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THE UNIFORM ASYMPTOTICAL REGULARITY OF FAMILIES
OF MAPPINGS AND SOLUTIONS OF VARIATIONAL
INEQUALITY PROBLEMS

GIUSEPPE MARINO, LUIGI MUGLIA*, AND YONGHONG YAO

ABSTRACT. In this paper our aim is to introduce a new class of procedure, the
Uniformly Asymptotically Regular-class of procedures (UAR-precedures), show-
ing some examples of procedures as for finite family of mappings, as for infinite
family of mappings.

Then by a UAR-procedure we prove the convergence of an implicit iterative
method and of an explicit iterative method to the unique solution of a variational
inequality problem on the set of common fixed points of a family of mappings,
in the setting of uniformly smooth Banach spaces.

1. INTRODUCTION

In 1977, P.L. Lions [15], extends the well-known Halpern’s method in [9] to a
family of firmly nonexpansive mappings. In subsequent twenty-five years, the study
on the approximation of common fixed points of mappings has known, a significant
increase. In particular, many recent papers, have the main aim to approximate
common fixed points that are also solutions of variational inequality problems (see,
as an example [7]).

Mainly there are two kind of approach to this approximation problem.

The first is to implement at a map at a time into the iterative method and the to
show that this method (weakly or strongly) converges to a common fixed point of
the starting family. Obviously, if the family of mappings is finite it requires to use
the maps in a cyclically way. This approach can be attributed to Lions in [15]. For
other references one can read [4, 13, 16, 26].

The second approach introduced (probably) by Kuhfittig in 1981 [14], introduces
a procedure such that, starting by the family of mappings generates an auxiliary
functions with some good properties.

Kuhfittig, given a finite family of nonexpansive mappings, uses the convex com-
binations of each map with the identity map (with fixed opportune coefficient) to
obtain an auxiliary nonexpansive mapping such that its fixed points coincide with
the common fixed points of the family. This idea has been generalized from At-
sushiba and Takahashi in 1999 [1] using variable coefficients. For other references
and procedures on the finite case one can read [5, 6, 11, 12, 17].

Also the case of an infinite family of mappings has been extensively studied. One
of the most cited paper is due to Shimoji and Takahashi [20] in 2001, when, using
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the convex combinations of the map and the identity map, they construct a sequence
of mappings that play a similar role to the auxiliary mappings.

A careful reading of these papers carry out the idea that many of the existing
procedures has some common and good properties such that the convergence of the
method does not depend by the particular construction but depend only by this
properties.

In this paper our aim is to show that these common and good properties are
satisfied by the Uniformly Asymptotically Regular-class of precedures.

Then by a UAR-procedure we prove the convergence of an implicit iterative
method and of an explicit iterative method to the unique solution of a variational
inequality problem on the set of common fixed points of a family of mappings .

We start with some relevant examples. The common setting for these procedures
is a strictly conver Banach space X. We recall the following property

Lemma 1.1. Let X be a strictly convex Banach space and x,y € X. If
[zl = llyll = [[t + (1 = )yl],
for some t € (0,1), then x = y.

Procedure 1.2 (Shimoji-Takahashi [20], 2001). Let X be a strictly convexr Banach
space and C' C X closed and convez.
Let (T nen be a sequence of nonexpansive mappings from C to C with ﬂ Fix(T,) #

neN
0. Let A := (Ap)nen C (0,b] C (0,1). Let consider the following construction:
( Unnt1 = I,
Un,n = )\nTnUn,nJrl + (1 - An)la

(1.1) Unie = MeTeUp g1 + (1= M),

Un2 = XToUp3+ (1 — Xo)1,
W, = Un,l = )\1T1Un72 + (1 — )\1)[

Note that:
e Lemma 3.1 in [20] assures that every mapping in the sequence (Wy)neN 1S
NONETPANSIVE.
o Lemma 3.2 in [20] claims that:
n+1
W1z = Waz|| < 2[le —w| [T A
i=1
holds, for every w € ﬂ Fix(T,). If B C C is any bounded subset of C, the
neN
restriction A\, < b < 1 gives the uniform asymptotical reqularity of W, on

B, ie.:

W12 — Wyhz| — 0 as n — oo, uniformly in x € B.
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e Again Lemma 3.2 assures that Wx := li_}rn Un,1x is well defined and Lemma
n D
3.8 claims that Fix(W) = ﬂ Fix(T),).
neN

Procedure 1.3 (Kangtunyakarn [10], 2011). Let X be a strictly convex Banach
space and C' C X.

Let (Ty,)nen be a sequence of nonexpansive mappings from C to C with common
fized points.

Let A := (Ap)nen C (0,1) with Y, Ap < 00.

Let consider the following procedure:
Unpo =1,
Uni:=MT1Uno+ (1 —X1)Unp,

(1.2) Unk = MNeTkUpg—1 + (1 = Xg)Up -1,

Un,nfl = )\nflTnflUn,n72 + (1 - )\nfl)Un,ana
W, = n,n = )\nTnUn,nfl + (1 - )\n)Un,nfl-

Lemma 2.11 in [10] assures that there exists, for all x € C,

Wz := lim W,z

n—oo
and Lemma 2.12 proves that Fiz(W) = ﬂ Fix(T,).

Moreover in Lemma 2.11 the inequality
W1z — Wizl < Mg1 [T 1 Waz — Wiz

is also proved. If w € m Fix(T,), Whw = w, for all n, thus
neN

Wiz = Waa|| < 21 [Wha — w]| < 22Xz — w]|.

The uniform asymptotical reqularity of (Wy)nen easily follows if x € B where B C C
is a bounded set.

Remark 1.4. We recall that a mapping 7' is said k-strictly pseudocontractive
mappings in the Browder-Petryshyn sense if, for all ,y € C and j(z—vy) € J(z—vy),
the following holds:

(Tz — Ty, j(z —y)) < llz = yl* — kllz —y — (Tz — Ty)|I>

The previous procedure can be suitably adapted for a family of k;-strictly pseu-
docontractive mappings in the setting of g-uniformly smooth Banach spaces (for
details one can refer to [3, 8]).

It is well-known, in fact, that an opportune convex combination of a k-strict
pseudocontraction and the identity map, is a nonexpansive mapping (see [18]).
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Procedure 1.5. Let us introduce the following procedure inspired to Bruck’s idea
in [2]. Let (Ty)nen an infinite family of nonexpansive mappings in a strictly convex
Banach spaces X. Let A := (Ap)nen C (0,1) and let us define:

Un,n—l—l =1,
Un,n = )\nTn + (1 - )\n)Un,n—l—la
Un,nfl = )\nflTnfl + (1 - )\n)Un,na

Unje = MeTi + (1 — X)) Up 1

(1.3)

Una = XTo+ (1 — X2)Up 3,
Wn =Un1= )\ITI + (1 - )\I)Un,Q

Lemma 1.6. Let C' be a nonempty closed convex subset of a strictly convex Banach
space. Let (T;)ien be an infinite family of nonexpansive mappings of C into itself
and let (\;);en be a real sequence such that 0 < a < \; < 1 for every i € N. Then,
(a) the sequence of nonexpansive mappings (W, )nen is uniformly asymptotically
reqular on the bounded subsets B C C.
(b) for every x € C and k € N, there exists

(1.4) lim U, jx.
n—oo
Moreover, if ﬂ Fix(T;) # 0, then Fix(W) = ﬂ Fix(T;) where
€N €N
Wz := lim W,x.
n—oo

Proof. First of all we prove that, for every k& € N, the limit in (1.4) exists.
Let x € C' and n > k we observe that
[Un+162 = Uzl = [[(1 = A)Uns1p112 — (1 = M) Up 12|
= (1= )1 = M) Ung1 k27 — Up o]

n

= H(l - )‘i)HUnJrl,?%Hl‘ - Un,n+11:||
i=k
n

=[O =) Toirz + (1= Aogr)a — 2
i=k

< JI1Q=20)Twrz — 2]
i=k

Thus, if w € ﬂsz(Tz) then
i
n
Ui = Une]| < 2l — | [T = A)
i=k
Since A; > a then ||Upy1 2 — Up || < 2[|lw — 2||(1 — a)" FFL.
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If B C C is bounded, z € B and k = 1 we obtain that
W12 — Wypz| — 0, as n — oo,

i.e. (Wp)nen is uniformly asymptotically regular on the bounded subset B in C.
Moreover, if m > n > k, we have

m—1 m—1
1U Ungll < U Ungel| < 32| (1 —a) =+
j=n j=n
2]z —wl(1 = a)"
= u .

Hence the sequence (U, y2)nen is a Cauchy sequence and its limit there exists. In
particular for £k = 1 we can define

(1.5) Wz := lim U, 2 = lim Wy
n—oo n—oo
Next step is to prove that Fix(W) = m Fix(T,)
neN
If we ﬂFix(Tn) then U, yw = w, for all fixed n. This implies, by (1.3), that

n
w=Upp_1w.
Flowing down one obtains that Uy, jw = w. So w € Fix(W) passing to the limit for
n — oo.
Viceversa, we prove that if w € Fiz(W) then w € (), Fiz(T},).

Let w € Fiz(W) and y € ﬂFm(Tn)

We note that

Whw =Wyl < Miflw =yl + (1 = M)[[Un 2w — Un 2y
< (A (= 2A) M) lw =yl + (1 = A) (1 = A2)[[Un 3w — Unzyll
< ()\1+(1—)\1)\2+ +H (1—X) —1)”“"9”
n—1
+ [T =20 1Unnw = Unny|
i=1
n—2
< ()\1 + @ =A)A 4.+ ] - Ai))\n—l> [Jw =yl

i=1
+H (1= 2)llw =yl = [lw —yl|

Denoting by Uy pz := lim U, jx, one observes that
n—oo

lw =yl = [Ww—-Wyll = [A(Tiw - Try) + (1 = A1) (Voo 2w — Uso 29) |
Alfw =yl + (1 = A)[[Uso 2w — Uso 2yl < [lw =yl

IN
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i.e.
(1= A)[[w =z < (1 = M) [[Usopw — Uso2yl| < (1 = A)[Jw —y].
Hence [|Uso 2w — Uso 2y|| = ||lw — y]|-
In a similar way,

[w—yll = [Ww-Wy|=[MTiw—"T1y) + (1 = M) (Usc,2w — Uss 2y) ||
< MTvw =Tyl + (1 = A)|lw =yl = |Tiw — Thy| = [Jw —yl|.
By Lemma 1.1, U 2w — U 2y = Thw — T1y, i.e.
Uscow —y = Usppw — Uso 2y = Thw — Ty = Tiw — v,
so we can conclude that

w = lim Un,lw =MTiw+ (1 — )\1)U0072 =Tiw.
n—o00

This means w € Fiz(T1).
Repeating this idea for a second step, we have

[w—=yll = Uspw — Uyl = [[A2(Tow — Tay) + (1 = X2)(Uoo 3w — Uso 39) ||
< Xaflw =yl + (1= A2)|Uso 3w — Uso 39,

ie. Usosw — Usosyl|l = [Jw — y|| and || Tow — Ty|| = |jw — y||. This implies that,
by the strict convexity of the space,

Uoo,3w —Yy= Uoo,?)w - Uoo,3y = Tow —Toy = Thw — y.
Then
w = lim Umgw = AThw + (1 — )\Q)Uoo,g = Tg'w(: Uoo7gw),
Nn—00

ie. we Fix(Ts).
Iterating again one proves that w € N, Fix(T,). O

Next procedure uses a finite number of nonlinear mappings. This case is studied
in many recent papers as those cited in [6].

Procedure 1.7. Let us consider the following:

Definition 1.8. Let X be a Banach space, C C X closed and convex, ¥ := {Tl}f\il
be a finite family of mappings from C' into itself.

Let A={1,...,L} C N be a finite index set (with L not necessarily equal to V)
and let © := (1;)ica, © := (1)iea € (0,1)F.

A procedure lies in the LDC-class of procedures (Lipschitzian Dependence of the
Coefficients class of procedures) if, starting from the family T and from admissible
coefficients ©, it constructs a mapping Vz o satisfying the following

(h1l) Vz e is nonexpansive and Fiz(Vzg) = F := NicaFiz(T;) whenever F is

nonempty;

(h2) for every B C C bounded there exists M = M(B,¥) € R such that

[Vzor — Vroz| < ZMW' — il Yz € B.
[ISTAN
We will call Vg g an auxiliary mapping generated by the LDC-procedure.
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Let us consider:
A = (On)nen = (ni,n)nEN,ieA
with the constraint
Nim — Mi € (0,1), for any fized i € A.

Condition (h1) assures that, for everyn, Wy, = Vz g, is nonexpansive. Condition
(h2) assures that:

”VT,9n+1x — ng@an < MZ |’l7¢,n+1 — 771-’”|, Vr € B.
1EA
so, letting n — oo, we have the uniform asymptotical reqularity of (Vz e, )nen on

B. Moreover, if © = (1n;)ien, Wa := Vz g is also generated by an LCD-procedure
and it preserves the common fized points.

Let us consider a (not necessarily finite) family of mappings T := {7; : C — C :
i€ I} and let A := (\;)nen be an opportune sequence of real numbers.

Definition 1.9. A procedure is said an uniformly asymptotically regular procedure
(in the sequel UAR-procedure) if starting by a family ¥ and by A

(H1) it defines a sequence of nonexpansive mappings W,, : C — C uniformly
asymptotically regular on bounded subsets of B C C.

(H2) it is possible to define a nonexpansive mapping V := Vg : C — C, with
Vi = nh_)n;o Wha such that if (o Fiz(T) # 0 then Fixz(V) = (;c; Fix(T).

2. PRELIMINARIES

Let X be a g—uniformly smooth Banach space i.e. there exists a constant Cy; > 0
such that
2+ yll* < [lz[|? + q(y, jq()) + Cqllyll,
for all ,y € X (see Corollary 1 in [23]).

Definition 2.1. An operator D : X — X is said to be f—strongly accretive if
for all x,y € X, where j : X — X* is the duality mapping on X.
Next Lemma can be easily proved.

Lemma 2.2. Let D : X — X be a f—strongly accretive and L—Ilipschitzian opera-

qB
C,L4

1
1
tor. Lett € (0,1) and0<p<min{< )q ,1}. Then (I —tpD): X — X is

qBp — Cq(ﬁL)q_
q

To obtain our results we will use the following (well-known) Lemma proved in
[25]:

a contraction with coefficient (1 — t1) where T =

Lemma 2.3. Assume (a,)n is a sequence of nonnegative numbers for which,
an+1 < (1 —yn)an +6n, n >0,

where (Yn)n s a sequence in (0,1) and §,, is a sequence in R such that,
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(1) 225217 = 095
(2) limsup,,_, f‘y—" <0 or Y 22 |6,] < o0

n

Then lim,, oo an, = 0.

Lemma 2.4. [19] Let {yn} be a bounded sequence contained in a separable subset
K of a Banach space E. Then there is a subsequence (Ym, )k Of (Ym)m such that
limy, ||ym, — 2| ezists for all z € K.

Lemma 2.5. [19] Let C be a closed conver subset of a Banach space E with a
uniformly Gateaux differentiable norm, and let (ym)m be a sequence in C such that
h(z) = limy, ||ym — 2|| exists for all z € C. If h attains its minimum over C' at u,
then

limsup(z — u, j(ym —u)) <0

m

for all z € C.

Theorem 2.6. [22] Let E be a reflexive Banach space and let C' be a closed convex
subset of E. Let h be a proper convexr lower semicontinuous function of C into
(—o00, 00] and suppose that h(x,) — oo as ||z, || = co. Then, there exists xog € D(h)
such that

h(zg) = inf{h(z) : xz € C}.

Lemma 2.7. [24] Let J be the normalized duality map of a Banach space E. Suppose
E is smooth. Then for all x,y € E, there holds the inequality,

lz +ylI? < llz ]| + 2{y, I (x + y)).

3. CONVERGENCE OF ITERATIVE METHODS

Theorem 3.1. Let X be a g-uniformly smooth Banach space.

Let ¥ be a denumerable family of mappings defined on X with common fized points
set F' ).
Let D : X — X be a B—strongly accretive and L—lipschitzian operator.

1
=1
Let 0 < p < min (C’ii‘l>q , 1

Let us consider an UAR-procedure for ¥ with given A = (Ay)nen.

2
Let us choose (pn)nen C (0, 1) with p < L—g such that:

(A1) limy,—so0 ptr, = 0.
Let (an)nen C [0,a] C [0,1). Then the sequence generated the iteration

Ty = QnZn + (1 — apn)(I — pnpD)Wyhxy,
strongly converges to x* € F' that is the unique solution of the variational inequality
(3.1) (Dx*,j(y — z¥)) >0, Vy € F.
Proof. First of all, let us denote with B,, := (I — pu,pD). By Lemma 2.2:
1B = Byl < (1 = pn7) 2 = yll-
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In order to apply Lemmas 2.4, 2.5, 2.6 let us consider the following set:

ffo = {z"},
Wﬂ = UzEI{WZ(y)~ Y€ Kn}
Kpt1 :=co(K, UW, U{y — uyDy : x € Kp})

K= UnEN Kﬂ?

for which K is closed, convex and separable.
For any fixed n € N the mapping:

Sz = anx + (1 — an) By Whe
is such that:

1Sz =Syl < anlle —yll + (1 = an)(l = pn7) Wz = Way||
< aplle =yl + (1 —on)(d = pnr)l[z —yll < (1= (1 —an)pat)|z -yl
i.e. S is a strict contraction from K to K then it has a unique fixed point. Hence
our method is well defined.
Step 1. (xy), € N is bounded.
Let p € F. Then, by Lemma 2.7,
zn _pH2 < aplla, _pH2 + (1 — o) | Ba Wiy — Bnp||2
+2(1 — an)(Bnp — p, j(zn — p))
(3:2) < anllzn = ol + (1 = an)(1 = p)?(lzn — pl|?
_2(1 - an)MnP<DP,j(fUn - p))
<l = plPP + (1= an)(uir? = 2pp7) |20 — p||?
+2(1 — an) pnp|| Dp|[|2n — pl|

from which:

(1= an)(2 = )it l2n — pl* < +2(1 = o) pnp || Dpll|| — pl|

and so, definitively:

2p|| Dl _ 2p|Dpll

— <
||Zl§'n p” — (2_Un7_)7_ - T

and the claim is proved.
Step 2. We claim that:

I' := limsup(—Dz", j(z, — 2¥)) <0

n—oo
Let (zp, )ken such that:
(a) limsup(—Dz*, j(z, — 2*)) = lim (—Dzx™, j(xy, —x¥))
n—00 k—o0
(b) there exists lim ||z, — z||, for all z € K.
k—o0
Let us define h : K — R as
h(z) = li —z|.
()= Jim flan, =]

The function h is well defined by (b), continuous and convex. Moreover since
h(z) — oo as z — oo, by Lemma 2.6, h reaches its minimum on K.
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Let M :={y € K : h(y) = min,ex h(y)}. M is closed, convex (by the property
of h) and bounded. We claim that V : M — M where V is defined by (H2) in
U AR-procedure. Let yo € M
Hx”k - Vy()” = ||ank (xnk - VyO) + (1 - ank)(BnkWnkxnk - VyO)H

< anyllon, — Viyoll + (1 = o) || By Wiy @ny, — By, Wi, 3ol
+(1 = an) | Bn, Wi, yo — B Vol + (1 = o )1 Br, Vigo = Vo
O‘nkank - VyoH + (1 - ank)HWnkx”k - WnkyOH
[ Wayo = Vol + (1 = oy, ) i | DV o |
< ankank - Vy()H + (1 - ank)”'rnk - yOH
I Waiyo = Vyoll + (1 — any )i, [ DV yo|
Passing to the limit on &, by (A1), we obtain that h(Vyg) < h(yo) hence Vyg € M

andV: M — M.
Since V is nonexpansive on M then there exists p € FN M. From Lemma 2.5,

IN

lim;up(x — P, j(xn, —P)) <0

Since (p — pn, Dp) € K, for all index ny, then:
(3.3) limksup(—Dﬁ,j(a:nk -p) <0

By (3.3) in Step 1. it results that:
2p

m<—pﬁ7j($nk )

12, — Bl <
i.e. xp, — p. Moreover, since

|z — Whznll < anllzn — Wazn|l + (1 — ap) pn [ DWy 2y ||

then W, ,, — D.
Let us observe at first that:

1
Ty = an®y + (1 — an)(l — pppD)Wyxy = DWypax, = — (Wya, — xp)
PHn
Then, for any w € F,
1
(DWypan, j(xn —w)) = ——(Wpop — 2n, j(Tn — w))
Pln
1
= — (Whay — 2p — Whw + w, j(x, — w))
PHn
1
= m((Wn —Dxy — (W, — Dw, j(x, —w)) <0

since, for every n, W, is an accretive operator.
Moreover, for every w € F,

(Dp,j(p—w)) = (Dp,j(d—w))—(Dp,j(xn, —w))
+(Dp, j(@n, — w)) = (DWh, &, j(2p, — w))
+(DWh, Ty s § (X, — w))
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< (Dp,j(p—w) = j(@n, —w))
+<Dij - DWnkxnmj(xnk - w)>
< (Dp,j(p—w) = j(@n, —w))

+LHZ§ - Wnkxnk H Hxnk - w”
Passing to the limit on & — oo, since j is norm to norm uniformly continuous,
(Dp,j(p—w)) <0, Yw € F

This implies that p = z* and then I' < 0 by (3.3).
Step. 3. z, — z*. From (3.3) it results that:

2p

* 12 * - *

P —22 (D — ).

fon = o[ < =D — )

so by Step 2. and (A1) one obtains x,, — z*. O

Theorem 3.2. Let X be a g-uniformly smooth Banach space and xg € X.

Let T be a family of mappings defined on X with common fized points set F # ().
Let D : X — X be a B—strongly accretive and L—Ilipschitzian operator.

Let wy € F be a fized element of F' and let us indicate by B(wo,r) the ball centered

D
m wo and radius r := max ”_ro — on, p!on}
T

1
—1
Let0<p<min{<cziq>q 1

Let us consider an UAR-procedure for T with given A = (An)nen-

2
Let us choose (pin)nen C (0, ) with p < L—g such that:
|Whz — Wi_12|| _

(A1) for any z € B(wp,r), lim 0.
n—oo /’l’n
. o o . |Mn—1 - ,U/n| o
(A2) nh_)rgo iy =0, g iy, = 00 and nh_)rgo BT 0.

neN
Let us choose (an)nen C [0,1) such that:
M:O and lim 2" — 0.
hn n—00 [in

Then the sequence generated by xo € X and by the iterations

(A3) lim

n—oo

Tpt1 = QnZp + (1 — apn)(I — pnpD)Wyxy,

strongly converges to x* € F, that is the unique solution of the variational inequality
(3.4) (Dz*,j(y —z*)) >0, Yy € F
Proof. As in previous result we will denote by B,, = (I — unpD).

First of all we prove that (z,,)neny C B(wp,r). Since wy € F' then
an ||z — wol| + (1 = an) | Ba W zn — wol|
apllzn — wol| + (1 — an) | B Wnan — wol|
an ||z — woll + (1 — an) || BaWnn — Bawol
+(1 — )| Bnwo — wo|

| Zn+1 — woll

VAN VANVAN
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< apllen —woll + (1 — ) (1 — pn7)[[2n — wol|
+(1 = an)[|( = pnpD)wo — wol|
= apllzn —woll + (1 — an)(1 — pn7)|[2 — wol|
+(1 = an) ppin|| Dwo |
Thus, by induction, it is not difficult to observe that:

pl[Dwo|
’ T

ln — woll < max{uxo ~ ol

We prove that (z,,)nen is asymptotically regular, i.e.
Hl'n - mn—i—lH — 07
as n — 0o. Computing:

Hxn—‘rl - an < aonn - xn—l” + ‘an - an—1|||wn—1 - Bn—lwn—lxn—l”
+(1 - O‘n)HBanxn - anlwnflxnfl”

< anllzn — 2p-a|l + lan — an-afflzn-1 — BpoiWh—1zn—1 ||
+(1 — an)||BaWhzy — BpaWh_12,—1||
+(1 = )| BnWn-1Tn-1 — Bpo1Wn_12n-1]|

< apllzn — zpoa || + lan — an—a|lzn-1 — Bpoi Wh—12p—1||
+(1 = an)(1 = pnT) [Whnan — Wi12n 1|
+(1 — ap) | BnWn-12n—1 — B 1 Wh—12n—1||

< anllen — 2l 4 lon — anall|zn—1 — BuoaWh1zn 1|
+(1 — an)(1 — pn ) [|[Whan — Whpap—1]]
+(1 —an)(X = ) [Wozn—1 — Wh—12n—1|
+(1 = an) |t — pn—1 || DWp—12n—1|

< apllzn — zpoa || + Jan — an—a|lzn-1 — Bpoi Wa—12p-1||

+(1 = an)(1 = pnT)||2n — Tn-1|
+(1 = an)(1 = pn7)[[Whan—1 — Wn_12n—1|
+pn = pn—1|[| DWn—12n—1 ||
The boundedness of (z,,),en guarantees that there exists a constant M such that:
[#n41 = anl < [an + (1= )1 = pn7)]l|lzn — 2ol + [[Wazn—1 — Wno1p |
+M (o — an—1| + |pn — pin—1l]
= [+ 1 —ap)pnm)]llzn — 2pn-1| + [Wnrp-1 — Wh12n-1]|
+M [lom — 1| + [0 — pn—-1]]

By (A1), (A2) and (A3) and Lemma 2.3 the claim follows.
If z* € F is the unique solution of (3.4) it results:

|Zns1 — 22 = |lanzn + (1 — an)BaWaay — 2% + (1 — o) Bpa*||?
= lan(zn —2%) + (1 = ) (Ba Wy — Bpa™) — (1 — an)ﬂnpr*||2
< lem(zn — 2%) + (1 — o) (BuWyzn — Buz™)||?
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—2(1 — an)pnp(Dz”, j(Tns1 — 27))
nlltn — 2+ (1 = @) (1 = pin7)? 0 — 2|2
+2(1 = o) pinp(=Da”, j(@n+1 — 7))
= [ (- ) (22— 2 — o
+2(1 = o) pinp(= D", j(Tn+1 — 7))
= [1—= (1= an)pun7(2 = pT)]|| 20 — x*HQ
+2(1 — an)pnp(—=Da”, j(Tpt1 — 27))

IN

so, proving that:
limsup(—Dz*, j(zp+1 — 2¥)) <0

n—oo
by Lemma 2.3 we will obtain that z,, — x*.
For this we use the convergence of the implicit method.
Let us consider a subsequence of (x,)nen such that:

I' := limsup(—Dz*, xp41 — 2*) = lim (—Dz*, z,, — ™)
n—00 k—o0

Let us consider the implicit method defined by:
Ym = OmYm + (1 - am)BmVym

where V is defined in the AdC-procedure.
Let us observe that y,, — z* by Theorem 3.1 and moreover:

9m — xnkHQ = |lam(ym — xnk) + (1 = am)(Vym — xnk) -(1- O‘m)ﬂmpDvym”Q
< (1= am)?[Vym — 2, |I?
+2(tm (Ym — xnk) — (1 = am) oDV Yy, (Y — xnk»

< (1- am)2HVym - xnkH2 + 20| ym — xnkHz
—2(1 = ) P DV Yy, (Y — xnk»
Note that:
||Vym - m”k” < Hvym - mem” —+ ||Wnkym - WkankH + HWnkx”k - x”kH
< NVym = Wl + lym — @yl + Wy Ty, — Tnyta ||
+Hxnk+1 — Ty, ”
from which:
Hmsup ||[Vym — zn, || < lmsup [[ym — zn, ||
k—o0 k—o0
by the asymptotical regularity of (z,)nen.
Thus:
lim sup ||ym — xnkHQ < (11— am)2 + 20, | lim sup ||ym — zn, ||
k—o0 k

—2(1 — o) prnp im sup(DV iy, §(Ym — Tny,))

k—o0
that implies:

2

A

lim sup{DVym, J —x < ——limsu -
]Hoop< Ym, J(Ym — Tny.)) S p— k%opllym n
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Now let us consider:
(Dz*,j(z" —zp,)) = (Da”,j(@" — ;) — (D27, j(ym — Tny))
(Dx*, §(Ym — Tny,)) = (DVYm, 5 (Ym — Tny,))
+<Dvym7j(ym - $nk)>
Since j is norm to norm uniformly continuous and y,, — x* there exists d,, — 0
such that
(D", j(x" — 2n,) — §(Ym — Tny))| < Om
Since D is a Lipschitzian operator:

(Dx™ — DVYi, 5 (Y — mnk)> < Lz* — ymHHxnk — Ym|
Thus:

limsup(Da®, j(z" = n,)) < Om + Lll2” — yml[limsup |25, — ym||
k—o0 k—o0

2

A

+— T —— limsup ||ym — =
2(1_am)ﬂmp k—o0 H " nkH

2
. i «
Passing m — oo, since —/2 — 0,
Hm

limsup(Dz*, j(z* — z5,)) <0
k—o00

i.e. our last claim. O

Corollary 3.3. Let X be a q-uniformly smooth Banach space.

Let % be a one- parameter continuous semigroup of nonexpansive mappings defined
on X with common fized points set F # (.

Let D : X — X be a f—strongly accretive and L—lipschitzian operator.

1
1
Let0<p<min{<ciiq>q 1

Let (A\p)nen be a sequence in (0,1) such that le A=A €(0,1).

: 20
Let (pin)nen C (0, p) with p < I3 such that:

; — _ L e 2
(A1) nh_)rglo fn =0, Z,un =00 and nh_)rgo BT 0.
neN
An — An—
(A2) lim PAn = Al 0.
n—oo Mn
Let (on)nen C [0,1) such that:
_ 2
(A3) lim Jan-1 = anl _ o hng tim 92— g,

n—00 U, n—00 iy,

Then the sequence generated by xg € X and by the iteration
Tni1 = any 4+ (1 — an) (I = pppD)Y N T(1) + (1 = \)T(V2)) 2,
strongly converges to x* € F that is the unique solution of the variational inequality

(3.5) (Dx*,j(y — x¥)) >0, Vy e F
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Proof. Tt is enough to observe that W,z := A\, T(1)z + (1 — \,)T(v/2)z is a nonex-
pansive mappings such that Fiz(W,) = Fiz(T(1)) N Fiz(T(v/2)) = F (see Suzuki
[21]). O

Corollary 3.4. Let X be a g-uniformly smooth Banach space.
Let T be a nonexpansive mappings defined on X with fized points set Fix(T) # (.
Let D : X — X be a B—strongly accretive and L—lipschitzian operator.

1

=1
Let 0 < p < min < ap >q , 1

Cy Lt

. 20

Let (pn)nen C (0, ) with p < 12 such that:

(A1) limy 00 ptn, = 0, Z,un =00 and lim M =0.

n—oo Mn
neN
Let (an)nen C [0,1) such that:
_ 2
(A2) tim 1221 o g i 9B g,

Then the sequence generated by xo € X and by the iteration

Tpt1 = Ty + (1 — an)({ — pppD)Tx),

strongly converges to x* € Fix(T) that is the unique solution of the variational

inequality
(3.6) (Dz*,j(y — %)) 20,  Vye Fix(T)
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