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One of the first results in this direction was given by W. Kirk in 1965 [9], who
proved that Banach spaces with weak normal structure have the wFPP. Since then,
weak normal structure plays an important role in the theory, and many properties
of Banach spaces implying weak normal structure have been studied.

In 1980, W.L. Bynum [2] defined the weakly convergent sequence coefficient of a
Banach space X, WCS(X), and proved that a Banach space X has weak normal
structure whenever WCS(X) > 1. We shall say that X satisfies Bynum’s condition
if WCS(X) > 1.

T. Domı́nguez-Benavides [3] in 1996 associated to each Banach space X a family
of coefficients, {R(a,X)|a ≥ 0}, and proved that a Banach X has wFPP whenever
R(a,X) < 1 + a for some a ≥ 0. It turns out that R(0, X) = 1/WCS(X), and
therefore Bynum’s condition WCS(X) > 1 is equivalent to R(0, X) < 1. On the
other hand it is easy to see that R(0, X) < 1 implies R(a,X) < 1 + a for all
a > 0. We shall say that X satisfies the Domı́nguez-Benavides’ condition whenever
R(a,X) < 1 + a for some a > 0.

In 2008, S. Saejung [13] proved that F -convex Banach spaces have uniform normal
structure; but nothing was said about the coefficient WCS(X) of an F -convex
Banach space X. In this paper, we prove that if a Banach space X is F -convex then
R(0, X) < 1, in other words, Bynum’s condition is more general than F -convexity.
This fact let us deduce the result by Saejung from the result by Bynum.

In 2006 [7] it was affirmatively solved the longstanding open question if uniformly
nonsquare Banach spaces enjoyed the FPP. Indeed, it was realized that if X is
a uniformly nonsquare Banach space, then X satisfies the Domı́nguez-Benavides
condition, and consequently X has the FPP by virtue of the fixed point result
in [3]. This result revealed the largeness of the family of Banach spaces X enjoying
the Domı́nguez-Benavides’ condition.

Two years later, P.N. Dowling, B. Randrianantoanina and B. Turett [5] identi-
fied several conditions upon a Banach space implying the wFPP. In particular, they
improved in part the previous result by proving that E-convex Banach spaces also
have the FPP. E-convex Banach spaces are superreflexive, and the class of E-convex
Banach spaces properly contains the class of uniformly nonsquare Banach spaces.
Notice that in [5] nothing was said about the relationship between E-convexity
and the coefficients R(a,X). In this paper, we prove that Domı́nguez-Benavides’
condition is more general than any of the sufficient conditions for the wFPP iden-
tified in [5]. In particular, we deduce that any E-convex Banach space satisfies
Domı́nguez-Benavides’ condition. Moreover, we give an example of a Banach space
X which is not E-convex but satisfying Domı́nguez-Benavides’ condition.

The paper is organized as follows: In the following section we fix the notation
and recall the definitions and results from [3], [13] and [5]. In the third section, we
characterize Bynum’s and Domı́nguez-Benavides’ conditions via properties of the
dual space X∗. In Section 4, we use these characterizations to obtain sufficient
conditions for both Bynum’s and Domı́nguez-Benavides’ conditions, involving the
separation measure of noncompactness γ of certain bounded subsets of of the dual
space X∗. Next, we use the results in Section 4, to study the relationship between
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Bynum’s condition and F -convexity (Section 5), and to study the relationship be-
tween Domı́nguez-Benavides’ condition and other sufficient conditions for wFPP
in [5], including weak∗ uniform Kadec-Klee property and E-convexity (Section 6).

2. Notation and preliminaries

Throughout this paper we will use the standard notation in Banach space ge-
ometry. In particular, given a Banach space X, BX := {x ∈ X : ∥x∥ ≤ 1},
SX := {x ∈ X : ∥x∥ = 1}, the convergence of a sequence (xn) in X to x ∈ X in the

weak topology will be denoted as xn
w→ x, and the convergence of a sequence (fn)

in X∗ to f in the weak∗ topology as fn
w∗
→ f .

For a nonempty bounded subset C of a Banach space X, we will denote

diam(C) := sup{∥x− y∥ : x, y ∈ C} and rad(C) := inf
x∈C

sup{∥x− y∥ : y ∈ C}.

It is said that a Banach space X has normal structure [respectively weak normal
structure] if every bounded closed [resp. weakly compact] convex subset C of X
with diam(C) > 0, verifies

rad(C) < diam(C).

And a Banach space X is said to have uniform normal structure if there exists
ρ ∈ (0, 1) such that, for all bounded closed convex subsets C ofX with diam(C) > 0,
the inequality

rad(C) < ρ diam(C)

holds.
For a bounded sequence (xn) in a Banach space X we will use the notations

diama

[
(xn)

]
:= lim sup

k→∞
sup

n,m≥k
∥xn − xm∥,

and

ra
[
(xn)

]
:= inf{lim sup

n→∞
∥xn − y∥ : y ∈ co{xn : n ∈ N}}.

The weakly convergent sequence coefficient of a Banach space X was introduced
by Bynum in [2] and is defined as

WCS(X) := inf

{
diama

[
(xn)

]
ra
[
(xn)

] : (xn) is a weakly convergent sequence

which is not norm convergent

}
.

It is clear that 1 ≤ WCS(X) ≤ 2. We shall say that X satisfies Bynum’s condition
if WCS(X) > 1.

Theorem 2.1 ( [2]). Any Banach space satisfying Bynum’s condition has weak
normal structure.
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Given a Banach space X, MX will stand for the set of all sequences (xn) in BX

with xn
w→ 0 and D[(xn)] ≤ 1, where

D
[
(xn)

]
:= lim sup

n

(
lim sup

m
∥xn − xm∥

)
.

Given a Banach space X and any a ≥ 0, the coefficient R(a,X) is defined by

R(a,X) := sup
{
lim inf ∥xn + ax∥ : x ∈ BX , (xn) ∈ MX

}
.

It is clear that max{a, 1} ≤ R(a,X) ≤ 1 + a. The main result in [3] is the
following.

Theorem 2.2 (Theorem 2.2 in [3]). Let X be a Banach space.
If R(a,X) < 1 + a for some a ≥ 0, then X has the wFPP.

Theorem 2.3 (see Remarks in page 841 of [3]). For any Banach space X

R(0, X) =
1

WCS(X)
.

As a consequence of the previous result, a Banach space X satisfies Bynum’s
condition if and only if R(0, X) < 1. We shall say that a Banach space X satisfies
the Domı́nguez-Benavides’ condition whenever R(a,X) < 1 + a for some a > 0. It
is easy to see that, if R(0, X) < 1, then R(a,X) < 1 + a for all a > 0, in other
words, Bynum’s condition implies Domı́nguez-Benavides’ condition.

The notion of P -convexity was introduced by Kottman in [10]. Given η ∈ (0, 2),
a subset A of a Banach space X is said to be η-separated if the distance between any
two distinct points of A is at least η. A Banach space X is P -convex if there exist
δ > 0 and n ∈ N such that BX contains no (2−δ)-separated subset of cardinality n.
It is known that P -convex Banach spaces are superreflexive. Kottman also identified
in [10] the dual notion of P -convexity and called it F -convexity ; that is, a Banach
space X is F -convex if and only if its dual space X∗ is P -convex.

Theorem 2.4 (Theorem 3 in [13]). If a Banach space X is F -convex, then X has
uniform normal structure.

In Section 5 (Theorem 5.1), we will prove that F -convexity implies Bynum’s
condition, showing then that the above result can be derived from Theorem 2.1.

Following [5], we will say that a dual Banach space X∗ has the weak∗ uniform
Kadec-Klee property if, for every ε > 0, there exists δ > 0 such that, if (fn) is a

sequence in BX∗ with sep
[
(fn)

]
> ε and fn

w∗
→ f , then ∥f∥ ≤ 1− δ.

Theorem 2.5 (Theorem 3 in [5]). Let X be a Banach space. If BX∗ is weak∗

sequentially compact and X∗ has the weak∗ uniform Kadec-Klee property, then X
has the wFPP.

In Section 6 (Theorem 6.1), we will prove that a Banach space X satisfies
Domı́nguez-Benavides’ condition whenever BX∗ is weak∗ sequentially compact and
X∗ enjoys a property which is fullfilled if X∗ has the weak∗ uniform Kadec-Klee
property. This shows that Theorem 2.5 is a particular case of Theorem 2.2.

In [11] Naidu and Sastry defined the notion of O-convexity. Given η ∈ (0, 2), a
subset A of a Banach space X is said to be symmetrically η-separated if the distance
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between any two distinct points of A ∪ (−A) is at least η. A Banach space X is
O-convex if there exist δ > 0 and n ∈ N such that BX contains no symmetrically
(2− δ)-separated subset of cardinality n. It is known that O-convex Banach spaces
are superreflexive. Naidu and Sastry also identified in [11] the dual notion of O-
convexity and named it E-convexity ; that is, a Banach space X is E-convex if and
only if its dual space X∗ is O-convex.

Theorem 2.6 (Theorem 6 in [5]). If a Banach space X is E-convex, then X has
the FPP.

In Section 6 (Theorem 6.4), we will prove that any E-convex Banach space sat-
isfies Domı́nguez-Benavides’ condition. Consequently Theorem 2.6 is also conse-
quence of Theorem 2.2.

3. Characterization of Bynum’s and Doḿınguez-Benavides’ conditions

Let X be a Banach space. For each bounded subset A of the dual space X∗, we
define

µ(A) := sup
{
lim inf
n→∞

fn(xn) : (xn) ∈ MX and (fn) is a sequence in A
}
.

It is evident from the definitions that R(0, X) = µ(BX∗), so by virtue of Theo-
rem 2.3

µ(BX∗) =
1

WCS(X)
,

and we obtain the following characterization of Bynum’s condition.

Theorem 3.1. A Banach space X satisfies Bynum’s condition if and only if

µ(BX∗) < 1.

Our next goal is to characterize Domı́nguez-Benavides’ condition in terms of the
measure µ of the slices defined as follows: For each x in the unit ball of a Banach
space X and each δ ≥ 0, we put

S(x, δ) := {f ∈ BX∗ : f(x) ≥ 1− δ}.
The following two propositions are the key results in order to prove the charac-

terization of Domı́nguez-Benavides’ condition next given in Theorem 3.4.

Proposition 3.2. Let X be a Banach space. For any a ≥ 0 and any δ ≥ 0

R(a,X) ≤ max

{
sup
x∈BX

µ
(
S(x, δ)

)
+ a , µ(BX∗) + a(1− δ)

}
.

Proof. Let a ≥ 0 and δ ≥ 0. According to the definition of R(a,X), we have to
prove that for any sequence (xn) in MX and any x ∈ BX

lim inf
n→∞

∥xn + ax∥ ≤ max

{
µ(BX∗) + a(1− δ), sup

x∈BX

µ
(
S(x, δ)

)
+ a

}
.

So let (xn) ∈ MX and x ∈ BX . Consider, for each n ∈ N, fn ∈ SX∗ such
that fn(xn + ax) = ∥xn + ax∥. Since our aim is to find an upper bound for
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lim infn→∞ fn(xn + ax) = lim infn→∞ ∥xn + ax∥, we can assume, passing to subse-
quences if necessary, that both limn→∞ fn(xn) and limn→∞ fn(x) exist and

lim
n→∞

∥xn + ax∥ = lim
n→∞

fn(xn) + a lim
n→∞

fn(x).

Let us distinguish two cases: limn→∞ fn(x) > 1− δ and limn→∞ fn(x) ≤ 1− δ.
Case 1: If limn→∞ fn(x) > 1− δ, then we can choose n0 such that, for all n ≥ n0,
fn ∈ S(x, δ). Then, according to the definition of µ,

lim
n→∞

fn(xn) ≤ µ
(
S(x, δ)

)
,

so

lim
n→∞

∥xn + ax∥ = lim
n→∞

fn(xn) + a lim
n→∞

fn(x) ≤ µ
(
S(x, δ)

)
+ a.

Case 2: If limn→∞ fn(x) ≤ 1− δ, then

lim
n→∞

∥xn + ax∥ = lim
n→∞

fn(xn) + a lim
n→∞

fn(x) ≤ µ(BX∗) + a(1− δ).

�

Proposition 3.3. Let X be a Banach space. For any a ≥ 0 and δ ≥ 0

sup
x∈BX

µ
(
S(x, δ)

)
+ a(1− δ) ≤ R(a,X).

Proof. Let a ≥ 0 and δ ≥ 0. Let x ∈ BX , (fn) in S(x, δ) and (xn) ∈ MX . For each
n ∈ N, we have

fn(xn) + a(1− δ) ≤ fn(xn) + afn(x) = fn(xn + ax) ≤ ∥xn + ax∥.

Therefore

lim inf
n→∞

fn(xn) + a(1− δ) ≤ lim inf
n→∞

∥xn + ax∥ ≤ R(a,X).

From the arbitrariness of x, (fn) and (xn), we conclude

sup
x∈BX

µ
(
S(x, δ)

)
+ a(1− δ) ≤ R(a,X).

�

Theorem 3.4. A Banach space X satisfies Domı́nguez-Benavides condition if and
only if

(3.1) inf
δ>0

sup
x∈BX

µ
(
S(x, δ)

)
< 1.

Proof. If X satisfies Domı́nguez-Benavides condition, then there exists a > 0 such

that R(a,X) < 1 + a. Let δ0 =
1 + a−R(a,X)

2a
. By Proposition 3.3 we have that

inf
δ>0

sup
x∈BX

µ
(
S(x, δ0)

)
≤ sup

x∈BX

µ
(
S(x, δ0)

)
≤ R(a,X)− a(1− δ0) < 1.

Conversely: If inequality (3.1) holds, then there exists δ > 0 such that

sup
x∈BX

µ
(
S(x, δ)

)
< 1.



COMPARISON BETWEEN SEVERAL CONDITIONS IMPLYING WNS AND THE WFPP 469

Let a0 =
1− supx∈BX

µ
(
S(x, δ)

)
2δ

. Applying Proposition 3.2 we get

inf
a>0

(R(a,X)− a) ≤ R(a0, X)− a0 ≤ sup
x∈BX

µ
(
S(x, δ)

)
< 1.

�

4. Sufficient conditions for Bynum’s and Doḿınguez-Benavides’
conditions

For a bounded sequence (xn) in a Banach space X let

sep
[
(xn)

]
:= inf

n ̸=m
∥xn − xm∥.

The separation measure of noncompactness of a bounded subset A of Banach
space X is given by

γ(A) := sup
{
sep

[
(xn)

]
: (xn) is a sequence in A

}
.

In order to study the relationship between γ(A) and µ(A) for a bounded subset
A of a dual space, we need the following technical lemma.

Lemma 4.1. Let X be a Banach space. Suppose (xn) is a weakly null sequence in
X and (fn) is a bounded sequence in X∗.

Then there exists an increasing sequence of nonnegative integers (kn) such that,

lim inf
p→∞

(
inf
n ̸=m

∥fkp+n − fkp+m∥
)
≥

2 lim inf
n→∞

fn(xn)

D
[
(xn)

] .

Proof. Let us define Y = ∪n∈N{
∑n

i=1 αixi : α1, . . . , αn ∈ R}. Since Y is a separa-
ble Banach space, BY ∗ is σ(Y, Y ∗)-sequentially compact and we can then assume,
passing to subsequences if necessary, the existence of f ∈ Y ∗ such that, for all y ∈ Y

lim
n→∞

fn(y) = f(y),

so, in particular, for all m ∈ N
(4.1) lim

n→∞
(fn − f)(xm) = 0.

On the other hand, (xn) converges to 0 in both topologies σ(X,X∗) =: ω and
σ(Y, Y ∗) = ω|Y and therefore

(4.2) lim
n→∞

f(xn) = 0,

and, for all m ∈ N
(4.3) lim

n→∞
fm(xn) = 0.

Let us put
D := D

[
(xn)

]
and η := lim inf

n→∞
fn(xn).

By (4.2) and the definitions of D and η, we can find an index k1 ∈ N such that
|f(xk1)| < 1,

(4.4) lim sup
m→∞

∥xk1 − xm∥ < D + 1,
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and fk1(xk1) > η − 1.
By (4.1) and (4.3) we have in particular

(4.5) lim
n→∞

(fn − f)(xk1) = lim
n→∞

fk1(xn) = 0.

Taking into account (4.2), (4.4), (4.5), and the definitions of D and η, we can
assure the existence of an index k2 > k1 for which

• |f(xk2)| < 1/2
• ∥xk1 − xk2∥ < D + 1
• |(fk2 − f)(xk1)| < 1/2
• |fk1(xk2)| < 1/2
• lim supm→∞ ∥xk2 − xm∥ < D + 1/2
• fk2(xk2) > η − 1/2

Suppose defined k1 < k2 < · · · < kn (n ≥ 2) such that, for any i ∈ {1, . . . , n} and
any j ∈ {1, . . . , i− 1}, the following inequalities hold

(a) |f(xki)| < 1/i
(b) ∥xkj − xki∥ < D + 1/j
(c) |(fki − f)(xkj )| < 1/i
(d) |fkj (xki)| < 1/i
(e) lim supm→∞ ∥xki − xm∥ < D + 1/i
(f) fki(xki) > η − 1/i

By (4.1) and (4.3) we have in particular that, for each j ∈ {1, . . . , n}

(4.6) lim
n→∞

(fn − f)(xkj ) = lim
n→∞

fkj (xn) = 0.

Taking into account (4.2), item (e), (4.6), and definitions of D and η, we can
assure the existence of an index kn+1 > kn for which

• |f(xkn+1)| < 1/(n+ 1)
• ∥xkj − xkn+1∥ < D + 1/j for each j = 1, . . . , n
• |(fkn+1 − f)(xkj )| < 1/(n+ 1) for each j = 1, . . . , n
• |fkj (xkn+1)| < 1/(n+ 1) for each j = 1, . . . , n
• lim supm→∞ ∥xkn+1 − xm∥ < D + 1/(n+ 1)
• fkn+1(xkn+1) > η − 1/(n+ 1)

We conclude, by induction, that there exists an strictly increasing sequence of
natural numbers (kn) such that, for any i, j ∈ N with i > j inequalities (a) to (f)
hold.

Let i, j ∈ N with i > j. By items (a) and (c)

(4.7) |fki(xkj )| ≤ |f(xkj )|+ |(fki − f)(xkj )| ≤
1

j
+

1

i
.

Combining items (d) and (f) and inequality (4.7), we obtain

(fki − fkj )(xki − xkj ) = fki(xki) + fkj (xkj )−
(
fki(xkj ) + fkj (xki)

)
≥ fki(xki) + fkj (xkj )−

(
|fki(xkj )|+ |fkj (xki)|

)
≥ 2η − 3

i
− 2

j
.(4.8)
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Taking into account (4.8) and (b)

∥fki − fkj∥ ≥ (fki − fkj )

(
xki − xkj
∥xki − xkj∥

)
≥ 2η − 3/i− 2/j

D + 1/j
.

We have proved that, for any i, j ∈ N with i > j

(4.9) ∥fki − fkj∥ ≥ 2η − 3/i− 2/j

D + 1/j
,

and consequently, we have that for any p, n,m ∈ N with n ̸= m,

∥fkp+n − fkp+m∥ ≥ 2η − 3/(p+max{n,m})− 2/(p+min{n,m})
D + 1/(p+min{n,m})

≥ 2η − 5/p

D + 1/p
.

We finally conclude that, for any p ∈ N

inf
n ̸=m

∥fkp+n − fkp+m∥ ≥ 2η − 5/p

D + 1/p
,

so

lim inf
p→∞

inf
n ̸=m

∥fkp+n − fkp+m∥ ≥ 2η

D

and the proof is finished.
�

Proposition 4.2. Let X be a Banach space. For any bounded subset A of the dual
space X∗

γ(A) ≥ 2µ(A).

Proof. Let A be a bounded subset of X∗. Consider a sequence (fn) in A and
(xn) ∈ MX .

By Lemma 4.1, there exists an increasing sequence of nonnegative integers (kn)
such that,

lim inf
p→∞

(
inf
n ̸=m

∥fkp+n − fkp+m∥
)
≥ 2 lim inf

n→∞
fn(xn).

From the definition of γ(A), for any fixed p ∈ N we have

γ(A) ≥ inf
n̸=m

∥fkp+n − fkp+m∥,

so

γ(A) ≥ lim inf
p→∞

(
inf
n ̸=m

∥fkp+n − fkp+m∥
)
≥ 2 lim inf

n→∞
fn(xn).

By the arbitrariness of (fn) and (xn), we conclude γ(A) ≤ 2µ(A), as desired. �

We are now in a position to determine sufficient conditions for both Bynum’s and
Domı́nguez-Benavides’ conditions, in terms of the measure of separation γ of some
subsets of the unit ball of the dual space.

Theorem 4.3. A Banach space X satisfies Bynum’s condition whenever

γ(BX∗) < 2.
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Proof. If γ(BX∗) < 2, by Proposition 4.2

µ(BX∗) ≤ γ(BX∗)

2
< 1,

so X satisfies Bynum’s condition by Theorem 3.1. �
Theorem 4.4. A Banach space X satisfies Domı́nguez-Benavides’ condition when-
ever

(4.10) inf
δ>0

sup
x∈BX

γ
(
S(x, δ)

)
< 2.

Proof. By Proposition 4.2, for each δ > 0 and x ∈ BX ,

µ
(
S(x, δ)

)
≤

γ
(
S(x, δ)

)
2

.

Therefore, if inequality (4.10) holds,

inf
δ>0

sup
x∈BX

µ
(
S(x, δ)

)
< 1

and X satisfies Domı́nguez-Benavides’ condition by virtue of Theorem 3.4. �

5. Bynum’s condition and F -convexity

Theorem 5.1. Any F -convex Banach space verifies Bynum’s condition.

Proof. Let X be a F -convex Banach space. Then X∗ is P -convex and consequently
γ(BX∗) < 2. So X satisfies Bynum’s condition by virtue of Theorem 4.3. �

In the light of the previous result, Theorem 2.4 can be easily derived from Theo-
rem 2.1 as follows: As noted in [13], since F -convex Banach spaces are superreflexive
and any ultrapower of an F -convex Banach space is also F -convex, to establish the
result it suffices to prove that F -convex Banach spaces have weak normal structure.
According to Theorem 5.1 X verifies Bynum’s condition and therefore X has weak
normal structure by Theorem 2.1.

6. Doḿınguez-Benavides’ condition and other sufficient conditions
for the wFPP

In this section we will show that Domı́nguez-Benavides’ condition is more general
than any of the sufficient conditions for the wFPP given in [5]. In particular we will
prove that E-convex Banach spaces satisfy Domı́nguez-Benavides’ condition.

Theorem 6.1. Let X be a Banach space such that BX∗ is weak∗ sequentially com-
pact. Suppose that there exist δ > 0 such that if (fn) is a sequence in BX∗ with

sep
[
(fn)

]
> 2 − δ and fn

w∗
→ f , then ∥f∥ ≤ 1 − δ. Then X satisfies Domı́nguez-

Benavides’ condition, and consequently X has the wFPP.

Proof. Assume
sup
x∈BX

γ
(
S(x, δ/2)

)
> 2− δ.

Then there exists x ∈ BX such that γ(S(x, δ/2)) > 2− δ, and consequently we can
find a sequence (fn) in S(x, δ/2) with sep

[
(fn)

]
> 2−δ. Since BX∗ is weak∗ sequen-

tially compact, there exists a subsequence (gn) of (fn) which is weak∗ convergent,
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say gn
w∗
→ g. Provided that sep

[
(gn)

]
≥ sep

[
(fn)

]
> 2 − δ, it must be ∥g∥ ≤ 1 − δ,

so
lim inf
n→∞

fn(x) ≤ lim inf
n→∞

gn(x) = g(x) ≤ ∥g∥ ≤ 1− δ.

But this is a contradiction, because fn ∈ S(x, δ/2) for all n ∈ N. Therefore the
initial assumption is false and

inf
δ>0

sup
x∈BX

γ
(
S(x, δ)

)
≤ sup

x∈BX

γ
(
S(x, δ/2)

)
≤ 2− δ < 2,

so X satisfies Domı́nguez-Benavides condition by virtue of Theorem 4.4. �
As an immediate consequence of the previous theorem we obtain the following

result, which shows that Theorem 2.5 can be derived from Theorem 2.2.

Theorem 6.2. Let X be a Banach space such that BX∗ is weak∗ sequentially com-
pact and X∗ has the weak∗ uniform Kadec-Klee. Then X satisfies Domı́nguez-
Benavides’ condition.

Our next aim is to prove that Domı́nguez-Benavides’ condition is strictly more
general than E-convexity.

Theorem 6.3. Let X be a Banach space. Suppose that there exist δ > 0 such
that for any sequence (fn) in BX∗ the set {fn : n ∈ N} fails to be symmetrically
(2− δ)-separated. Then X satisfies Domı́nguez-Benavides condition.

Proof. Assume
sup
x∈BX

γ
(
S(x, δ/2)

)
> 2− δ.

We can then find x ∈ BX and (fn) in BX∗ such that fn(x) ≥ 1− δ/2 for any n ∈ N
and sep

[
(fn)

]
> 2− δ.

Let us see that the set {fn : n ∈ N} is symmetrically (2− δ)-separated, that is

inf
n ̸=m

min
{
∥fn − fm∥, ∥fn + fm∥

}
≥ 2− δ.

For any n,m ∈ N with n ̸= m, we have

∥fn − fm∥ ≥ sep
[
(fn)

]
> 2− δ,

and, on the other hand,

∥fn + fm∥ ≥ (fn + fm)(x) = fn(x) + fm(x) ≥ 2(1− δ/2) = 2− δ.

Since this contradicts the hypothesis, the initial assumption must be false and

inf
δ>0

sup
x∈BX

γ
(
S(x, δ)

)
≤ sup

x∈BX

γ
(
S(x, δ/2)

)
≤ 2− δ < 2.

So X satisfies Domı́nguez-Benavides condition by Proposition 4.4. �
Theorem 6.4. Let X be a Banach space. Any E-convex Banach space satisfies
Domı́nguez-Benavides condition.

Proof. If X be a E-convex, then X∗ is O-convex, and consequently there exist n ∈ N
and δ > 0 such that any subset of BX∗ of cardinality n fails to be symmetrically
(2− δ)-separated. So X satisfies Domı́nguez-Benavides condition by virtue of The-
orem 6.3. �
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According to the previous result, Domı́nguez Benavides’ condition is more general
than E-convexity. In order to show that it is indeed strictly more general, we
provide in Example 6.5 a family of Banach spaces which fail to be E-convex but
verify Domı́nguez Benavides’ condition. Before presenting the example we need to
recall the following notion: A Banach space X is said to have the WORTH property
if

lim sup ∥xn + x∥ = lim sup ∥xn − x∥
for all weakly null sequences (xn) in X and all x ∈ X.

Example 6.5. For β ≥ 1, let Eβ be the space ℓ2 equivalently renormed with the
James norm

|x|β := max{∥x∥2, β∥x∥∞}.
Some known properties of these spaces are the following:

(a) For any β ≥ 1, Eβ has the WORTH property (see [14]).

(b) Eβ has normal structure if and only if 1 ≤ β <
√
2 (see [1]).

(c) For any β ≥
√
2, Eβ satifies Domı́nguez Benavides’ condition. Indeed, it

was shown in [4] that

sup
a>0

1 + a

R(a,Eβ)
= 1 +

1√
2
.

Let us know argue that, for β ≥ 2, the space Eβ fails to be E-convex: From a
result due to S. Saejung ( [13], Theorem 5) every E-convex Banach space X with
the WORTH property has normal structure. So, taking into account (a) and (b),
we would have a contradiction if Eβ was E-convex.
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