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would define the state space and the mapping (t, x) → Tt(x) would represent the
evolution function of a dynamical system. The question about the existence of com-
mon fixed points, and about the structure of the set of common fixed points, can be
interpreted as a question whether there exist points that are fixed during the state
space transformation Tt at any given point of time t, and if yes - what the structure
of a set of such points may look like. In the setting of this paper, the state space
may be an infinite dimensional. Therefore, it is natural to apply these result not
only to deterministic dynamical systems but also to stochastic dynamical systems.

An existence of common fixed points of ρ-nonexpansive semigroups was demon-
strated in 2011, [30]. However, a structure of the set of common fixed points can
be a priori very complicated and therefore it can be difficult to apply any methods
of construction of such common fixed points, which is of a major importance for
applications. In the current paper we show that in the case of a strongly contin-
uous nonexpansive semigroup, the set of its common fixed points can be actually
represented by a set of common fixed points of a single, suitably chosen, nonex-
pansive mapping. The idea of such representation is known in Banach spaces, see
e.g. the 2006 paper by Suzuki [45] and references therein. However the case of
ρ-nonexpansive mappings acting in modular function spaces have not been inves-
tigated prior to the current paper. It is worthwhile to mention that we use only
convexity of the function modular ρ as it does not need to have any triangle inequal-
ity or homogeneity properties. This shows the strength of the convexity assumptions
because convexity of ρ suffices to prove both the existences and the representation
of a set of common fixed points.

In the section “Convergence theorems” we use such a representation to show
how several iterative methods can be used for construction of common fixed points
of continuous nonexpansive semigroups. The idea of using such processes in this
context can be traced back to the seminal 1950s - 1970s papers by Mann [37], Kras-
nosel’skii [35], Ishikawa [12], Reich [40, 41], and others. See also an extensive body
of work from the 1980s and 1990s [1, 3, 10, 13, 39, 42–44, 47–50], and more recent
research from the current century [4,9,11,14,15,20,28,29,32–34,36,38,46] and the
works referred there.

2. Preliminaries

Let us introduce basic notions related to modular function spaces and related
notation which will be used in this paper. For further details we refer the reader to
preliminary sections of the recent articles [4,21,22] or to the survey article [31]; see
also [25–27] for the standard framework of modular function spaces.

Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let
P be a δ-ring of subsets of Ω, such that E ∩ A ∈ P for any E ∈ P and A ∈ Σ.
Let us assume that there exists an increasing sequence of sets Kn ∈ P such that
Ω =

∪
Kn. By E we denote the linear space of all simple functions with supports

from P. By M∞ we will denote the space of all extended measurable functions, i.e.
all functions f : Ω → [−∞,∞] such that there exists a sequence {gn} ⊂ E , |gn| ≤ |f |
and gn(ω) → f(ω) for all ω ∈ Ω. By 1A we denote the characteristic function of the
set A.
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Definition 2.1. Let ρ : M∞ → [0,∞] be a notrivial, convex and even function.
We say that ρ is a regular convex function pseudomodular if:

(i) ρ(0) = 0;
(ii) ρ is monotone, i.e. |f(ω)| ≤ |g(ω)| for all ω ∈ Ω implies ρ(f) ≤ ρ(g), where

f, g ∈ M∞;
(iii) ρ is orthogonally subadditive, i.e. ρ(f1A∪B) ≤ ρ(f1A)+ρ(f1B) for any A,B ∈

Σ such that A ∩B ̸= ∅, f ∈ M;
(iv) ρ has the Fatou property, i.e. |fn(ω)| ↑ |f(ω)| for all ω ∈ Ω implies ρ(fn) ↑ ρ(f),

where f ∈ M∞;
(v) ρ is order continuous in E , i.e. gn ∈ E and |gn(ω)| ↓ 0 implies ρ(gn) ↓ 0.

Similarly, as in the case of measure spaces, we say that a set A ∈ Σ is ρ-null if
ρ(g1A) = 0 for every g ∈ E . We say that a property holds ρ-almost everywhere
if the exceptional set is ρ-null. As usual we identify any pair of measurable sets
whose symmetric difference is ρ-null as well as any pair of measurable functions
differing only on a ρ-null set. With this in mind we define M = {f ∈ M∞; |f(ω)| <
∞ ρ − a.e}, where each element is actually an equivalence class of functions equal
ρ-a.e. rather than an individual function.

Definition 2.2. We say that a regular function pseudomodular ρ is a regular convex
function modular if ρ(f) = 0 implies f = 0 ρ−a.e.. The class of all nonzero regular
convex function modulars defined on Ω will be denoted by ℜ.
Definition 2.3 ( [25–27]). Let ρ be a convex function modular. A modular function
space is the vector space Lρ = {f ∈ M; ρ(λf) → 0 as λ → 0}.

The following notions will be used throughout the paper.

Definition 2.4. Let ρ ∈ ℜ.
(a) We say that {fn} is ρ-convergent to f and write fn → f (ρ) if and only if

ρ(fn − f) → 0.
(b) A sequence {fn} where fn ∈ Lρ is called ρ-Cauchy if ρ(fn− fm) → 0 as n,m →

∞.
(c) A set B ⊂ Lρ is called ρ-closed if for any sequence of fn ∈ B, the convergence

fn → f (ρ) implies that f belongs to B.
(d) A set B ⊂ Lρ is called ρ-bounded if sup{ρ(f − g); f ∈ B, g ∈ B} < ∞.
(e) A set B ⊂ Lρ is called strongly ρ-bounded if there exists β > 1 such that

Mβ(B) = sup{ρ(β(f − g)); f ∈ B, g ∈ B} < ∞.

Since ρ fails in general the triangle identity, many of the known properties of limit
may not extend to ρ-convergence. For example, ρ-convergence does not necessarily
imply ρ-Cauchy condition. However, it is important to remember that the ρ-limit
is unique when it exists. The following proposition brings together few facts that
will be often used in the proofs of our results.

Proposition 2.5. Let ρ ∈ ℜ.
(i) Lρ is ρ-complete.
(ii) ρ-balls Bρ(x, r) = {y ∈ Lρ; ρ(x− y) ≤ r} are ρ-closed and ρ-a.e. closed.
(iii) If ρ(αfn) → 0 for an α > 0 then there exists a subsequence {gn} of {fn} such

that gn → 0 ρ− a.e.
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(iv) ρ(f) ≤ lim inf ρ(fn) whenever fn → f ρ−a.e. (Note: this property is equivalent
to the Fatou Property).

We will also need the definition of the ∆2-property of a function modular, see
e.g. [4, 27].

Definition 2.6. Let ρ ∈ ℜ. We say that ρ has the ∆2-property if

sup
n

ρ(2fn, Dk) → 0

whenever Dk ↓ ∅ and sup
n

ρ(fn, Dk) → 0.

The modular equivalents of uniform convexity were introduced in [22].

Definition 2.7. Let ρ ∈ ℜ. We define the following uniform convexity type prop-
erties of the function modular ρ:

(i) Let r > 0, ε > 0. Define

D(r, ε) = {(f, g) : f, g ∈ Lρ, ρ(f) ≤ r, ρ(g) ≤ r, ρ(f − g) ≥ εr}.

Let

δ(r, ε) = inf
{
1− 1

r
ρ
(f + g

2

)
: (f, g) ∈ D(r, ε)

}
, ifD(r, ε) ̸= ∅,

and δ(r, ε) = 1 if D(r, ε) = ∅. We say that ρ satisfies (UC) if r > 0 and ε > 0
implies δ(r, ε) > 0. Note, that for every r > 0, D(r, ε) ̸= ∅, for ε > 0 small
enough.

(ii) We say that ρ satisfies (UUC) if for every s ≥ 0, ε > 0 there exists

η(s, ε) > 0

depending on s and ε such that

δ(r, ε) > η(s, ε) > 0 for r > s.

Let us also introduce modular definitions of Lipschitzian and nonexpansive map-
pings, and associated definitions of semigroups of nonlinear mappings.

Definition 2.8 ( [30]). Let ρ ∈ ℜ and let C ⊂ Lρ be nonempty and ρ-closed. A
mapping T : C → C is called a ρ-Lipschitzian if there exists a constant L > 0 such
that

ρ(T (f)− T (g)) ≤ Lρ(f − g) for any f, g ∈ Lρ.

T is called a ρ-nonexpansive mapping if L = 1.

For any mapping T by F (T ) we denote the set of all fixed points of T .

Definition 2.9 ( [30]). A one-parameter family F = {Tt : t ≥ 0} of mappings from
C into itself is said to be a ρ-Lipschitzian (resp. ρ-nonexpansive) semigroup on C
if F satisfies the following conditions:

(i) T0(x) = x for x ∈ C;
(ii) Tt+s(x) = Tt(Ts(x)) for x ∈ C and t, s ≥ 0;
(iii) for each t ≥ 0, Tt is ρ-Lipschitzian (resp. ρ-nonexpansive).
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Definition 2.10. A semigroup F = {Tt : t ≥ 0} is called strongly continuous if for
every z ∈ C, the following function

(2.1) Λz(t) = ρ
(
Tt(z))− z

)
is continuous at every t ∈ [0,∞).

Definition 2.11. A semigroup F = {Tt : t ≥ 0} is called continuous if for every

z ∈ C, the mapping t 7−→ Tt(z) is ρ-continuous at every t ∈ [0,∞), i.e. ρ
(
Ttn(z)−

Tt(z)
)
→ 0 as tn → t.

By F (F) we will denote the set of common fixed points of the semigroup F .
Let us finish this section with the existence theorem for semigroups of nonexpan-

sive mappings acting in modular function spaces.

Theorem 2.12 ( [30]). Assume ρ ∈ ℜ is (UUC). Let C be a ρ-closed ρ-bounded
convex nonempty subset. Let F be a nonexpansive semigroup on C. Then the set
F (F) of common fixed points is nonempty, ρ-closed and convex.

3. Representation theorems

In this section we will use the following notation: let 0 < α < β, and α ≤ s ≤ β.
Define inductively a sequence {An(s)} of subsets of [α, β] by

(3.1) A1(s) = {s}, An+1(s) =
∪

t∈An(s)

{|α− t|, |β − t|} for n ∈ N.

Set

(3.2) A(s) =

∞∪
n=1

An(s).

We will use the following two results concerning real numbers.

Lemma 3.1 ( [45]). If α/β is an irrational number then for every s ∈ [α, β], the
closure of A(s) is equal to [0, β].

Lemma 3.2 ( [45]). If α/β is a rational number then for every s ∈ [α, β], the set
A(s) is finite.

We are now ready to prove our main theorem about representation of a set of
common fixed points by a set of fixed points of one nonexpansive mapping.

Theorem 3.3. Let F = {Tt : t ≥ 0} be a strongly continuous nonexpansive semi-
group on a ρ-bounded subset C of a modular function space Lρ, where ρ ∈ ℜ. Let α
and β be positive real numbers such that α/β is an irrational number. Let λ ∈ (0, 1)
be arbitrary. Then

(3.3) F (F) = F
(
λTα + (1− λ)Tβ

)
.
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Proof. Note first that the mapping λTα + (1 − λ)Tβ is nonexpansive with respect
to the convex modular ρ. Without loosing generality we can assume that α < β. It
suffices to prove

(3.4) F
(
λTα + (1− λ)Tβ

)
⊂ F (F),

as the opposite direction inclusion is trivial. Also, this inclusion is trivial when
F (λTα + (1 − λ)Tβ) = ∅. We can assume therefore that there exists w ∈ C such
that

(3.5) λTα(w) + (1− λ)Tβ(w) = w.

Since F is a strongly continuous semigroup it follows that the function Λw is a con-
tinuous real-valued function on the interval [0, β] and hence it attains its maximum
at a number τ ∈ [0, β] which means that

(3.6) ρ
(
Tτ (w)− w

)
= max

{
ρ
(
Tt(w)− w

)
: t ∈ [0, β]

}
.

Since τ ∈ A(τ) ⊂ [0, β], we have

(3.7) ρ
(
Tτ (w)− w

)
= max

{
ρ
(
Ts(w)− w

)
: s ∈ A(τ)

}
.

Let us prove by induction that for every n ∈ N and any s ∈ An(τ),

(3.8) ρ
(
Tτ (w)− w

)
= ρ

(
Ts(w)− w

)
,

Since A1(τ) = {τ}, (3.8) is true for n = 1. Let us make an inductive assumption
that (3.8) holds for n = k. Fix arbitrary t ∈ Ak(τ). By the inductive assumption
we have

(3.9) ρ
(
Tτ (w)− w

)
= ρ

(
Tt(w)− w

)
.

Substituting (3.5) into the right hand side of (3.9) and using the convexity of ρ, and
then using nonexpansiveness, we obtain the following

ρ
(
Tτ (w)− w

)
≤ λρ

(
Tt(w)− Tαw

)
+ (1− λ)ρ

(
Tt(w)− Tβw

)
≤ λρ

(
T|α−t|(w)− w

)
+ (1− λ)ρ

(
T|β−t|(w)− w

)
≤ ρ

(
Tτ (w)− w

)
,

(3.10)

where the last inequality comes from the fact that |α − t| and |β − t| belong to
Ak+1(τ) ⊂ A(τ) and from (3.7). From (3.10) it follows easily that

(3.11) ρ
(
Tτ (w)− w

)
= ρ

(
T|α−t|(w)

)
+ ρ

(
T|β−t|(w)

)
.

By arbitrariness of t ∈ Ak(τ) we conclude that (3.8) holds for k + 1 and hence by
induction it also holds for all natural n. From (3.8) it follows that for any s ∈ A(τ),

(3.12) ρ
(
Tτ (w)− w

)
= ρ

(
Ts(w)− w

)
.
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By Lemma 3.1 A(τ) is dense in [0, β]. Hence, by continuity of Λw we deduce from
(3.12) that

(3.13) ρ
(
Tτ (w)− w

)
= ρ

(
Ts(w)− w

)
for every s ∈ [0, β]. Substituting s = 0 and remembering that T0(w) = w we have

(3.14) ρ
(
Tτ (w)− w

)
= 0,

and consequently ρ
(
Ts(w)−w

)
= 0 for every s ∈ [0, β] implying Ts(w) = w for any

s ∈ [0, β]. Let t be any positive real number, hence t = nβ + s for a n ∈ N ∪ {0}
and s ∈ [0, β]. Therefore

(3.15) Tt(w) = Tn
β ◦ Ts(w) = Tn

β (w) = w,

which means that w ∈ F (F), as claimed. �

Please note that we did not assume in Theorem 3.3 that the common fixed points
actually exist. This theorem, however, reduces the question of existence of common
fixed points to the question of existence of fixed points for each ρ-nonexpansive
mapping. We have therefore the following result which corresponds to the Banach
space results from [2,45].

Theorem 3.4. Let F = {Tt : t ≥ 0} be a strongly continuous nonexpansive semi-
group on a ρ-closed, ρ-bounded and convex subset C of a modular function space Lρ,
where ρ ∈ ℜ. Assume that every ρ-nonexpansive mapping on C has a fixed point.
Then the set of common fixed points of F is nonempty.

Remark 3.5. Please note that our Theorem 3.4 combined with Theorem 4.1 in [22]
gives us an alternative proof of Theorem 2.12.

As we saw the strong continuity assumption of the semigroup was of critical
importance. Let us give an important example when this condition is satisfied but
first let us recall the definition of the uniform continuity of the function modular ρ
in the sense of the following definition (see e.g. [21]).

Definition 3.6. We say that ρ ∈ ℜ is uniformly continuous if to every ε > 0 and
L > 0, there exists δ > 0 such that

(3.16) |ρ(x)− ρ(x+ h)| ≤ ε,

provided ρ(h) < δ and ρ(x) ≤ L.

Let us mention that the uniform continuity holds for a large class of function
modulars. For instance, it can be proved that in Orlicz spaces over a finite atomless
measure [5] or in sequence Orlicz spaces [16] the uniform continuity of the Orlicz
modular is equivalent to the ∆2-type condition on the Orlicz function.

It is easy to see that if a semigroup F is continuous and the modular ρ is uniformly
continuous then F is strongly continuous. Consequently, we have the following
result.
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Theorem 3.7. Let F = {Tt : t ≥ 0} be a continuous nonexpansive semigroup on
a subset C of a modular function space Lρ, where ρ ∈ ℜ is uniformly continuous.
Let α and β be positive real numbers such that α/β is an irrational number. Let
λ ∈ (0, 1) be arbitrary. Then

(3.17) F (F) = F
(
λTα + (1− λ)Tβ

)
.

A natural question arises what representation of common fixed point sets can be
achieved without assuming that the semigroup F is strongly continuous. It turns
out that we can indeed characterize finite intersections of sets of fixed points.

Theorem 3.8. Let F = {Tt : t ≥ 0} be a nonexpansive semigroup on a subset C
of a modular function space Lρ, where ρ ∈ ℜ. Let α and β be positive real numbers
such that α/β is a rational number. Let λ ∈ (0, 1) be arbitrary. Then

(3.18) F (Tα) ∩ F (Tβ) = F
(
λTα + (1− λ)Tβ

)
.

Proof. Assume that α < β. It suffices to prove that

(3.19) F
(
λTα + (1− λ)Tβ

)
⊂ F (Tα) ∩ F (Tβ).

Fix an arbitrary w ∈ F
(
λTα + (1 − λ)Tβ

)
. By Lemma 3.2, the set A(0) is finite.

Therefore, there exists τ ∈ A(0) such that

(3.20) ρ
(
Tτ (w)− w

)
= max

{
ρ
(
Ts(w)− w

)
: s ∈ A(0)

}
.

Arguing like in the proof of Theorem 3.3 we conclude that

(3.21) ρ
(
Tτ (w)− w

)
= ρ

(
Ts(w)− w

)
,

for every s ∈ A(0). Since 0 ∈ A(0) and T0(w) = w, it follows that

(3.22) ρ
(
Tτ (w)− w

)
= 0.

Using this and the fact that both α ∈ A(0) and β ∈ A(0), we have

(3.23) ρ
(
Tα(w)− w

)
= ρ

(
Tβ(w)− w

)
= ρ

(
Tτ (w)− w

)
= 0,

which implies that

(3.24) Tα(w) = Tβ(w) = w.

The proof is complete. �

4. Convergence theorems

The results of the previous section reduce, in some cases, a complex task of finding
the set of all common fixed points of a semigroup of mappings to a simpler one of
finding a set of fixed points of just one nonexpansive mapping: λTα + (1 − λ)Tβ.
This is a significant simplification but still does not a give us a method allowing
construction of such points. In this section we investigate how the representation
theorems form the previous section can be utilized for construction of common fixed
points.

Let us first remind the reader the definition of Strong Opial property, [19,21].
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Definition 4.1. We say that Lρ satisfies the ρ-a.e. strong Opial property if for
every {xn} ∈ Lρ which is ρ-a.e. convergent to 0 such that there exists a β > 1 for
which

(4.1) sup
n
{ρ(βxn)} < ∞,

the following equality holds for any y ∈ Eρ

(4.2) lim inf
n→∞

ρ(xn + y) = lim inf
n→∞

ρ(xn) + ρ(y).

Remark 4.2. Also, note that, by virtue of Theorem 2.1 in [19], every convex,
orthogonally additive function modular ρ has the ρ-a.e. strong Opial property.
Let us recall that ρ is called orthogonally additive if ρ(x1A∪B) = ρ(x1A) + ρ(x1B)
whenever A ∩ B = ∅. Therefore, all Orlicz and Musielak-Orlicz spaces must have
the strong Opial property.

Note that the Opial property in the norm sense does not necessarily hold for
several classical Banach function spaces. For instance the norm Opial property
does not hold for Lp spaces for 1 ≤ p ̸= 2 while the modular strong Opial property
holds in Lp for all p ≥ 1.

Following [4], let us start with the definition of the generalized Mann iteration
process.

Definition 4.3. Let T ) be a ρ-nonexpansive mappimng of C ⊂ ofLρ. Let {tk} ⊂
(0, 1) be bounded away from 0 and 1. The generalized Mann iteration process
generated by the mapping T and the sequence {tk}, denoted by gM(T, {tk}) is
defined by the following iterative formula:

(4.3) xk+1 = tkT
k(xk) + (1− tk)xk, where x1 ∈ C is chosen arbitrarily.

We will use the following convergence result for ρ-nonexpansive mappings.

Theorem 4.4 ([4]). Let ρ ∈ ℜ. Assume that

(1) ρ is (UUC),
(2) ρ has Strong Opial Property,
(3) ρ has ∆2 property and is uniformly continuous.

Let C ⊂ Lρ be a nonempty, sequentially compact with respect to the ρ−a.e. conver-
gence, convex, strongly ρ-bounded and ρ-closed. Let T be ρ-nonexpansive. Assume
that a sequence {tk} ⊂ (0, 1) is bounded away from 0 and 1. Let gM(T, {tk}) be a
generalized Mann iteration process. Then there exists x ∈ F (T ) such that xn → x
ρ-a.e.

Combining Theorem 3.7 with Theorem 4.4 one can easily obtain the following
convergence result for semigroups of nonexpansive mappings.

Theorem 4.5. Let C be a nonempty, sequentially compact with respect to the ρ−a.e.
convergence, convex, strongly ρ-bounded and ρ-closed subset of Lρ, where ρ ∈ ℜ is
uniformly continuous, (UUC) and has ∆2 property. Let F = {Tt : t ≥ 0} be a
continuous nonexpansive semigroup on C. Assume that a sequence {tk} ⊂ (0, 1)
is bounded away from 0 and 1. Let gM(T, {tk}) be a generalized Mann iteration
process. Then there exists x ∈ F (F) such that xn → x ρ-a.e.
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The two-step Ishikawa iteration process is a generalization of the one-step Mann
process. The Ishikawa iteration process provides more flexibility in defining the
algorithm parameters which is important from the numerical implementation per-
spective.

Definition 4.6. Let T be ρ-nonexpansive mapping on C. Let {tk} ⊂ (0, 1) be
bounded away from 0 and 1, and {sk} ⊂ (0, 1) be bounded away from 1. The
generalized Ishikawa iteration process generated by the mapping T , the sequences
{tk} and {sk}, denoted by gI(T, {tk}, {sk}), is defined by the following iterative
formula:
(4.4)

xk+1 = tkT
k(skT

k(xk)+(1−sk)xk)+(1−tk)xk, where x1 ∈ C is chosen arbitrarily.

Using Theorem 6.1 of [4] and Theorem 3.7 it is easy to obtain the following
convergence result.

Theorem 4.7. Let C be a nonempty, sequentially compact with respect to the ρ−a.e.
convergence, convex, strongly ρ-bounded and ρ-closed subset of Lρ, where ρ ∈ ℜ is
uniformly continuous, (UUC) and has ∆2 property. Let F = {Tt : t ≥ 0} be a
continuous nonexpansive semigroup on C. Assume that a sequence {tk} ⊂ (0, 1)
is bounded away from 0 and 1, and that {sk} ⊂ (0, 1) is bounded away from 1.
Let gI(T, {tk}, {sk}) be a generalized Ishikawa iteration process. Then there exists
x ∈ F (F) such that xn → x ρ-a.e.

In the theory of modular function spaces the ρ−a.e. convergence plays role similar
to that of weak convergence in Banach spaces. To obtain strong type convergence
to a common fixed point we need to replace the assumption of compactness with
respect to the ρ − a.e. convergence by the strong compactness. First, let us recall
the strong convergence theorem for nonexpansive mappings in modular function
spaces.

Theorem 4.8. [4] Let ρ ∈ ℜ satisfy conditions (UUC) and ∆2. Let C ⊂ Lρ be
a ρ-compact, ρ-bounded and convex set, and let T be ρ-nonexpansive in C. Let
{tk} ⊂ (0, 1) be bounded away from 0 and 1, and {sk} ⊂ (0, 1) be bounded away
from 1. Then there exists a fixed point x ∈ F (T ) such that then {xk} generated by
gM(T, {tk}) (resp. gI(T, {tk}, {sk}) converges strongly to a fixed point of T , that is

(4.5) lim
k→∞

ρ(xk − x) = 0.

Remark 4.9. Observe that in view of the ∆2 assumption, the ρ-compactness of
the set C assumed in Theorem 4.8 is equivalent to the compactness in the sense of
the Luxemburg norm defined by ρ.

Finally we have the following strong convergence result.

Theorem 4.10. Let ρ ∈ ℜ satisfy conditions (UUC) and ∆2. Let C ⊂ Lρ be
a ρ-compact, ρ-bounded and convex set. Let F = {Tt : t ≥ 0} be a continuous
nonexpansive semigroup on C. Let {tk} ⊂ (0, 1) be bounded away from 0 and 1, and
{sk} ⊂ (0, 1) be bounded away from 1. Then there exists a fixed point x ∈ F (F) such
that then {xk} generated by gM(T, {tk}) (resp. gI(T, {tk}, {sk}) converges strongly
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to a common fixed point of F , that is

(4.6) lim
k→∞

ρ(xk − x) = 0.

Remark 4.11. Observe that in view of the ∆2 assumption, the ρ-convergence in
(4.6) is equivalent to the convergence in the sense of the Luxemburg norm defined
by ρ.

References

[1] S. C. Bose, Weak convergence to the fixed point of an asymptotically nonexpansive, Proc. Amer.
Math. Soc. 68 (1978), 305–308.

[2] R. E. Bruck, A common fixed point theorem for a commuting family of nonexpansive mappings,
Pacific. J. Math. 53 (1974), 59–71.

[3] R. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive
mappings in Banach spaces with the uniform Opial property, Coll. Math. 65 (1993), 169–179.

[4] B. A. Bin Dehaish and W. M. Kozlowski, Fixed point iterations processes for asymptotic point-
wise nonexpansive mappings in modular function spaces, Fixed Point Theory and Applications
2012:118 (2012).

[5] S. Chen, Geometry of Orlicz Spaces, Dissertationes Mathematicae 356 (1996).
[6] T. Dominguez-Benavides, M.A. Khamsi and S. Samadi, Uniformly Lipschitzian mappings in

modular function spaces, Nonlinear Analysis 46 (2001), 267–278.
[7] T. Dominguez-Benavides, M. A. Khamsi and S. Samadi, Asymptotically regular mappings in

modular function spaces, Scientiae Mathematicae Japonicae, 53 (2001), 295–304.
[8] T. Dominguez-Benavides, M. A. Khamsi and S. Samadi, Asymptotically nonexpansive map-

pings in modular function spaces, J. Math. Anal. Appl. 265.2 (2002), 249–263.
[9] J. Garcia Falset, W. Kaczor, T. Kuczumow and S. Reich, Weak convergence theorems for

asymptotically nonexpansive mappings and semigroups, Nonlinear Analysis 43 (2001), 377–
401.

[10] J. Gornicki, Weak convergence theorems for asymptotically nonexpansive mappings in uni-
formly convex Banach spaces, Comment. Math. Univ. Carolin. 30 (1989), 249–252.

[11] N. Hussain, and M. A. Khamsi, On asymptotic pointwise contractions in metric spaces, Non-
linear Analysis 71 (2009), 4423–4429.

[12] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–
150.

[13] J. S. Jung, and T. H. Kim, Approximating fixed points of nonlinear mappings in Banach spaces,
Ann. Univ. Mariae Curie Sklodowska, 51 (1997), 149–165.

[14] W. Kaczor, T. Kuczumow and S. Reich, A mean ergodic theorem for nonlinear semigroups
which are asymptotically nonexpansive in the intermediate sense, J. Math. Anal. Appl.
246 (2000), 1– 27.

[15] W. Kaczor, T. Kuczumow and S. Reich, A mean ergodic theorem for mappings which are
asymptotically nonexpansive in the intermediate sense, Nonlinear Analysis 47 (2001), 2731–
2742.

[16] A. Kaminska, On uniform convexity of Orlicz spaces, Indag. Math. 44 (1982), 27-36.
[17] M. A. Khamsi, Nonlinear semigroups in modular function spaces, Math. Japonica, 37 (1992),

1–9.
[18] M. A. Khamsi, Fixed point theory in modular function spaces, Proceedings of the Workshop on

Recent Advances on Metric Fixed Point Theory held in Sevilla, September, 1995, pp. 31–35.
[19] M. A. Khamsi, A convexity property in Modular function spaces, Math. Japonica 44 (1996),

269–279.
[20] M. A. Khamsi, On asymptotically nonexpansive mappings in hyperconvex metric xpaces, Proc.

Amer. Math. Soc. 132 (2004), 365–373.
[21] M. A. Khamsi andW. M. Kozlowski, On asymptotic pointwise contractions in modular function

spaces, Nonlinear Analysis 73 (2010), 2957–2967.



448 W. M. KOZLOWSKI

[22] M. A. Khamsi and W. M. Kozlowski, On asymptotic pointwise nonexpansive mappings in
modular function spaces, J. Math. Anal. Appl. 380 (2011), 697–708.

[23] M. A. Khamsi, W. M. Kozlowski and S. Reich, Fixed point theory in modular function spaces,
Nonlinear Analysis 14 (1990), 935–953.

[24] M. A. Khamsi, W. M. Kozlowski and C. Shutao, Some geometrical properties and fixed point
theorems in Orlicz spaces, J. Math. Anal. Appl. 155.2 (1991), 393–412.

[25] W. M. Kozlowski, Notes on modular function spaces I, Comment. Math. 28 (1988), 91–104.
[26] W. M. Kozlowski, Notes on modular function spaces II, Comment. Math. 28 (1988), 105–120.
[27] W. M. Kozlowski, Modular Function Spaces, Series of Monographs and Textbooks in Pure and

Applied Mathematics, Vol.122, Dekker, New York/Basel, 1988.
[28] W. M. Kozlowski, Fixed point iteration processes for asymptotic pointwise nonexpansive map-

pings in Banach spaces, J. Math. Anal. Appl. 377 (2011), 43– 52.
[29] W. M. Kozlowski, Common fixed points for semigroups of pointwise Lipschitzian mappings in

Banach spaces, Bull. Austral. Math Soc. 84 (2011), 353–361.
[30] W. M. Kozlowski, On the existence of common fixed points for semigroups of nonlinear map-

pings in modular function spaces, Comment. Math. 51 (2011), 81– 98.
[31] W. M. Kozlowski, Advancements in fixed point theory in modular function, Arab J. Math.

(2012), doi:10.1007/s40065-012-0051-0.
[32] W. M. Kozlowski, On the construction of common fixed points for semigroups of nonlinear map-

pings in uniformly convex and uniformly smooth Banach spaces, Comment. Math. 52 (2012),
113–136.

[33] W. M. Kozlowski, Pointwise Lipschitzian mappings in uniformly convex and uniformly smooth
Banach spaces, Nonlinear Analysis, 84 (2013), 50–60.

[34] W. M. Kozlowski and B. Sims On the convergence of iteration processes for semigroups of non-
linear mappings in Banach spaces, in Computational and Analytical Mathematics, In Honor of
Jonathan Borwein’s 60th Birthday, D. H. Bailey, H. H. Bauschke, P. Borwein, F. Garvan, M.
Thera, J. D. Vanderwerff, H. Wolkowicz (eds), Springer Proceedings in Mathematics Statistics,
Vol. 50, New York, Heidelberg, Dordrecht, London, 2013.

[35] M. A. Krasnosle’skii, Two remarks on the method of successive approximation (in Russian),
Uspehi Mat. Nauk 10 (1955), 123–127.

[36] G. Lewicki, and G. Marino, On some algorithms in Banach spaces finding fixed points of
nonlinear mappings, Nonlinear Anal. 71 (2009), 3964–3972.

[37] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
[38] M. A. Noor and B. Xu, Fixed point iterations for asymptotically nonexpansive mappings in

Banach spaces, J. Math. Anal. Appl. 267 (2002), 444–453.
[39] G. B. Passty, Construction of fixed points for asymptotically nonexpansive mappings, Proc.

Amer. Math. Soc. 84 (1982), 212–216.
[40] S. Reich, Fixed point iterations of nonexpansive mappings, Pacific J. Math. 60 (1975), 195–198.
[41] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math.

Anal. Appl. 67 (1979), 274–276.
[42] B. E. Rhoades, Fixed point iterations for certain nonlinear mappings, J. Math. Anal. Appl.

183 (1994), 118–120.
[43] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J.

Math. Anal. Appl. 158 (1991), 407– 413.
[44] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings,

Bull. Austral. Math. Soc. 43 (1991), 153–159.
[45] T. Suzuki, Common fixed points of one-parameter nonexpansive semigroup, Bull. London.

Math. Soc. 38 (2006), 1009–1018.
[46] T. Suzuki and W. Takahashi, Strong convergence of Mann’s type sequences for one-parameter

nonexpansive semigroups in general Banach spaces, J. Nonlinear Convex Anal. 5 (2004), 209–
216.

[47] K.-K.Tan and H.-K. Xu, An ergodic theorem for nonlinear semigroups of Lipschitzian mappings
in Banach spaces, Nonlinear Anal. 19 (1992), 805–813.



COMMON FIXED POINTS 449

[48] K.-K.Tan and H.-K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa
iteration process, J. Math. Anal. Appl. 178 (1993), 301–308.

[49] K.-K.Tan and H.-K. Xu, Fixed point iteration processes for asymptotically nonexpansive map-
pings, Proc. Amer. Math. Soc. 122 (1994), 733–739.

[50] H.-K. Xu, Existence and convergence for fixed points of asymptotically nonexpansive type,
Nonlinear Anal. 16 (1991), 1139–1146.

Manuscript received March 1, 2013

revised May 9, 2013

W. M. Kozlowski
School of Mathematics and Statistics, University of New SouthWales, Sydney, NSW 2052, Australia

E-mail address: w.m.kozlowski@unsw.edu.au


