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this result to Banach spaces. Shimizu and Takahashi ([33] and [34]) introduced the
first iterative schemes for finding common fixed points of families of nonexpansive
mappings and obtained convergence theorems for the families. In [36], Shioji and
Takahashi established strong convergence theorems of the types (1.1) and (1.2) for
families of mappings in a uniformly convex Banach space with a uniformly Gâteaux
differentiable norm by using the theory of means of abstract semigroups (see [4] and
[5]).

When S = {Ts : s ∈ S} is a representation of an amenable semigroup S as
non-expansive mappings on a closed convex subset C of a Banach space, then there
is a strong relation between approximation of fixed point in C and strongly invariant
sequences (or nets) of means in ℓ1(S). It is the purpose of this paper to survey some
recent results in this direction as well as some related results on the measure algebra
and the Fourier Stieltjes algebra of a locally compact group. Some open problems
are posted.

2. Preliminaries and some notations

A semigroup S is called amenable if there is a linear functional m on ℓ∞(S),
the Banach space of all bounded real-valued functions on S with supremum norm
such that:

(i) m(f) ≥ 0 for all f ∈ ℓ∞(S), f ≥ 0.
(ii) m(1) = 1
(iii) m(ℓαf) = m(raf) = m(f) for all f ∈ ℓ∞(S) where (ℓaf)(t) = f(at) and

(raf)(t) = f(ta) for all t ∈ S.

A linear functional m on ℓ∞(S) satisfying (i) and (ii) is called a mean; m satisfying
(i), (ii), (iii) is called an invariant mean. As well known, any commutative semigroup
is amenable. A finite semigroup S is amenable if and only if S has a (unique)
minimal ideal. However, the free group (or semigroup) on two generators is not
amenable (see [5], [16], [17]).

Let D be a subset of B where B is a subset of a Banach space E and let P
be a retraction of B onto D, that is, Px = x for each x ∈ D. Then P is said to be
sunny [38] if for each x ∈ B and t ≥ 0 with Px+ t(x− Px) ∈ B,

P
(
Px+ t(x− Px)

)
= Px.

A subset D of B is said to be a sunny nonexpansive retract of B if there exists a
sunny nonexpansive retraction P of B onto D. We know that if E is smooth and
P is a retraction of B onto D, then P is sunny and nonexpansive if and only if for
each x ∈ B and z ∈ D,

⟨x− Px, J(z − Px)⟩ ≤ 0.

For more details, see [38].

3. Ergodic sequences

Let S be a semigroup and ℓ1(S) denote the Banach space of all f : S → IR

such that ∥f∥1 =
∑

|f(x)| < ∞. Let
(
ℓ1(S)

)+
1
= all θ ∈ ℓ1(S) such that θ ≥ 0 and
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∥θ∥1 = 1 (countable means). There is a natural convolution on ℓ1(S) :

(θ1 ∗ θ2)(s) =
∑

{θ(s1)θ(s2); s1s2 = s}.

Then
(
ℓ1(S), ∗

)
is a Banach algebra, i.e.

∥θ1 ∗ θ2∥ ≤ ∥θ1∥ ∥θ2∥.

Let H be a Hilbert space over the real, C be a closed convex subset of H, and
S = {Ts; s ∈ S} be a representation of S as non-expansive mappings from C into C
such F (S) ̸= ∅.

Let x ∈ C. For each y ∈ H, consider the bounded real-valued function on S
s 7→ ⟨Tsx, y⟩, Let θ be a mean on ℓ∞(S), define

⟨Tθ(x), y⟩ = θs
(
⟨Tsx, y⟩

)
=

∑
{⟨Tsx, y⟩θ(s); s ∈ S} if θ ∈

(
ℓ1(S)

)+
1
.

Then Tθ is a non-expansive mapping from C → C (see [32]).
Call a sequence (net) {θn} of means on S an ergodic sequence (net) for non-

expansive mappings if for any representation S = {Ts; s ∈ S} of S as non-expansive
mappings on a closed convex subset C of a Hilbert space into C such that F (S) ̸= ∅,
then for each x ∈ C, the sequence (net) Tθn(x) converges weakly to a fixed point of
S.

A net of means {µα} on ℓ∞(S) is called “asymptotically invariant” if

lim
α

(
µα(ℓsf)− µα(f)

)
= 0 and

lim
α

(
µα(rsf)− µα(f)

)
= 0 for all s ∈ S.

The net is said to be “strongly asymptotically invariant” if

lim
α
∥ℓ+s uα − uα∥ and lim

α
∥r+s uα − µα∥ = 0 for all s ∈ S.

One-sided asymptotically invariant or strongly asymptotically invariant is defined
similarly.

Theorem 3.1 (Rodé [32]). Let S be an amenable semigroup. Then any “asymp-
totically invariant net” of means is an ergodic net for non-expansive mappings.

Remark 3.2. (1) Every invariant mean on ℓ∞(S) is asymptotically invariant.
(2) Let S be commutative. If m is an invariant mean on ℓ∞(S), then there is a

net θα ∈
(
ℓ1(S)

)+
1
such that θα has finite support i.e. θα =

n∑
i=1

λiδsi (convex

combination) such that θα
w∗
→ m. In particular the net {θα} is asymptot-

ically invariant. Hence {θα} is an ergodic net of finite means on S for
non-expansive mappings.

Example 3.3 ([32]). S = ({0, 1, 2, . . . },+)

θn =
1

n

n−1∑
k=0

δk ,
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then{θn} is an asymptotically invariant sequence of finite means on S. Consequently,
{θn} is an ergodic sequence of finite means on S for non-expansive mappings.

The following answers an open problem in [18] for countable semigroup:

Theorem 3.4. Let S be an amenable countable semigroup. Then there exists a
strongly asymptotically invariant sequence of finite means. In particular, there is
an ergodic sequence of finite means for non-expansive mappings.

Proof. This follows from Theorem 1 and Proposition 3.6 in [13]. For the sake of
completeness, we include a proof.

Since S is countable, the Banach space ℓ1(S) is norm separable. Let X =
{f1, f2, . . . } be a countable bounded subset of ℓ1(S) such that the closed subalgebra
generated by X is ℓ1(S). We may assume that fn ≥ 0 and ∥fn∥ = 1. By Proposition
3.3 [13], there is a net {uα} of elements in ℓ1(S) consisting of finite means such that
uα ≥ 0, ∥uα∥ = 1. Choose {uαn , n ∈ N}, inductively to satisfy:

∥fi ∗ uγn − uγn∥ ≤ 1

n
and ∥uγn ∗ fi − uγn∥ ≤ 1

n

for 1 ≤ i ≤ n, and

∥uγi ∗ uγn − uγn∥ ≤ 1

n
and ∥uγn ∗ uγi − uγn∥ ≤ 1

n

for 1 ≤ i ≤ n.
We claim that {uγn} is an asymptotic sequence of finite means for S. Take any

k elements a1, . . . , ak from {f1, f2, . . . } ∪ {uγ1 , uγ2 , . . . }, and let ε > 0. Choose N

so large that kCk−1/N < ε and that it n > N, then fn and uγn /∈ {a1, . . . , an}. Now
for n > N, let

Cn = ∥a1 ∗ a2 ∗ · · · ∗ ak ∗ uγn − uγn∥.
Then

Cn ≤
k∑

j=1

∥a1 ∗ · · · ∗ aj ∗ uγn − a1 . . . aj−1 ∗ uγn∥

≤
k∑

j=1

∥a1∥ . . . ∥aj−1∥ ∥aj ∗ uγn − uγn∥

≤
k∑

j=1

Cj−1Ck−j 1

n
= kCk−1 1

n
< ε.

A parallel calculation also works for uγn ∗ a1 ∗ · · · ∗ ak . It follows that {uγn} is an
asymptotic sequence of finite means for ℓ1(S), and hence an ergodic sequence by
Rode’s Theorem above. �
Example 3.5 ([26]). The bicyclic semigroup is the semigroup generated by a unit
e and two more elements p and q subject to the relation pq = e. We denote it by
S1 = ⟨e, p, q | pq = e⟩ .

For any ε > 0 and a finite set

F = {qmipni : mi ≥ 0, ni ≥ 0, i = 1, 2, . . . , ℓ} ⊂ S1 ,
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let

m = max{ni,mi − ni : i = 1, 2, . . . , ℓ} and k = 2mt,

where t > 1/ε is an integer. Then setting

A = {qm, qm+1, . . . , qm+k} ⊂ S1

we have that for any s = qmipni ∈ F,

sA = {qm+mi−ni , qm+mi−ni+1, . . . , qm+mi−ni+k}.

So |A| = k + 1, |A ∼ sA| ≤ m and |sA ∼ A| ≤ m. Define ΦF,ε =
1
|A| χA , where for

a subset E, χE denotes the characteristic function of E. Then

∥s ∗ ΦF,ε − ΦF,ε∥1 =
1

|A|
∥χsA − χA∥1

=
1

|A|
(|A ∼ sA|+ |sA ∼ A|)

≤ 2m

k + 1
< ε

for s ∈ F. Let Λ = {(F, ε) : F ⊂ S1 is finite, ε > 0} with the usual partial order

α1 = (F1, ε1) ≥ α2 = (F2, ε2) iff F1 ⊇ F2 and ε1 ≤ ε2 .

Then (Φα)α∈Λ ⊂ ℓ1(S1) satisfies ∥Φα∥ = 1 and

∥s ∗ Φα − Φα∥1
α→ 0 (s ∈ S1).

In particular, S1 is amenable, and {Φα} is strongly asymptotically invariant
net. Since S1 is countable, it follows from the proof of Theorem 3.4 that there is a
strongly asymptotically invariant sequence {Φαn} extracted from {Φα}. In particu-
lar, {Φαn} is an ergodic sequence for S1 .

Remark 3.6. The semigroup generated by a unit e and three more elements a, b
and c subject to the relations ab = ac = e is denoted by S2 = ⟨e, a, b, c | ab = e⟩;
and the semigroup generated by a unit e and four more elements a, b, c, d subject to
the relations ac = bd = e is denoted by S1,1 = ⟨e, a, b, c, d | ac = e, bd = e⟩ . S2 and
S1,1 will be called partially bicyclic semigroups. Duncan and Namioka showed in
[6] that S1 is an amenable semigroup by revealing the maximal group homomorphic
image of S1 . Here we can prove the same result directly by constructing a left and
a right invariant mean on ℓ∞(S1). However, as shown in [26], the partially bicyclic
semigroups S2 and S1,1 are not left amenable. S1,1 is not even right amenable but
S2 is right amenable (i.e. ℓ∞(S) has a right invariant mean). In particular, S2 has
a strongly asymptotically right invariant sequence.

The argument is similar to that for S1 . Let F be a finite set of S2 . We can
write

F = {f1am1 , f2a
m2 , . . . , fna

mn},
where each fi ∈ ⟨e, b, c⟩, and mi ≥ 0, i = 1, 2, . . . , n. Denote the length of any
element f ∈ ⟨e, b, c⟩ by ℓ(f). Given ε > 0, take

m = max{ℓ(fi),mi − ℓ(fi)|i = 1, 2, . . . , n} and k = 2mt,



456 ANTHONY TO-MING LAU

where t > 1/ε is an integer. Define

A = {am, am+1, . . . , am+k}.

Then for fia
mi ∈ F, we have

A · fiami = {am+mi−ℓ(fi), am+mi−ℓ(fi)+1, . . . , am+mi−ℓ(fi)+k}.

Thus |A∆(a · fiami)| ≤ 2m. Define ΦF,ε =
1
|A| χA . We then have

∥ΦF,ε · s− ΦF,ε∥1 =
1

|A|
|A∆A · s| ≤ 2m

k + 1
≤ ε

for all s ∈ F. The argument in the proof of Theorem 3.4 showed that we can extract
a strongly asymptotically right invariant sequence for S2 .

The following problem is still open.

Open problem 1: Given an amenable semigroup S, when does there exist an
ergodic sequence of countable (or finite) means on S for non-expansive mappings?
In particular, is this true for all amenable semigroups?

4. Approximation of fixed points

A well-known result of Day [4] (see also [5]) asserts that if S is an amenable
semigroup, then whenever S = {Ts; s ∈ S} is a bounded representation of S as
bounded linear operators on a Banach space E, there exists a net of finite averages
Aα of S (i.e. for each x ∈ E, Aα(x) is in the convex hull of {Ts(x); s ∈ S}) such
that lim

α
∥Aα(Ts − I)(x)∥ = 0 and lim

α
∥(Ts − I)Aα(x)∥ = 0, for each x ∈ E.

In this case, if E(S) = F (S) + D(S), where F (S) is the fixed point set of S,
and D(S) is the closed linear span of {Tsx − x; s ∈ S and x ∈ E}, then there is a
projection P onto F (S) along D(S) and PTs = TsP = P for all s ∈ S. Furthermore,
if x ∈ E(S), then P (x) is the unique common fixed point on co {Tsx; s ∈ S}, where
co A is the closed convex hull of A.

The first nonlinear ergodic theorem for nonexpansive maps was established in
1975 by Baillon [1]: Let C be a closed convex subset of a Hilbert space and T a
nonexpansive mapping of C into itself. If the fixed point set F (T ) of T is non-empty,
then for each x ∈ C, the Cesàrio means

Sn(x) =
1

n

n−1∑
k=1

T kx

converges weakly to some y ∈ F (T ). In this case, putting y = Px for each x ∈ C,
P is a nonexpansive retraction of C onto F (T ) such that PT = TP = P and
Px ∈ co {Tnx; n = 1, 2, . . . } for each x ∈ C. In [37], Takahashi proved the following
fundamental result relating amenability of a semigroup and ergodic theorems for
non-expansive mappings:

Theorem 4.1 ([37]). Let S be an amenable semigroup, C be a non-empty closed
convex subset of a Hilbert space H, and S = {Ts; s ∈ S} be a representation of S
as non-expansive mappings from C into C. Assume that F (S) = fixed point set of
S is non-empty. Then there is a non-expansive retraction P of C onto F (S) such
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that TsP = PTs = P for every s ∈ S, and Px ∈ co {Tsx; s ∈ S} for every s ∈ C,
where coA is the closed convex full of A.

Takahasi’s result was extended to uniformly convex Banach space with a Fréchet
differentiable norm when S is commutative by Hirano, Kido and Takahaski [11].
However, it has been an open problem for some time, whether Takahaski’s result
can be fully extended to such Banach spaces for amenable semigroups. This problem
was answered by Lau, Shioji and Takahaski in [22]:

Theorem 4.2 ([22]). Let C be a closed convex subset of a uniformly convex Banach
space E, let S be an amenable semigroup, let S = {Tt; t ∈ S} be a nonexpansive
semigroup on C such that F (S) ̸= ∅. Then there exists a net {Aα} of finite averages
of S such that for each t ∈ S and for each bounded subset B of C, lim

α
∥AαTtx −

Aαx∥ = 0 and lim
α

∥TtAαx−Aαx∥ = 0 uniformly for each x ∈ B.

Remark 4.3. The proof of Theorem 4.2 depends on Theorem 3.4. In the case S is
countable, then {Aα} can be taken to be a sequence.

The following theorem is proved in [21] (see also [11], [12], [24], and [35]).

Theorem 4.4. Let S be an amenable semigroup with identity and S = {T (s) :
s ∈ S} be a representation of S as nonexpansive mappings from a compact convex
subset C of a strictly convex and smooth Banach space E into C, let {µn} be a
strongly sequence of means on ℓ∞(S). Let {αn} be a sequence in [0, 1] such that
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Let x1 = x ∈ C and let {xn} be the sequence

defined by
xn+1 = αnx+ (1− αn)T (µn)xn , n = 1, 2, . . . .

Then {xn} converse strongly to Px, where P denotes the unique sunny nonexpansive
retraction of C onto F (S).

Let S be a semigroup with identity. S is called left reversible if any two right
ideals in S have nonvoid intersection, i.e. aS ∩ bS ̸= ∅ for a, b ∈ S. In this case, we
can define a partial ordering “ ≤ ” on S by a ≤ b if and only if aS ⊃ bS. The class
of left reversible semigroups includes all groups and commutative semigroups. If a
semigroup S is left amenable, then S is left reversible. But the converse is false.

Remark 4.5. Theorem 4.4 remains true for left reversible semigroups and sub-
spaces X with a strongly left regular sequence of means.

Open problem 2: Does Theorem 4.4 remain valid when C is a weakly compact
convex subset of a strictly convex and smooth Banach space E?

5. Ergodic sequences in M(G) and B(G)

Let G be a locally compact group and π be a continuous unitary representation
of G on a Hilbert space H, i.e. π is a homomorphism from G into the group of
unitary operator of the Hilbert space H such that for each ξ, n ∈ H, the function
x → ⟨π(x)ξ, n⟩, x ∈ G is continuous.

Let Hf denote the fixed point set of π in H, i.e.

Hf = {ξ ∈ H; π(x)ξ = ξ for all x ∈ G}.
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A sequence {µn} of probability measures on G is called a strongly (resp. weakly)
ergodic sequence if for every representation π of G on a Hilbert spaceH and for every
ξ ∈ H, {π(µn)ξ} converges in norm (resp. weakly) to a member of Hf . When G is
abelian or compact, or G is a [Moore]-group (i.e. every irreducible representation
of G is finite dimensional), then every weakly ergodic sequence is strongly ergodic.
However, this is not true in general (see [27, Proposition 1 and Proposition 5]).

In [2], Blum and Eisenberg proved that if G is a locally compact abelian group,
and {µn} is a sequence of probability measures on G, then the following are equiv-
alent:

(i) {µn} is strongly ergodic.

(ii) µ̂n(γ) → 0 for all γ ∈ Ĝ\{1}.
(iii) {µn} converges weakly to the Haar measure on the Bohr compactification

of G.

More recently Milnes and Paterson [27] obtained the following generalization
of Blum and Eisenberg’s result for general locally compact groups.

Let G be a locally compact group with a fixed left Haar measure and M(G) be
the Banach algebra of regular Borel measures on G with the total variation norm.

Theorem 5.1 (Milnes and Paterson [27]). Let G be a second countable locally
compact group. Then the following statements about a sequence {µn} of probability
measures in M(G) are equivalent:

(i) {µn} is a weakly ergodic sequence.

(ii) π(µn) → 0 in the weak operator topology for every π ∈ Ĝ\{1}.
(iii) µ̂n converges to the unique invariant mean on BI(G), the closure in C(G)

of the linear span of the set of coefficient functions of the irreducible repre-
sentations of G.

(Here Ĝ denotes the set of irreducible continuous representations of G which
is the same as the dual group of G when G is abelian.)

Let P (G) denote the subset of C(G) consisting of all continuous positive definite
functions on G, and let B(G) be its linear span. Then B(G) (the Fourier-Stieltjes
algebra of G) can be identified with the dual of C∗(G), and P (G) is precisely the
set of positive linear functionals on C∗(G).

Let B
(
L2(G)

)
be the algebra of bounded linear operators from L2(G) into

L2(G) and let V N(G) denote the weak operator topology closure of the linear
span of {ρ(a) : a ∈ G}, where ρ(a)f(x) = f(a−1x), x ∈ G, f ∈ L2(G), in
B
(
L2(G)

)
. Let A(G) denote the subalgebra of C0(G) (continuous complex-valued

functions vanishing at infinity), consisting of all functions of the form h ∗ k̃ where

h, k ∈ L2(G) and k̃(x) = k(x−1), x ∈ G. Then each ϕ = h ∗ k̃ in A(G) can be
regarded as an ultraweakly continuous functional on V N(G) defined by

ϕ(T ) = ⟨Th, k⟩ for each T ∈ V N(G).

Furthermore, as shown by Eymard in [7, pp. 210, Theorem 3.10], each ultraweakly
continuous functional on V N(G) is of this form. Also A(G) with pointwise mul-
tiplication and the norm ∥ϕ∥ = sup{|ϕ(T )|}, where the supremum runs through
all T ∈ V N(G) with ∥T∥ ≤ 1, is a semisimple commutative Banach algebra with
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spectrum G; A(G) is called the Fourier algebra of G and it is an ideal of B(G).

When G is abelian, A(G) ∼= L1(Ĝ), B(G) ∼= M(Ĝ) and V N(G) ∼= L∞(Ĝ).
There is a natural action of A(G) on V N(G) given by ⟨ϕ · T, γ⟩ = ⟨T, ϕ · γ⟩ for

each ϕ, γ ∈ A(G) and each T ∈ V N(G). A linear functional m on V N(G) is called
a topological invariant mean if

(i) T ≥ 0 implies ⟨m,T ⟩ ≥ 0,
(ii) ⟨m, I⟩ = 1 where I = ρ(e) denotes the identity operator, and
(iii) ⟨m,ϕ · T ⟩ = ϕ(e)⟨m,T ⟩ for ϕ ∈ A(G).

As known, V N(G) always has a topological invariant mean. However V N(G) has
a unique topological invariant mean if and only if G is discrete (see [31, Theorem
1], [19], and [27, Corollary 4.11].

Let C∗
δ (G) denote the norm closure of the linear span of {ρ(a); a ∈ G}. Let

Bδ(G) denote the linear span of Pδ(G), where Pδ(G) is the pointwise closure of
A(G) ∩ P (G). Then Bδ(G) can be identified with C∗

δ (G)∗ by the map π(ϕ)(f) =∑
{ϕ(t)f(t), t ∈ G} for each f ∈ ℓ1(G) and ϕ ∈ Bδ(G) (see [7]). Furthermore Bδ(G)

with pointwise multiplication and dual norm is a commutative Banach algebra. If m
is topological invariant mean on V N(G), thenm′ = restriction ofm to C∗

δ (G), is also
a topological invariant mean on C∗

δ (G). Furthermore, if m′′ is another topological
invariant mean on C∗

δ (G), then m′ = m′′, by commutativity of Bδ(G). If G is
amenable, then B(G) ⊆ Bδ(G). In particular, each ϕ ∈ B(G) corresponds to a
continuous linear functional on C∗

δ (G) defined by ⟨ϕ, ρ(a)⟩ = ϕ(a), a ∈ G. Also

if G is abelian, then C∗
δ (G) ∼= AP (Ĝ), the space of continuous almost periodic

functions on Ĝ (see [14]).
A sequence {ϕn} in A(G)∩P1(G) is called strongly (respectively weakly) ergodic

if whenever {T,H} is a ∗-representation of A(G), ξ ∈ H, the sequence T (ϕn)ξ
converges in the norm (resp. weak) topology to a member of the fixed point set:

Hf = {ξ ∈ H; T (ϕ)ξ = ξ for all ϕ ∈ A(G) ∩ P1(G)}.

Theorem 5.2 ([20]). Let G be a locally compact group. The following are equivalent
for a sequence {ϕn} in A(G) ∩ P1(G) :

(i) {ϕn} is strongly ergodic.
(ii) {ϕn} is weakly ergodic.
(iii) For each g ∈ G, g ̸= e, ϕn(g) → 0.
(iv) For each T ∈ C∗

δ (G), ⟨ϕn, T ⟩ → ⟨m,T ⟩, where m is the unique topological
invariant mean on C∗

δ (G).

Theorem 5.3 ([20]). Let G be an amenable locally compact group. The following
are equivalent for a sequence {ϕn} in P1(G) :

(i) {ϕn} is strongly ergodic.
(ii) {ϕn} is weakly ergodic.
(iii) For each g ∈ G, g ̸= e, ϕn(g) → 0.
(iv) For each T ∈ C∗

δ (G), ⟨ϕn, T ⟩ → ⟨m,T ⟩, where m is the unique topological
invariant mean on C∗

δ (G).

Remark 5.4. Both Theorem 5.2 and 5.3 has recently been extended by S. Guex
[8] and [9]) for Ap(G), 1 < p < ∞, the Figa-Talamanca algebra generalizing
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A2(G) = A(G) as well as the study of left amenability of the class of F -algebras
([15]) by means of some ergodic and fixed point properties.
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