as n→ ∞.

By definition, if the above condition is satisfied, then we say that the fixed point
inclusion (3.19) has the limit shadowing property with respect to d.

Theorem 3.22.1 Let (X, d) be a complete metric space and let T : X → Pcl(X) be
a multivalued k-contraction such that (SF )T ̸= ∅. Then T has the limit shadowing
property.

References: [84, 88,89], . . .

Let us present now some problems which are suggested by the above problems.

Problem 3.6 suggests the following open question.

Problem 3.23. Let X be a set with a structure and T : X → P (X) be a multival-
ued operator. In which conditions we have (SF )T ̸= ∅ ?

Concerning this problem, we can prove, for example, the following result. Notice
first that if A,B ⊂ X then A ≤s B means that for each a ∈ A and every b ∈ B we
have that a ≤ b.

Theorem 3.23.1. Let (X, d,≤) be an ordered metric space such that d is a complete
metric. Let T : X → Pcl(X) be a multivalued operator. We suppose that:

(i) T is progessive, that is {x} ≤s T (x), for each x ∈ X;
(ii) (X,≤) has at least a maximal element x∗ ∈ X;
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(iii) T is a φ-contraction.

Then FT = (SF )T = {x∗}.

Proof. From (i) and (ii) we get that x∗ ∈ (SF )T and so (SF )T ̸= ∅. This property
together with the φ-contraction condition imply (using Theorem 3.11.1) that FT =
(SF )T = {x∗}. �

In 1970, H. Schirmer presented the following open question.

Problem 3.24. Let T : Rn → Pcp,cv(Rn) be a contraction. In which conditions the
fixed point set FT is connected ?

A more general problem is the following.

Problem 3.25. Let (X, d) be a metric space and T : X → P (X) be a general-
ized contraction. The problem is to study some properties (such as compactness,
convexity, absolute retract property) of the fixed point set FT ?

Some partial answers, for the case of multivalued Reich contractions, are the
following theorems.

Theorem 3.25.1 Let (X, d) be a complete metric space and T : X → Pcp(X) be a
multivalued Reich type operator, i.e., there exist α, β, γ ∈ R+ with α + β + γ < 1
such that

H(T (x), T (y)) ≤ αd(x, y) + βD(x, T (x)) + γD(y, T (y)), for all x, y ∈ X.

Then, the fixed points set FT is compact.

Let X ∈ M, where M denotes the family of all metric spaces. Then X is called
an absolute retract for metric spaces (briefly X ∈ AR(M)) if, for any Y ∈ M and
any Y0 ∈ Pcl(X), every continuous function f0 : Y0 → X has a continuous extension
over Y , that is f : Y → X. Obviously, any absolute retract is arcwise connected.

Concerning the absolute retract property of the fixed point set of a multivalued
Reich contraction we have the following result.

Theorem 3.25.2 Let E be a Banach space, X ∈ Pcl,cv(E) and T : X → Pcl,cv(X)
be a multi-valued Reich type operator. Suppose that T is lower semi-continuous.
Then FT ∈ AR(M).

Another result with respect to the above problems is the following theorem.

Theorem 3.25.3 (M.C. Anisiu-O. Mark [13]) . Let T : R → Pcp,cv(R) be a multival-
ued operator. We suppose that there exists a strict comparison function φ : R5 → R
such that

H(T (x), T (y)) ≤ φ(d(x, y), D(x, T (x)), D(y, T (y)), D(x, T (y)), D(y, T (x))),

for all x, y ∈ X.

Then, the fixed points set FT is compact and convex.

References: [13, 21,37,71,73,79,95,113,115], . . .
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Problem 3.26. Let (X, d) be a metric space and T : X → P (X) be a multivalued
operator. Characterize the subset Y ⊆ X ×X for which the following implication
holds:

there is α ∈ [0, 1[ such that H(T (x), T (y)) ≤ αd(x, y)

for every (x, y) ∈ Y ⇒ FT ̸= ∅.

By definition, an operator satisfying the above property is called a multivalued
(Y, α)-contraction. A similar problem arises for multivalued generalized contrac-
tions.

Commentaries (see [110]). As well-known particular cases for Y we have:
(i) Y := Graph(T ). In this case, T is called a multivalued graphic α-contraction.
(ii) Let Z ∈ Pb(X) and consider Y := (X \Z)× (X \Z). In this case, T is called

a multivalued α-contraction outside a bounded set.
(iii) Let (X, d,≤) be an ordered metric space and consider Y := {(x, y) ∈ X×X :

x ≤ y or y ≤ x}.
For fixed point results in the context of metric spaces endowed with a graph

see [69].

References: [69, 110].

4. Other aspects of the metrical fixed point theory for multivalued
operators

4.1. Nonexpansive operators. The basic results for Problem 3.1 in the case of
multivalued nonexpansive operators were given by J.T. Markin (1968), N. Assad
and W.A. Kirk (1972), S. Reich (1972), K. Goebel (1975), F.E. Browder (1976),
T.C. Lim (1980), S. Massa (1983), . . .

References: [32, 43–45,53,58,93,127,128], . . .

4.2. Set-theoretic aspects. For the set-theoretic aspects of the fixed point theory
for multivalued operators see [101] and the references therein. We also mention the
following variant of the Fryszkowski’s Problem:

Problem 4.2.1 Let X be a nonempty set and T : X → P (X) be an operator such
that

FTn = (SF )Tn = {x∗}, for all n ∈ N∗.

Given α ∈]0, 1[, in which conditions there exists a metric d on X such that:
(i) (X, d) is a complete metric space;
(ii) T : (X, d) → (P (X),Hd) is an α-contraction ?

For the Fryszkowski’s Problem see [51], [52].

4.3. Order-theoretic aspects. For order-theoretic aspects of the fixed point the-
ory for multivalued operators see [19,30,35,50,53,111,125], . . .

4.4. Impact of the convergence of iterative methods in fixed point inclu-
sion theory. Concerning the impact of the convergence of some iterative methods
on the multivalued fixed point inclusions see [14, 18, 27, 42, 45, 53, 59, 76, 81, 85, 90,
108,116,117,119], . . .
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4.5. Non-self multivalued operators. For the basic problems of the fixed point
theory of non-self multivalued operators see [47,53,56,75,97,106,111], . . .

4.6. Multivalued fractals. An important and interesting application of the met-
rical fixed point theory for multivalued operators is the (multi)fractal theory. For
the basic results in this direction see [5–7,9, 10,23,42,65,74,79,81,111], . . .

4.7. Periodic points. For some basic results concerning this topic we refer to
Nadler [66]. For other results see [8, 55,57,101,110,121,126], . . .
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[18] V. Berinde, Iterative Approximations of Fixed Points, Springer Verlag, Berlin, 2007.
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[71] A. Petruşel, Multivalued operators and fixed points, Pure Math. Appl. 11 (2000), 361–368.
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[74] A. Petruşel, Singlevalued and multivalued Meir-Keeler type operators, Revue d’Analyse Num.

et de Th. de l’Approx., 30 (2001), 75–80.
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[95] B. Ricceri, Une propriété topologique de l’ensemble des points fixed d’une contraction multi-
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