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the convex combinations of the map and the identity map, they construct a sequence
of mappings that play a similar role to the auxiliary mappings.

A careful reading of these papers carry out the idea that many of the existing
procedures has some common and good properties such that the convergence of the
method does not depend by the particular construction but depend only by this
properties.

In this paper our aim is to show that these common and good properties are
satisfied by the Uniformly Asymptotically Regular-class of precedures.

Then by a UAR-procedure we prove the convergence of an implicit iterative
method and of an explicit iterative method to the unique solution of a variational
inequality problem on the set of common fixed points of a family of mappings .

We start with some relevant examples. The common setting for these procedures
is a strictly convex Banach space X. We recall the following property

Lemma 1.1. Let X be a strictly convex Banach space and x, y ∈ X. If

∥x∥ = ∥y∥ = ∥tx+ (1− t)y∥,
for some t ∈ (0, 1), then x = y.

Procedure 1.2 (Shimoji-Takahashi [20], 2001). Let X be a strictly convex Banach
space and C ⊂ X closed and convex.

Let (Tn)n∈N be a sequence of nonexpansive mappings from C to C with
∩
n∈N

Fix(Tn) ̸=

∅. Let Λ := (λn)n∈N ⊂ (0, b] ⊂ (0, 1). Let consider the following construction:

(1.1)



Un,n+1 := I,
Un,n := λnTnUn,n+1 + (1− λn)I,
...
Un,k := λkTkUn,k+1 + (1− λk)I,
...
Un,2 := λ2T2Un,3 + (1− λ2)I,
Wn ≡ Un,1 := λ1T1Un,2 + (1− λ1)I.

Note that:

• Lemma 3.1 in [20] assures that every mapping in the sequence (Wn)n∈N is
nonexpansive.

• Lemma 3.2 in [20] claims that:

∥Wn+1x−Wnx∥ ≤ 2∥x− w∥
n+1∏
i=1

λi

holds, for every w ∈
∩
n∈N

Fix(Tn). If B ⊂ C is any bounded subset of C, the

restriction λn ≤ b < 1 gives the uniform asymptotical regularity of Wn on
B, i.e.:

∥Wn+1x−Wnx∥ → 0 as n → ∞, uniformly in x ∈ B.
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• Again Lemma 3.2 assures that Wx := lim
n→∞

Un,1x is well defined and Lemma

3.3 claims that Fix(W ) =
∩
n∈N

Fix(Tn).

Procedure 1.3 (Kangtunyakarn [10], 2011). Let X be a strictly convex Banach
space and C ⊂ X.

Let (Tn)n∈N be a sequence of nonexpansive mappings from C to C with common
fixed points.

Let Λ := (λn)n∈N ⊂ (0, 1) with
∑

n λn < ∞.
Let consider the following procedure:

(1.2)



Un,0 := I,
Un,1 := λ1T1Un,0 + (1− λ1)Un,0,
...
Un,k := λkTkUn,k−1 + (1− λk)Un,k−1,
...
Un,n−1 := λn−1Tn−1Un,n−2 + (1− λn−1)Un,n−2,
Wn ≡ Un,n := λnTnUn,n−1 + (1− λn)Un,n−1.

Lemma 2.11 in [10] assures that there exists, for all x ∈ C,

Wx := lim
n→∞

Wnx

and Lemma 2.12 proves that Fix(W ) =
∩
n∈N

Fix(Tn).

Moreover in Lemma 2.11 the inequality

∥Wn+1x−Wnx∥ ≤ λn+1∥Tn+1Wnx−Wnx∥

is also proved. If w ∈
∩
n∈N

Fix(Tn), Wnw = w, for all n, thus

∥Wn+1x−Wnx∥ ≤ 2λn+1∥Wnx− w∥ ≤ 2λn+1∥x− w∥.

The uniform asymptotical regularity of (Wn)n∈N easily follows if x ∈ B where B ⊂ C
is a bounded set.

Remark 1.4. We recall that a mapping T is said k-strictly pseudocontractive
mappings in the Browder-Petryshyn sense if, for all x, y ∈ C and j(x−y) ∈ J(x−y),
the following holds:

⟨Tx− Ty, j(x− y)⟩ ≤ ∥x− y∥2 − k∥x− y − (Tx− Ty)∥2.

The previous procedure can be suitably adapted for a family of ki-strictly pseu-
docontractive mappings in the setting of q-uniformly smooth Banach spaces (for
details one can refer to [3, 8]).

It is well-known, in fact, that an opportune convex combination of a k-strict
pseudocontraction and the identity map, is a nonexpansive mapping (see [18]).
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Procedure 1.5. Let us introduce the following procedure inspired to Bruck’s idea
in [2]. Let (Tn)n∈N an infinite family of nonexpansive mappings in a strictly convex
Banach spaces X. Let Λ := (λn)n∈N ⊂ (0, 1) and let us define:

(1.3)



Un,n+1 := I,
Un,n := λnTn + (1− λn)Un,n+1,
Un,n−1 := λn−1Tn−1 + (1− λn)Un,n,
...
Un,k := λkTk + (1− λk)Un,k+1
...
Un,2 := λ2T2 + (1− λ2)Un,3,
Wn := Un,1 = λ1T1 + (1− λ1)Un,2

Lemma 1.6. Let C be a nonempty closed convex subset of a strictly convex Banach
space. Let (Ti)i∈N be an infinite family of nonexpansive mappings of C into itself
and let (λi)i∈N be a real sequence such that 0 < a ≤ λi < 1 for every i ∈ N. Then,

(a) the sequence of nonexpansive mappings (Wn)n∈N is uniformly asymptotically
regular on the bounded subsets B ⊂ C.

(b) for every x ∈ C and k ∈ N, there exists

(1.4) lim
n→∞

Un,kx.

Moreover, if
∩
i∈N

Fix(Ti) ̸= ∅, then Fix(W ) =
∩
i∈N

Fix(Ti) where

Wx := lim
n→∞

Wnx.

Proof. First of all we prove that, for every k ∈ N, the limit in (1.4) exists.
Let x ∈ C and n > k we observe that

∥Un+1,kx− Un,kx∥ = ∥(1− λk)Un+1,k+1x− (1− λk)Un,k+1x∥
= (1− λk)(1− λk+1)∥Un+1,k+2x− Un,k+2x∥

. . .

=

n∏
i=k

(1− λi)∥Un+1,n+1x− Un,n+1x∥

=
n∏

i=k

(1− λi)∥λn+1Tn+1x+ (1− λn+1)x− x∥

≤
n∏

i=k

(1− λi)∥Tn+1x− x∥

Thus, if w ∈
∩
i

Fix(Ti) then

∥Un+1,kx− Un,kx∥ ≤ 2∥w − x∥
n∏

i=k

(1− λi)

Since λi > a then ∥Un+1,kx− Un,kx∥ ≤ 2∥w − x∥(1− a)n−k+1.
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If B ⊂ C is bounded, x ∈ B and k = 1 we obtain that

∥Wn+1x−Wnx∥ → 0, as n → ∞,

i.e. (Wn)n∈N is uniformly asymptotically regular on the bounded subset B in C.
Moreover, if m > n > k, we have

∥Um,kx− Un,kx∥ ≤
m−1∑
j=n

∥Un+1,kx− Un,kx∥ ≤
m−1∑
j=n

2∥x− w∥(1− a)j−k+1

=
2∥x− w∥(1− a)n

a
.

Hence the sequence (Un,kx)n∈N is a Cauchy sequence and its limit there exists. In
particular for k = 1 we can define

(1.5) Wx := lim
n→∞

Un,1x = lim
n→∞

Wnx

Next step is to prove that Fix(W ) =
∩
n∈N

Fix(Tn).

If w ∈
∩
n

Fix(Tn) then Un,nw = w, for all fixed n. This implies, by (1.3), that

w = Un,n−1w.
Flowing down one obtains that Un,1w = w. So w ∈ Fix(W ) passing to the limit for
n → ∞.
Viceversa, we prove that if w ∈ Fix(W ) then w ∈

∩
n Fix(Tn).

Let w ∈ Fix(W ) and y ∈
∩
n

Fix(Tn).

We note that

∥Wnw −Wny∥ ≤ λ1∥w − y∥+ (1− λ1)∥Un,2w − Un,2y∥
≤ (λ1 + (1− λ1)λ2)∥w − y∥+ (1− λ1)(1− λ2)∥Un,3w − Un,3y∥
≤ . . .

≤

(
λ1 + (1− λ1)λ2 + . . .+

n−2∏
i=1

(1− λi)λn−1

)
∥w − y∥

+
n−1∏
i=1

(1− λi)∥Un,nw − Un,ny∥

≤

(
λ1 + (1− λ1)λ2 + . . .+

n−2∏
i=1

(1− λi)λn−1

)
∥w − y∥

+

n−1∏
i=1

(1− λi)∥w − y∥ = ∥w − y∥.

Denoting by U∞,kx := lim
n→∞

Un,kx, one observes that

∥w − y∥ = ∥Ww −Wy∥ = ∥λ1(T1w − T1y) + (1− λ1)(U∞,2w − U∞,2y)∥
≤ λ1∥w − y∥+ (1− λ1)∥U∞,2w − U∞,2y∥ ≤ ∥w − y∥,
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i.e.

(1− λ1)∥w − x∥ ≤ (1− λ1)∥U∞,2w − U∞,2y∥ ≤ (1− λ1)∥w − y∥.
Hence ∥U∞,2w − U∞,2y∥ = ∥w − y∥.

In a similar way,

∥w − y∥ = ∥Ww −Wy∥ = ∥λ1(T1w − T1y) + (1− λ1)(U∞,2w − U∞,2y)∥
≤ λ1∥T1w − T1y∥+ (1− λ1)∥w − y∥ ⇒ ∥T1w − T1y∥ = ∥w − y∥.

By Lemma 1.1, U∞,2w − U∞,2y = T1w − T1y, i.e.

U∞,2w − y = U∞,2w − U∞,2y = T1w − T1y = T1w − y,

so we can conclude that

w = lim
n→∞

Un,1w = λ1T1w + (1− λ1)U∞,2 = T1w.

This means w ∈ Fix(T1).
Repeating this idea for a second step, we have

∥w − y∥ = ∥U∞,2w − U∞,2y∥ = ∥λ2(T2w − T2y) + (1− λ2)(U∞,3w − U∞,3y)∥
≤ λ2∥w − y∥+ (1− λ2)∥U∞,3w − U∞,3y∥,

i.e. ∥U∞,3w − U∞,3y∥ = ∥w − y∥ and ∥T2w − T2y∥ = ∥w − y∥. This implies that,
by the strict convexity of the space,

U∞,3w − y = U∞,3w − U∞,3y = T2w − T2y = T2w − y.

Then

w = lim
n→∞

Un,2w = λ2T2w + (1− λ2)U∞,3 = T2w(= U∞,3w),

i.e. w ∈ Fix(T2).
Iterating again one proves that w ∈ ∩nFix(Tn). �

Next procedure uses a finite number of nonlinear mappings. This case is studied
in many recent papers as those cited in [6].

Procedure 1.7. Let us consider the following:

Definition 1.8. Let X be a Banach space, C ⊂ X closed and convex, T := {Ti}Ni=1
be a finite family of mappings from C into itself.

Let ∆ = {1, . . . , L} ⊂ N be a finite index set (with L not necessarily equal to N)

and let Θ := (ηi)i∈∆, Θ̃ := (η̃i)i∈∆ ∈ (0, 1)L.
A procedure lies in the LDC-class of procedures (Lipschitzian Dependence of the

Coefficients class of procedures) if, starting from the family T and from admissible
coefficients Θ, it constructs a mapping VT,Θ satisfying the following

(h1) VT,Θ is nonexpansive and Fix(VT,Θ) = F := ∩i∈∆Fix(Ti) whenever F is
nonempty;

(h2) for every B ⊂ C bounded there exists M = M(B,T) ∈ R such that

∥VT,Θ̃x− VT,Θx∥ ≤
∑
i∈∆

M |η̃i − ηi|, ∀x ∈ B.

We will call VT,Θ an auxiliary mapping generated by the LDC -procedure.
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Let us consider:
Λ = (Θn)n∈N = (ηi,n)n∈N,i∈∆

with the constraint

ηi,n → ηi ∈ (0, 1), for any fixed i ∈ ∆.

Condition (h1) assures that, for every n, Wn = VT,Θn is nonexpansive. Condition
(h2) assures that:

∥VT,Θn+1x− VT,Θnx∥ ≤ M
∑
i∈∆

|ηi,n+1 − ηi,n|, ∀x ∈ B.

so, letting n → ∞, we have the uniform asymptotical regularity of (VT,Θn)n∈N on
B. Moreover, if Θ = (ηi)i∈∆, Wx := VT,Θ is also generated by an LCD-procedure
and it preserves the common fixed points.

Let us consider a (not necessarily finite) family of mappings T := {Ti : C → C :
i ∈ I} and let Λ := (λn)n∈N be an opportune sequence of real numbers.

Definition 1.9. A procedure is said an uniformly asymptotically regular procedure
(in the sequel UAR-procedure) if starting by a family T and by Λ

(H1) it defines a sequence of nonexpansive mappings Wn : C → C uniformly
asymptotically regular on bounded subsets of B ⊂ C.

(H2) it is possible to define a nonexpansive mapping V := VT,Λ : C → C, with
V x := lim

n→∞
Wnx such that if

∩
i∈I Fix(T ) ̸= ∅ then Fix(V ) =

∩
i∈I Fix(T ).

2. Preliminaries

Let X be a q−uniformly smooth Banach space i.e. there exists a constant Cq > 0
such that

∥x+ y∥q ≤ ∥x∥q + q⟨y, jq(x)⟩+ Cq∥y∥q,
for all x, y ∈ X (see Corollary 1 in [23]).

Definition 2.1. An operator D : X → X is said to be β−strongly accretive if

⟨Dx−Dy, j(x− y)⟩ ≥ β∥x− y∥2,
for all x, y ∈ X, where j : X → X∗ is the duality mapping on X.

Next Lemma can be easily proved.

Lemma 2.2. Let D : X → X be a β−strongly accretive and L−lipschitzian opera-

tor. Let t ∈ (0, 1) and 0 < ρ < min

{(
qβ

CqLq

) 1
q−1

, 1

}
. Then (I − tρD) : X → X is

a contraction with coefficient (1− tτ) where τ =
qβρ− Cq(βL)

q

q
.

To obtain our results we will use the following (well-known) Lemma proved in
[25]:

Lemma 2.3. Assume (an)n is a sequence of nonnegative numbers for which,

an+1 ≤ (1− γn)an + δn, n ≥ 0,

where (γn)n is a sequence in (0, 1) and δn is a sequence in R such that,
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(1)
∑∞

n=1 γn = ∞;

(2) lim supn→∞
δn
γn

≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞ an = 0.

Lemma 2.4. [19] Let {ym} be a bounded sequence contained in a separable subset
K of a Banach space E. Then there is a subsequence (ymk

)k of (ym)m such that
limk ∥ymk

− z∥ exists for all z ∈ K.

Lemma 2.5. [19] Let C be a closed convex subset of a Banach space E with a
uniformly Gâteaux differentiable norm, and let (ym)m be a sequence in C such that
h(z) = limm ∥ym − z∥ exists for all z ∈ C. If h attains its minimum over C at u,
then

lim sup
m

⟨z − u, j(ym − u)⟩ ≤ 0

for all z ∈ C.

Theorem 2.6. [22] Let E be a reflexive Banach space and let C be a closed convex
subset of E. Let h be a proper convex lower semicontinuous function of C into
(−∞,∞] and suppose that h(xn) → ∞ as ∥xn∥ → ∞. Then, there exists x0 ∈ D(h)
such that

h(x0) = inf{h(x) : x ∈ C}.

Lemma 2.7. [24] Let J be the normalized duality map of a Banach space E. Suppose
E is smooth. Then for all x, y ∈ E, there holds the inequality,

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, J(x+ y)⟩.

3. Convergence of iterative methods

Theorem 3.1. Let X be a q-uniformly smooth Banach space.
Let T be a denumerable family of mappings defined on X with common fixed points
set F ̸= ∅.
Let D : X → X be a β−strongly accretive and L−lipschitzian operator.

Let 0 < ρ < min

{(
qβ

CqLq

) 1
q−1

, 1

}
.

Let us consider an UAR-procedure for T with given Λ = (λn)n∈N.

Let us choose (µn)n∈N ⊂ (0, µ) with µ <
2β

L2
such that:

(A1) limn→∞ µn = 0.

Let (αn)n∈N ⊂ [0, α] ⊂ [0, 1). Then the sequence generated the iteration

xn = αnxn + (1− αn)(I − µnρD)Wnxn,

strongly converges to x∗ ∈ F that is the unique solution of the variational inequality

(3.1) ⟨Dx∗, j(y − x∗)⟩ ≥ 0, ∀y ∈ F.

Proof. First of all, let us denote with Bn := (I − µnρD). By Lemma 2.2:

∥Bnx−Bny∥ ≤ (1− µnτ)∥x− y∥.
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In order to apply Lemmas 2.4, 2.5, 2.6 let us consider the following set:

K0 := {x∗},
W̃η =

∪
i∈I{Wi(y) : y ∈ Kη}

Kη+1 := co(Kη ∪ W̃η ∪ {y − µηDy : x ∈ Kη})
K =

∪
η∈NKη,

for which K is closed, convex and separable.
For any fixed n ∈ N the mapping:

Sx := αnx+ (1− αn)BnWnx

is such that:

∥Sx− Sy∥ ≤ αn∥x− y∥+ (1− αn)(1− µnτ)∥Wnx−Wny∥
≤ αn∥x− y∥+ (1− αn)(1− µnτ)∥x− y∥ ≤ (1− (1− αn)µnτ)∥x− y∥

i.e. S is a strict contraction from K to K then it has a unique fixed point. Hence
our method is well defined.

Step 1. (xn)n ∈ N is bounded.
Let p ∈ F . Then, by Lemma 2.7,

∥xn − p∥2 ≤ αn∥xn − p∥2 + (1− αn)∥BnWnxn −Bnp∥2

+2(1− αn)⟨Bnp− p, j(xn − p)⟩
≤ αn∥xn − p∥2 + (1− αn)(1− µnτ)

2∥xn − p∥2(3.2)

−2(1− αn)µnρ⟨Dp, j(xn − p)⟩
≤ ∥xn − p∥2 + (1− αn)(µ

2
nτ

2 − 2µnτ)∥xn − p∥2

+2(1− αn)µnρ∥Dp∥∥xn − p∥

from which:

(1− αn)(2− µnτ)µnτ∥xn − p∥2 ≤ +2(1− αn)µnρ∥Dp∥∥xn − p∥

and so, definitively:

∥xn − p∥ ≤ 2ρ∥Dp∥
(2− µnτ)τ

≤ 2ρ∥Dp∥
τ

and the claim is proved.
Step 2. We claim that:

Γ := lim sup
n→∞

⟨−Dx∗, j(xn − x∗)⟩ ≤ 0

Let (xnk
)k∈N such that:

(a) lim sup
n→∞

⟨−Dx∗, j(xn − x∗)⟩ = lim
k→∞

⟨−Dx∗, j(xnk
− x∗)⟩

(b) there exists lim
k→∞

∥xnk
− z∥, for all z ∈ K.

Let us define h : K → R as

h(z) = lim
k→∞

∥xnk
− z∥.

The function h is well defined by (b), continuous and convex. Moreover since
h(z) → ∞ as z → ∞, by Lemma 2.6, h reaches its minimum on K.
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Let M := {y ∈ K : h(y) = minz∈K h(y)}. M is closed, convex (by the property
of h) and bounded. We claim that V : M → M where V is defined by (H2) in
UAR-procedure. Let y0 ∈ M

∥xnk
− V y0∥ = ∥αnk

(xnk
− V y0) + (1− αnk

)(Bnk
Wnk

xnk
− V y0)∥

≤ αnk
∥xnk

− V y0∥+ (1− αnk
)∥Bnk

Wnk
xnk

−Bnk
Wnk

y0∥
+(1− αnk

)∥Bnk
Wnk

y0 −Bnk
V y0∥+ (1− αnk

)∥Bnk
V y0 − V y0∥

≤ αnk
∥xnk

− V y0∥+ (1− αnk
)∥Wnk

xnk
−Wnk

y0∥
+∥Wnk

y0 − V y0∥+ (1− αnk
)µnk

∥DV y0∥
≤ αnk

∥xnk
− V y0∥+ (1− αnk

)∥xnk
− y0∥

+∥Wnk
y0 − V y0∥+ (1− αnk

)µnk
∥DV y0∥

Passing to the limit on k, by (A1), we obtain that h(V y0) ≤ h(y0) hence V y0 ∈ M
and V : M → M .

Since V is nonexpansive on M then there exists p̃ ∈ F ∩M . From Lemma 2.5,

lim sup
k

⟨x− p̃, j(xnk
− p̃)⟩ ≤ 0

Since (p̃− µnk
Dp̃) ∈ K, for all index nk, then:

(3.3) lim sup
k

⟨−Dp̃, j(xnk
− p̃)⟩ ≤ 0

By (3.3) in Step 1. it results that:

∥xnk
− p̃∥2 ≤ 2ρ

(2− µnk
τ)τ

⟨−Dp̃, j(xnk
− p̃)⟩

i.e. xnk
→ p̃. Moreover, since

∥xn −Wnxn∥ ≤ αn∥xn −Wnxn∥+ (1− αn)µn∥DWnxn∥
then Wnk

xnk
→ p̃.

Let us observe at first that:

xn = αnxn + (1− αn)(I − µnρD)Wnxn ⇒ DWnxn =
1

ρµn
(Wnxn − xn)

Then, for any w ∈ F ,

⟨DWnxn, j(xn − w)⟩ =
1

ρµn
⟨Wnxn − xn, j(xn − w)⟩

=
1

ρµn
⟨Wnxn − xn −Wnw + w, j(xn − w)⟩

=
1

ρµn
⟨(Wn − I)xn − (Wn − I)w, j(xn − w)⟩ ≤ 0

since, for every n, Wn is an accretive operator.
Moreover, for every w ∈ F ,

⟨Dp̃, j(p̃− w)⟩ = ⟨Dp̃, j(p̃− w)⟩ − ⟨Dp̃, j(xnk
− w)⟩

+⟨Dp̃, j(xnk
− w)⟩ − ⟨DWnk

xnk
, j(xnk

− w)⟩
+⟨DWnk

xnk
, j(xnk

− w)⟩
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≤ ⟨Dp̃, j(p̃− w)− j(xnk
− w)⟩

+⟨Dp̃−DWnk
xnk

, j(xnk
− w)⟩

≤ ⟨Dp̃, j(p̃− w)− j(xnk
− w)⟩

+L∥p̃−Wnk
xnk

∥∥xnk
− w∥

Passing to the limit on k → ∞, since j is norm to norm uniformly continuous,

⟨Dp̃, j(p̃− w)⟩ ≤ 0, ∀w ∈ F

This implies that p̃ = x∗ and then Γ ≤ 0 by (3.3).
Step. 3. xn → x∗. From (3.3) it results that:

∥xn − x∗∥2 ≤ 2ρ

(2− µnτ)τ
⟨−Dx∗, j(xn − x∗)⟩.

so by Step 2. and (A1) one obtains xn → x∗. �
Theorem 3.2. Let X be a q-uniformly smooth Banach space and x0 ∈ X.
Let T be a family of mappings defined on X with common fixed points set F ̸= ∅.
Let D : X → X be a β−strongly accretive and L−lipschitzian operator.
Let w0 ∈ F be a fixed element of F and let us indicate by B(w0, r) the ball centered

in w0 and radius r := max

{
∥x0 − w0∥,

ρ∥Dw0∥
τ

}
.

Let 0 < ρ < min

{(
qβ

CqLq

) 1
q−1

, 1

}
.

Let us consider an UAR-procedure for T with given Λ = (λn)n∈N.

Let us choose (µn)n∈N ⊂ (0, µ) with µ <
2β

L2
such that:

(A1) for any z ∈ B(w0, r), lim
n→∞

∥Wnz −Wn−1z∥
µn

= 0.

(A2) lim
n→∞

µn = 0,
∑
n∈N

µn = ∞ and lim
n→∞

|µn−1 − µn|
µn

= 0.

Let us choose (αn)n∈N ⊂ [0, 1) such that:

(A3) lim
n→∞

|αn−1 − αn|
µn

= 0 and lim
n→∞

α2
n

µn
= 0.

Then the sequence generated by x0 ∈ X and by the iterations

xn+1 = αnxn + (1− αn)(I − µnρD)Wnxn

strongly converges to x∗ ∈ F , that is the unique solution of the variational inequality

(3.4) ⟨Dx∗, j(y − x∗)⟩ ≥ 0, ∀y ∈ F

Proof. As in previous result we will denote by Bn = (I − µnρD).
First of all we prove that (xn)n∈N ⊂ B(w0, r). Since w0 ∈ F then

∥xn+1 − w0∥ ≤ αn∥xn − w0∥+ (1− αn)∥BnWnxn − w0∥
≤ αn∥xn − w0∥+ (1− αn)∥BnWnxn − w0∥
≤ αn∥xn − w0∥+ (1− αn)∥BnWnxn −Bnw0∥

+(1− αn)∥Bnw0 − w0∥
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≤ αn∥xn − w0∥+ (1− αn)(1− µnτ)∥xn − w0∥
+(1− αn)∥(I − µnρD)w0 − w0∥

= αn∥xn − w0∥+ (1− αn)(1− µnτ)∥xn − w0∥
+(1− αn)ρµn∥Dw0∥

Thus, by induction, it is not difficult to observe that:

∥xn − w0∥ ≤ max

{
∥x0 − w0∥,

ρ∥Dw0∥
τ

}
= r

We prove that (xn)n∈N is asymptotically regular, i.e.

∥xn − xn+1∥ → 0,

as n → ∞. Computing:

∥xn+1 − xn∥ ≤ αn∥xn − xn−1∥+ |αn − αn−1|∥xn−1 −Bn−1Wn−1xn−1∥
+(1− αn)∥BnWnxn −Bn−1Wn−1xn−1∥

≤ αn∥xn − xn−1∥+ |αn − αn−1|∥xn−1 −Bn−1Wn−1xn−1∥
+(1− αn)∥BnWnxn −BnWn−1xn−1∥
+(1− αn)∥BnWn−1xn−1 −Bn−1Wn−1xn−1∥

≤ αn∥xn − xn−1∥+ |αn − αn−1|∥xn−1 −Bn−1Wn−1xn−1∥
+(1− αn)(1− µnτ)∥Wnxn −Wn−1xn−1∥
+(1− αn)∥BnWn−1xn−1 −Bn−1Wn−1xn−1∥

≤ αn∥xn − xn−1∥+ |αn − αn−1|∥xn−1 −Bn−1Wn−1xn−1∥
+(1− αn)(1− µnτ)∥Wnxn −Wnxn−1∥
+(1− αn)(1− µnτ)∥Wnxn−1 −Wn−1xn−1∥
+(1− αn)∥µn − µn−1|∥DWn−1xn−1∥

≤ αn∥xn − xn−1∥+ |αn − αn−1|∥xn−1 −Bn−1Wn−1xn−1∥
+(1− αn)(1− µnτ)∥xn − xn−1∥
+(1− αn)(1− µnτ)∥Wnxn−1 −Wn−1xn−1∥
+|µn − µn−1|∥DWn−1xn−1∥

The boundedness of (xn)n∈N guarantees that there exists a constant M such that:

∥xn+1 − xn∥ ≤ [αn + (1− αn)(1− µnτ)]∥xn − xn−1∥+ ∥Wnxn−1 −Wn−1xn−1∥
+M [|αn − αn−1|+ |µn − µn−1|]

= [1 + (1− αn)µnτ)]∥xn − xn−1∥+ ∥Wnxn−1 −Wn−1xn−1∥
+M [|αn − αn−1|+ |µn − µn−1|]

By (A1), (A2) and (A3) and Lemma 2.3 the claim follows.
If x∗ ∈ F is the unique solution of (3.4) it results:

∥xn+1 − x∗∥2 = ∥αnxn + (1− αn)BnWnxn − x∗ ± (1− αn)Bnx
∗∥2

= ∥αn(xn − x∗) + (1− αn)(BnWnxn −Bnx
∗)− (1− αn)µnρDx∗∥2

≤ ∥αn(xn − x∗) + (1− αn)(BnWnxn −Bnx
∗)∥2
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−2(1− αn)µnρ⟨Dx∗, j(xn+1 − x∗)⟩
≤ αn∥xn − x∗∥2 + (1− αn)(1− µnτ)

2∥xn − x∗∥2

+2(1− αn)µnρ⟨−Dx∗, j(xn+1 − x∗)⟩
= [1 + (1− αn)(µ

2
nτ

2 − 2µnτ)]∥xn − x∗∥2

+2(1− αn)µnρ⟨−Dx∗, j(xn+1 − x∗)⟩
= [1− (1− αn)µnτ(2− µnτ)]∥xn − x∗∥2

+2(1− αn)µnρ⟨−Dx∗, j(xn+1 − x∗)⟩
so, proving that:

lim sup
n→∞

⟨−Dx∗, j(xn+1 − x∗)⟩ ≤ 0

by Lemma 2.3 we will obtain that xn → x∗.
For this we use the convergence of the implicit method.
Let us consider a subsequence of (xn)n∈N such that:

Γ := lim sup
n→∞

⟨−Dx∗, xn+1 − x∗⟩ = lim
k→∞

⟨−Dx∗, xnk
− x∗⟩

Let us consider the implicit method defined by:

ym = αmym + (1− αm)BmV ym

where V is defined in the AdC-procedure.
Let us observe that ym → x∗ by Theorem 3.1 and moreover:

∥ym − xnk
∥2 = ∥αm(ym − xnk

) + (1− αm)(V ym − xnk
)− (1− αm)µmρDV ym∥2

≤ (1− αm)2∥V ym − xnk
∥2

+2⟨αm(ym − xnk
)− (1− αm)µmρDV ym, j(ym − xnk

)⟩
≤ (1− αm)2∥V ym − xnk

∥2 + 2αm∥ym − xnk
∥2

−2(1− αm)µmρ⟨DV ym, j(ym − xnk
)⟩

Note that:

∥V ym − xnk
∥ ≤ ∥V ym −Wnk

ym∥+ ∥Wnk
ym −Wnk

xnk
∥+ ∥Wnk

xnk
− xnk

∥
≤ ∥V ym −Wnk

ym∥+ ∥ym − xnk
∥+ ∥Wnk

xnk
− xnk+1∥

+∥xnk+1 − xnk
∥

from which:

lim sup
k→∞

∥V ym − xnk
∥ ≤ lim sup

k→∞
∥ym − xnk

∥

by the asymptotical regularity of (xn)n∈N.
Thus:

lim sup
k→∞

∥ym − xnk
∥2 ≤ [(1− αm)2 + 2αm] lim sup

k
∥ym − xnk

∥

−2(1− αm)µmρ lim sup
k→∞

⟨DV ym, j(ym − xnk
)⟩

that implies:

lim sup
k→∞

⟨DV ym, j(ym − xnk
)⟩ ≤ α2

m

2(1− αm)µmρ
lim sup
k→∞

∥ym − xnk
∥
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Now let us consider:

⟨Dx∗, j(x∗ − xnk
)⟩ = ⟨Dx∗, j(x∗ − xnk

)⟩ − ⟨Dx∗, j(ym − xnk
)⟩

⟨Dx∗, j(ym − xnk
)⟩ − ⟨DV ym, j(ym − xnk

)⟩
+⟨DV ym, j(ym − xnk

)⟩
Since j is norm to norm uniformly continuous and ym → x∗ there exists δm → 0
such that

|⟨Dx∗, j(x∗ − xnk
)− j(ym − xnk

)⟩| < δm

Since D is a Lipschitzian operator:

⟨Dx∗ −DV ym, j(ym − xnk
)⟩ ≤ L∥x∗ − ym∥∥xnk

− ym∥
Thus:

lim sup
k→∞

⟨Dx∗, j(x∗ − xnk
)⟩ ≤ δm + L∥x∗ − ym∥ lim sup

k→∞
∥xnk

− ym∥

+
α2
m

2(1− αm)µmρ
lim sup
k→∞

∥ym − xnk
∥

Passing m → ∞, since
α2
m

µm
→ 0,

lim sup
k→∞

⟨Dx∗, j(x∗ − xnk
)⟩ ≤ 0

i.e. our last claim. �
Corollary 3.3. Let X be a q-uniformly smooth Banach space.
Let T be a one- parameter continuous semigroup of nonexpansive mappings defined
on X with common fixed points set F ̸= ∅.
Let D : X → X be a β−strongly accretive and L−lipschitzian operator.

Let 0 < ρ < min

{(
qβ

CqLq

) 1
q−1

, 1

}
.

Let (λn)n∈N be a sequence in (0, 1) such that lim
n→∞

λn = λ ∈ (0, 1).

Let (µn)n∈N ⊂ (0, µ) with µ <
2β

L2
such that:

(A1) lim
n→∞

µn = 0,
∑
n∈N

µn = ∞ and lim
n→∞

|µn−1 − µn|
µn

= 0.

(A2) lim
n→∞

|λn − λn−1|
µn

= 0.

Let (αn)n∈N ⊂ [0, 1) such that:

(A3) lim
n→∞

|αn−1 − αn|
µn

= 0 and lim
n→∞

α2
n

µn
= 0.

Then the sequence generated by x0 ∈ X and by the iteration

xn+1 = αnxn + (1− αn)(I − µnρD)(λnT (1) + (1− λn)T (
√
2))xn

strongly converges to x∗ ∈ F that is the unique solution of the variational inequality

(3.5) ⟨Dx∗, j(y − x∗)⟩ ≥ 0, ∀y ∈ F
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Proof. It is enough to observe that Wnx := λnT (1)x+ (1− λn)T (
√
2)x is a nonex-

pansive mappings such that Fix(Wn) = Fix(T (1)) ∩ Fix(T (
√
2)) = F (see Suzuki

[21]). �

Corollary 3.4. Let X be a q-uniformly smooth Banach space.
Let T be a nonexpansive mappings defined on X with fixed points set Fix(T ) ̸= ∅.
Let D : X → X be a β−strongly accretive and L−lipschitzian operator.

Let 0 < ρ < min

{(
qβ

CqLq

) 1
q−1

, 1

}
.

Let (µn)n∈N ⊂ (0, µ) with µ <
2β

L2
such that:

(A1) limn→∞ µn = 0,
∑
n∈N

µn = ∞ and lim
n→∞

|µn−1 − µn|
µn

= 0.

Let (αn)n∈N ⊂ [0, 1) such that:

(A2) lim
n→∞

|αn−1 − αn|
µn

= 0 and lim
n→∞

α2
n

µn
= 0.

Then the sequence generated by x0 ∈ X and by the iteration

xn+1 = αnxn + (1− αn)(I − µnρD)Txn

strongly converges to x∗ ∈ Fix(T ) that is the unique solution of the variational
inequality

(3.6) ⟨Dx∗, j(y − x∗)⟩ ≥ 0, ∀y ∈ Fix(T )
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