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Theorem 1.4. Suppose X is uniformly convex and Y is an arbitrary Banach space.
If in (X ⊕ Y, ∥ · ∥Z) the norm ∥ · ∥Z satisfies (∗) and for a bounded and convex set
C ⊂ X⊕Y its projection P2(C) is a compact set in Y , then C has the demiclosedness
principle for nonexpansive mappings.

In Theorems 1.3 and 1.4 the norm ∥ · ∥Z in X⊕Y is defined as follows. Let ∥ · ∥Z
be any norm in R2 that satisfies

(1) ∥(s, 0)∥Z = ∥(0, s)∥Z = |s| for all s ∈ R,
(2) ∥(s, t)∥Z = ∥(|s|, |t|)∥Z for all s, t ∈ R,
(3) ∥(s, t)∥Z ≤ ∥(s1, t1)∥Z for 0 ≤ s ≤ s1 and 0 ≤ t ≤ t1.

Moreover, assume that the norm ∥ · ∥Z satisfies the following condition:

(∗) ∥(s, t)∥Z > |s| for all t ̸= 0.

Now, the norm of (X ⊕ Y, ∥ · ∥Z) is given by

∥(x, y)∥Z = ∥(∥x∥X , ∥y∥Y )∥Z
for all (x, y) ∈ X ⊕ Y.

Browder’s result has been generalized to wider classes of mappings, Banach spaces
and even CAT(0) spaces [22]. First in [27] H.-K. Xu extended demiclosedness prin-
ciple to asymptotically nonexpansive mappings (see also [11]).

Theorem 1.5 ([27]). Let X be a uniformly convex Banach space, C a bounded,
closed and convex subset of X, and T : C → C an asymptotically nonexpansive
mapping. Then I − T is demiclosed at 0.

The nonstandard proof of the above result can be found in [17] (compare [13]).
Later for asymptotically nonexpansive in the intermediate sense mappings and nets
the similar result was obtained [14].

Theorem 1.6. Let X be a uniformly convex Banach space, C a bounded, closed
and convex subset of X, and T : C → C a uniformly continuous mapping which
is asymptotically nonexpansive in the intermediate sense. If {xξ}ξ∈I is a net in C
converging weakly to x and if

lim
ξ∈I

∥xξ − Txξ∥ = 0,

then x = Tx.

The above theorem is a direct consequence of the following generalized demi-
closedness property.

Theorem 1.7 ([14]). Let X be a uniformly convex Banach space, C a bounded,
closed and convex subset of X, and T : C → C a continuous mapping which is
asymptotically nonexpansive in the intermediate sense. If {xξ}ξ∈I is a net in C
converging weakly to x and if

lim
k→∞

(lim sup
ξ∈I

∥xξ − T kxξ∥) = 0,

then x = Tx.
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In our paper we extend the above results: theorems due to P.-K. Lin and H.-K.
Xu and Theorem 1.7.

Next, we apply our demiclosedness principle for nets to get a construction of a
nonexpansive S-ergodic retraction R : C → FixS onto the common fixed point set
of a family S of commuting, uniformly continuous and asymptotically nonexpansive
in the intermediate sense self-mappings of C. Let us observe that in [16] under
the assumption of separability of a uniformly convex Banach space X and using
demiclosedness principle for sequences the authors give a simpler, than we show
here, construction of the S-ergodic nonexpansive retraction onto the fixed point set
of a finite family S of commuting asymptotically nonexpansive in the intermediate
sense mappings.

Finally, it is worth mentioning here that T. Domı́nguez Benavides and P. Lorenzo
Ramı́rez [10] using different methods proved the following general and deep result
about the common fixed point set for commuting families of mappings.

Theorem 1.8 ([10]). Let X be a Banach space and C a nonempty weakly compact
convex subset of X. Assume that every asymptotically nonexpansive self-mapping
of C satisfies the (ω)-fpp. Then for any commuting family G of asymptotically
nonexpansive self-mappings of C, the common fixed point set of G is a nonempty
nonexpansive retract of C.

2. Preliminaries

First we recall some necessary definitions, notions and notations. The modulus
of convexity [9] of a Banach space X is the function δ : [0, 2] → [0, 1] defined by

δ(ϵ) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
.

A Banach space X is said to be uniformly convex if δ(ϵ) > 0 for each ϵ ∈ (0, 2].
By FixT we denote the set of fixed points of a mapping T .

Definition 2.1. Let C ⊂ X. A mapping T : C → C is nonexpansive if for any
x, y ∈ C,

∥Tx− Ty∥ ≤ ∥x− y∥.

Some results concerning nonexpansive mappings have been extended to wider
classes of mappings and Banach spaces. Now we recall definitions of these classes
of mappings. The first one was introduced in 1972 by K. Goebel and W. A. Kirk
[12].

Definition 2.2. Let C ⊂ X and T : C → C. If there exists a sequence {kn} of
positive real numbers with kn → 1 as n → ∞ for which

∥Tnx− Tny∥ ≤ kn∥x− y∥

for all x, y ∈ C, then T is said to be asymptotically nonexpansive.

Later in 1974 W. A. Kirk [19] defined mappings of asymptotically nonexpansive
type.
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Definition 2.3. Let C ⊂ X be bounded and T : C → C. If T satisfies

lim sup
n→∞

sup
y∈C

(∥Tnx− Tny∥ − ∥x− y∥) ≤ 0

for each x ∈ C, and TN is continuous for some N ≥ 1, then T is a mapping of
asymptotically nonexpansive type.

The third class of mappings was introduced in 1993 by R. E. Bruck, T. Kuczumow
and S. Reich [8].

Definition 2.4. Let C ⊂ X be bounded. A mapping T : C → C is called asymp-
totically nonexpansive in the intermediate sense if T is continuous and

lim sup
n→∞

sup
x,y∈C

(∥Tnx− Tny∥ − ∥x− y∥) ≤ 0.

W. A. Kirk [19] proved that if X is a uniformly convex Banach space, C ⊂
X is nonempty, bounded, closed and convex and T : C → C is a mapping of
asymptotically nonexpansive type, then T has a fixed point.

Now we give necessary information about ultrapowers. Basic facts concerning
ultrapowers come from the book [17] and we adopt notations introduced there. The
set N can be treated as a sequence {n}n∈N. Hence it has a subnet {nξ} which is an
ultranet (see, e.g.,[1]). Throughout this paper the ultranet {nξ} will remain fixed.

Given a Banach space X, we define

l∞(X) = {x = {xn} : sup
n∈N

∥xn∥ < ∞}

and for {xn} ∈ l∞(X) we put

∥{xn}∥∞ = sup
n∈N

∥xn∥.

It is known that l∞(X) is a Banach space equipped with the above norm. Now let

N = {{xn} ∈ l∞(X) : lim
ξ

∥xnξ
∥ = 0},

and define the Banach space ultrapower X̃ of X (relative to the fixed ultranet {nξ})
as the quotient space l∞(X)/N . The elements of X̃ consist of equivalence classes

x̃ = [{xn}]. It is known that X̃ with the norm ∥·∥ξ defined by the following formula

∥x̃∥ξ = ∥[{xn}]∥ξ = lim
ξ

∥xnξ
∥,

is a Banach space. We also have {un} ∈ [{xn}] if and only if limξ ∥unξ
− xnξ

∥ = 0.

Moreover, if X is uniformly convex, then so is X̃ and δ
X̃

= δX .
Let (xn) denote the constant sequence whose all terms are equal to x, where

x ∈ X. Then ẋ = [(xn)] ∈ X̃ and X is linearly isometric to the subspace

Ẋ = {ẋ : x ∈ X}

of the ultrapower X̃ via mapping i(x) = ẋ. Now if C ⊂ X, then we set

Ċ = {ẋ : x ∈ C}
and

C̃ = {x̃ = [{xn}] : xn ∈ C for each n}.
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To state our next observation we need the following notions and notations. Let
(X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be two Banach spaces and let P1 and P2 be the standard
projections of X ⊕ Y onto X and Y , respectively.

Now we recall the definition of the norm ∥ · ∥Z in X ⊕ Y , which was mentioned
in the Introduction. Let ∥ · ∥Z be any norm in R2 that satisfies

(1) ∥(s, 0)∥Z = ∥(0, s)∥Z = |s| for all s ∈ R,
(2) ∥(s, t)∥Z = ∥(|s|, |t|)∥Z for all s, t ∈ R,
(3) ∥(s, t)∥Z ≤ ∥(s1, t1)∥Z for 0 ≤ s ≤ s1 and 0 ≤ t ≤ t1.

Clearly, there are m,M > 0 such that

m ·max{|s|, |t|} ≤ ∥(s, t)∥Z ≤ M ·max{|s|, |t|}

for all s, t ∈ R.
The norm ∥ · ∥Z in X ⊕ Y is generated by the above R2-norm by setting

∥(x, y)∥Z = ∥(∥x∥X , ∥y∥Y )∥Z
for all (x, y) ∈ X ⊕ Y.

Suppose also that the norm ∥ · ∥Z satisfies

(∗) ∥(s, t)∥Z > |s| for all t ̸= 0.

Then the norm in the ultrapower X̃ ⊕ Y of X ⊕ Y has the following form

∥[{(xn, yn)}]∥ = lim
ξ

∥(∥xnξ
∥X , ∥ynξ

∥Y )∥Z

= ∥(lim
ξ

∥xnξ
∥X , lim

ξ
∥ynξ

∥Y )∥Z = ∥(∥[{xn}]∥, ∥[{yn}]∥)∥Z

and therefore X̃ ⊕ Y = X̃ ⊕ Ỹ and its norm satisfies the condition similar (∗).
Namely,

(∗∗) ∥[{(xn, yn)}]∥ > ∥[{xn}]∥ for all [{yn}] ̸= 0.

Hence we also denote ∥[{(xn, yn)}]∥ by ∥ · ∥Z .
If P2(C), where C ⊂ X ⊕ Y , is a compact set in Y , then

C̃ ⊂ P̃1(C)⊕ ˙P2(C)

and therefore the set C̃ can be treated as a subset of the Banach space (X̃⊕Y, ∥·∥Z)
with compact P2(C̃). Now if X is additionally uniformly convex and C ⊂ X ⊕ Y

is weakly compact and P2(C) is a compact, then C̃ ⊂ P̃1(C) ⊕ ˙P2(C) and both

sets C̃ and P̃1(C) are weakly compact and the second one lies in the uniformly

convex Banach space X̃. So, C̃ can be identified with the weakly compact subset of

(X̃ ⊕ Y, ∥ · ∥Z), where X̃ is the uniformly convex Banach space and P2(C̃) = P2(C)

is compact. If C is additionally convex, then C̃ is also convex.
More facts concerning this setting can be found, for example, in [1], [17], [18],

[25] and [26].
Now let X be an arbitrary Banach space, ∅ ̸= C ⊂ X and suppose T : C → C.

We can define a canonical extension T̃ : C̃ → C̃ of T by

T̃ (x̃) = [{T (xn)}]
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for x̃ = [{xn}] ∈ C̃. In the case of a uniformly continuous mapping T : C → C
which is asymptotically nonexpansive in the intermediate sense, we can also define

another natural mapping T̂ : C̃ → C̃ by setting

T̂ (x̃) = [{Tn(xn)}]

for x̃ = [{xn}] ∈ C̃. It is clear that this mapping is nonexpansive.

3. The generalized demiclosedness principle

We begin from the following definition.

Definition 3.1. Let C be a nonempty bounded closed and convex subset of a
Banach space (X, ∥ · ∥). C is said to have the generalized demiclosedness property
if for any continuous and asymptotically nonexpansive in the intermediate sense
mapping T : C → C and each sequence {xn} in C converging weakly to x with

lim
k→∞

lim sup
n→∞

∥xn − T kxn∥ = 0

we have Tx = x. The space X is said to have the generalized demiclosedness prop-
erty if every nonempty bounded closed and convex subset of X has the generalized
demiclosedness property.

Now we can state the main result of this section.

Theorem 3.2. Suppose X is uniformly convex, Y is a Banach space and ∥ · ∥Z is a
norm in X⊕Y . If the norm ∥ · ∥Z satisfies (∗), then each nonempty bounded closed
and convex subset C of (X ⊕ Y, ∥ · ∥Z) such that P2(C) is compact in Y has the
generalized demiclosedness property for continuous and asymptotically nonexpansive
in the intermediate sense mappings.

Proof. Let C be a nonempty bounded closed and convex subset of a Banach space
(X⊕Y, ∥ · ∥Z) and let T : C → C be a continuous and asymptotically nonexpansive
in the intermediate sense mapping. Suppose that {(xn, yn)} is a weakly convergent
sequence in C with

lim
k→∞

lim sup
n→∞

∥(xn, yn)− T k(xn, yn)∥Z = 0.

For (x, y) = w-limn→∞(xn, yn), we shall prove that T (x, y) = (x, y). It is obvious
that {yn} tends strongly to y. Set

ρ = inf{lim inf
n→∞

∥x′n − x∥X : {(x′n, y′n)} ∈ D},

where D is the set of all sequences {(x′n, y′n)} in C which satisfy the following three
conditions:

(i) limn→∞ y′n = y,
(ii) w-limn→∞ x′n = x,
(iii) limk→∞ lim supn→∞ ∥(x′n, y′n)− T k(x′n, y

′
n)∥Z = 0.

Assume first that ρ = 0. Given ϵ > 0, there is a sequence {(x′n, y′n)} ∈ D such
that limn→∞ ∥x′n − x∥ exists and limn→∞ ∥x′n − x∥ ≤ ϵ

2M . Then we have

∥(x, y)− T k(x, y)∥Z ≤ ∥(x, y)− (x′n, y
′
n)∥Z + ∥(x′n, y′n)− T k(x′n, y

′
n)∥Z
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+ ∥T k(x′n, y
′
n)− T k(x, y)∥Z

≤ 2M max{∥x− x′n∥X , ∥y − y′n∥Y }

+ ∥(x′n, y′n)− T k(x′n, y
′
n)∥Z + ηk,

where

0 ≤ ηk = max{0, sup
(x,y),(x′,y′)∈C

(∥T k(x, y)− T k(x′, y′)∥ − ∥(x, y)− (x′, y′)∥)}.

Therefore

lim
k→∞

ηk = 0

and

lim sup
k→∞

∥(x, y)− T k(x, y)∥Z ≤ lim sup
k→∞

lim sup
n→∞

[2M max{∥x− x′n|X , ∥y − y′n∥Y }

+ ∥(x′n, y′n)− T k(x′n, y
′
n)∥Z + ηk] ≤ ϵ.

This means that

lim
k→∞

∥(x, y)− T k(x, y)∥Z = 0

and, by the continuity of T , we get

T (x, y) = T ( lim
k→∞

T k(x, y)) = lim
k→∞

T (T k(x, y)) = lim
k→∞

T k+1(x, y) = (x, y).

Suppose now that ρ > 0. By the definition of ρ for 0 < ϵ < ρ there is a sequence
{(x′n, y′n)} ∈ D such that limn→∞ ∥x′n − x∥X exists and

ρ ≤ lim
n→∞

∥x′n − x∥X ≤ ρ+ ϵ < 2ρ.

Let

(x′′n, y
′′
n) =

1

2
[(x′n, y

′
n) + (x′n+1, y

′
n+1)].

We may assume that limn→∞ ∥x′′n − x∥X exists. Our task is to prove that the
sequence {(x′′n, y′′n)} is in D, which will lead to a contradiction. To show that
{(x′′n, y′′n)} ∈ D, we introduce the following notation

(x̄nk, ȳnk) = T k(x′′n, y
′′
n)

and

(x̄′nk, ȳ
′
nk) = T k(x′n, y

′
n)

for n.k = 1, 2, . . . . By assumptions and by passing to a subsequence, we may assume
that ∥x′n − x′m∥ ≥ ρ

2 for all n ̸= m. Since

m ·max{∥x′n − x̄′nk∥X , ∥y′n − ȳ′nk∥Y } ≤ ∥(x′n, y′n)− (x̄′nk, ȳ
′
nk)∥Z

and

lim
k→∞

lim sup
n→∞

∥(x′n, y′n)− (x̄′nk, ȳ
′
nk)∥Z = 0,

we get

lim
k→∞

lim sup
n→∞

∥x′n − x̄′nk∥X = 0,

lim
k→∞

lim sup
n→∞

∥y′n − ȳ′nk∥Y = 0
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and finally,
lim
k→∞

lim sup
n→∞

∥y − ȳ′nk∥Y = 0.

We proceed to show that

lim
k→∞

lim sup
n→∞

∥(x′′n, y′′n)− (x̄nk, ȳnk)∥Z = 0.

First we choose sequences {ki} and {ni} so that

lim sup
k→∞

lim sup
n→∞

∥(x′′n, y′′n)− (x̄nk, ȳnk)∥Z = lim
i→∞

∥(x′′ni
, y′′ni

)− (x̄niki , ȳniki)∥Z ,

lim
i→∞

∥T ki(x′ni
, y′ni

)− (x′ni
, y′ni

)∥Z = 0

and the limits
lim
i→∞

∥x̄niki − x′ni
∥X ,

lim
i→∞

∥x̄niki − x′ni+1∥X ,

lim
i→∞

∥ȳniki − y′ni
∥Y ,

lim
i→∞

∥ȳniki − y′ni+1∥Y ,

lim
i→∞

∥x′ni
− x̄′niki

∥X = 0,

lim
i→∞

∥y′ni
− ȳ′niki

∥Y = 0

and
lim
i→∞

∥x′ni
− x′ni+1∥X = r ≥ ρ

2
exist. Then we have

lim
i→∞

∥(x̄niki , ȳniki)− (x′ni
, y′ni

)∥Z = lim
i→∞

∥T ki(x′′ni
, y′′ni

)− T ki(x′ni
, y′ni

)∥Z

+ lim
i→∞

∥T ki(x′ni
, y′ni

)− (x′ni
, y′ni

)∥Z

= lim
i→∞

∥T ki(x′′ni
, y′′ni

)− T ki(x′ni
, y′ni

)∥Z .

Consequently, applying the property (∗) we get

lim
i→∞

∥x̄niki − x′ni
∥X ≤ lim

i→∞
∥(x̄niki , ȳniki)− (x′ni

, y′ni
)∥Z

= lim
i→∞

∥T ki(x′′ni
, y′′ni

)− T ki(x′ni
, y′ni

)∥Z

≤ lim
i→∞

∥(x′′ni
, y′′ni

)− (x′ni
, y′ni

)∥Z

=
1

2
lim
i→∞

∥x′ni+1 − x′ni
∥X =

1

2
r.

Likewise,

lim
i→∞

∥x̄niki − x′ni+1∥X ≤ lim
i→∞

∥(x̄niki , ȳniki)− (x′ni+1, y
′
ni+1)∥Z

≤ 1

2
lim
i→∞

∥x′ni+1 − x′ni
∥X =

1

2
r

Hence

lim
i→∞

∥x̄niki − x′ni
∥X = lim

i→∞
∥x̄niki − x′ni+1∥X =

1

2
lim
i→∞

∥x′ni+1 − x′ni
∥X =

1

2
r.
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By the uniform convexity of X we get

lim
i→∞

∥x̄niki − x′′ni
∥X = 0.

By the above we also obtain

1

2
r = lim

i→∞
∥x̄niki − x′ni

∥X = lim
i→∞

∥(x̄niki , ȳniki)− (x′ni
, y′ni

)∥Z ,

1

2
r = lim

i→∞
∥x̄niki − x′ni+1∥X = lim

i→∞
∥(x̄niki , ȳniki)− (x′ni+1, y

′
ni+1)∥Z

and since ∥ · ∥Z satisfies (∗), we have

lim
i→∞

∥ȳniki − y′ni
∥Y = 0

and

lim
i→∞

∥ȳniki − y′ni+1∥Y = 0.

Finally,

lim
i→∞

∥ȳniki − y′′ni
∥Y = 0

and

lim
i→∞

∥(x̄niki , ȳniki)− (x′′ni
, y′′ni

)∥Z = 0.

This shows that

lim
k→∞

lim sup
n→∞

∥T k(x′′n, y
′′
n)− (x′′n, y

′′
n)∥Z = 0.

So, we have {(x′′n, y′′n)} ∈ D. But taking 0 < ϵ < δ(14)ρ we get the following
contradiction

0 < ρ ≤ lim inf
n→∞

∥x′′n − x∥X ≤
(
1− δ

(1
4

))(
1 + δ

(1
4

))
ρ < ρ.

�

Directly from the definition of the Schur space and the above theorem we obtain
the following generalized demiclosedness property for Banach spaces.

Corollary 3.3. Suppose X is uniformly convex, Y has the Schur property and ∥·∥Z
is a norm in X ⊕ Y . If the norm ∥ · ∥Z satisfies (∗), then (X ⊕ Y, ∥ · ∥Z) has the
generalized demiclosedness property for continuous and asymptotically nonexpansive
in the intermediate sense mappings.

As a simple consequence of Theorem 3.2 we get.

Theorem 3.4. Suppose X is uniformly convex, Y is a Banach space and ∥ · ∥Z is
a norm in X⊕Y . If the norm ∥ · ∥Z satisfies the condition (∗), then each nonempty
bounded closed and convex subset C of (X ⊕ Y, ∥ · ∥Z) such that P2(C) is compact
in Y has the demiclosedness principle for uniformly continuous and asymptotically
nonexpansive in the intermediate sense mappings, that is, for such a C and for a
uniformly continuous mapping T : C → C which is asymptotically nonexpansive in
the intermediate sense if {(xn, yn)} is a sequence in C converging weakly to (x, y)
and limn→∞ ∥(xn, yn)− T (xn, yn)∥Z = 0, then (x, y) = T (x, y).
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Corollary 3.5. Suppose X is uniformly convex, Y has the Schur property and ∥·∥Z
is a norm in X ⊕ Y . If the norm ∥ · ∥Z satisfies the condition (∗), then (X ⊕ Y, ∥ ·
∥Z) has the demiclosedness principle for uniformly continuous and asymptotically
nonexpansive in the intermediate sense mappings.

4. Equivalence of the demiclosedness principle for sequences and the
demiclosedness principle for nets

In our paper we will need a net version of Theorem 3.4. Therefore we have to
introduce the following definition of demiclosedness for nets.

Definition 4.1. Let X be a Banach space and let ∅ ̸= C ⊂ X be bounded and
convex. A mapping T : C → X is demiclosed for nets at y if a net {xξ} converges
weakly to x and {Txξ} converges strongly to y, then x ∈ C and Tx = y.

If for every nonexpansive mapping T : C → C the mapping I − T , where I is
the identity mapping on C, is demiclosed for nets at 0, then we say that C has the
net-demiclosedness principle for nonexpansive mappings.

If for every uniformly continuous and asymptotically nonexpansive in the in-
termediate sense mapping T : C → C the mapping I − T is demiclosed for nets
at 0, then we say that C has the net-demiclosedness principle for asymptotically
nonexpansive in the intermediate sense mappings.

If each bounded closed convex subset C of X has the net-demiclosedness princi-
ple for nonexpansive (asymptotically nonexpansive in the intermediate sense) map-
pings, then we say that Banach space X has the net-demiclosedness principle for
nonexpansive (asymptotically nonexpansive in the intermediate sense) mappings.

Let us observe that in the case of weakly compact and convex sets both definitions
of the demiclosedness principle for sequences and for nets are equivalent. Indeed,
we have the following general theorem. The idea of its proof is similar to that given
in the proof of Lemma 2.5 in [15].

Theorem 4.2. Let (X, ∥ · ∥) be a Banach space and C be a convex and weakly
compact subset of X with the demiclosedness principle for sequences and a certain
class of continuous mappings. Then C has the demiclosedness principle for nets
and this class of mappings.

Proof. Clearly, it is sufficient to prove that the demiclosedness principle for se-
quences implies the demiclosedness principle for nets. Let T : C → X be a map-
ping in the class of mappings under cosideration. Suppose that a net {xξ}ξ∈I
in C is weakly convergent to x and {Txξ}ξ∈I is strongly convergent to y. If
limξ∈I ∥xξ − x∥ = 0, then we find an increasing sequence {ξn}n∈N so that we have
limn→∞ ∥xξn − x∥ = 0 and limn→∞ ∥Txξn − y∥ = 0. By continuity of T we then
get Tx = y. In the other case the net {xξ − x}ξ∈I is not norm-convergent to zero.
Let xξ = x + x̃ξ for ξ ∈ I. Then {x̃ξ}ξ∈I is a weakly null net. Now we can apply
the Mazur method of constructing basic sequences [2] (see also [15]). Passing even-
tually to a subnet we can assume that inf{∥x̃ξ∥ : ξ ∈ I} > 0. Applying the Mazur
technique and the induction assumption ∥Txξn − y∥ = ∥T (x+ x̃ξn)− y∥ < 1/n we
can find an increasing sequence {ξn}n∈N such that {x̃ξn} is a basic sequence and

lim
n→∞

∥Txξn − y∥ = lim
n→∞

∥T (x+ x̃ξn)− y∥ = 0.
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Now we choose a weakly convergent subsequence {x̃ξnk
}. This subsequence is also

a basic sequence and therefore its weak limit is zero. Hence, the sequence {xξn} =
{x+x̃ξn} is weakly convergent to x and by the demiclosedness principle for sequences
of the set C and of our class of mappings we obtain Tx = y. �

Directly from the above theorem get two corollaries.

Corollary 4.3. Suppose X is uniformly convex, Y is a Banach space and ∥ · ∥Z is
a norm in X ⊕ Y . If the norm ∥ · ∥Z satisfies the condition (∗) then a nonempty,
bounded, closed and convex subset C of (X ⊕ Y, ∥ · ∥Z) such that P2(C) is compact
in Y has the demiclosedness principle for nets in the class of uniformly continuous
and asymptotically nonexpansive in the intermediate sense mappings, that is, if
T : C → C a uniformly continuous mapping which is asymptotically nonexpansive
in the intermediate sense and if {(xξ, yξ)}ξ∈I is a net in C converging weakly to
(x, y) and limξ∈I ∥(xξ, yξ)− T (xξ, yξ)∥Z = 0, then (x, y) = T (x, y).

Corollary 4.4. Suppose X is uniformly convex, Y has the Schur property and ∥·∥Z
is a norm in X⊕Y . If the norm ∥·∥Z satisfies the condition (∗), then (X⊕Y, ∥·∥Z)
has the demiclosedness principle for nets in the class of uniformly continuous and
asymptotically nonexpansive in the intermediate sense mappings.

5. A family of approximate fixed point nets and a construction of a
nonexpansive retraction

In this section we introduce a family of approximate fixed point nets for a family
of uniformly continuous and asymptotically nonexpansive in the intermediate sense
mappings which will be one of the basic tools in our construction of a nonexpansive
retraction. First we recall the following definition.

Definition 5.1. Let C be a nonempty subset of a Banach space X. We say that a
nonempty subset D of C is T -invariant for T : C → C if T (D) ⊂ D. If S is a family
of self-mappings of C and for ∅ ̸= D ⊂ C we have T (D) ⊂ D for each T ∈ S, then
D is called S-invariant.

To get the above mentioned family of approximate fixed point nets we will use two
famous Bruck’s theorems ([4], [5], [6], [7]) in a form suitable for our considerations.

Theorem 5.2. Let C be a nonempty, convex and weakly compact subset of a Banach
space X. Suppose also that C has the following property: If T : C → C is nonexpan-
sive, then T has a fixed point in every nonempty, closed and convex and T -invariant
subset of C. Then for any commuting family S of nonexpansive self-mappings of
C, the set FixS of common fixed points of S is a nonempty nonexpansive retract of
C.

Theorem 5.3. Let C be a nonempty, convex and weakly compact subset of a Ba-
nach space X. Suppose also that C has the following property: If T : C → C is
nonexpansive, then T has a fixed point in every nonempty, closed and convex and
T -invariant subset of C. Then there exists a nonexpansive retraction R from C
onto FixT which satisfies:

(i) R ◦ T = R,
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(ii) every closed convex T -invariant subset of C is also R-invariant.

The retraction R satisfying (i) and (ii) is called T -ergodic retraction. It is then
natural that for a family S of nonexpansive self-mappings of C (C is a nonempty,
convex and weakly compact subset of a Banach space X) a nonexpansive retraction
R from C onto FixS which satisfies:

(i) R ◦ T = R for each T ∈ S,
(ii) every closed convex S-invariant subset of C is also R-invariant,

is called S-ergodic retraction ([24]).
By a simple modification of the proof given in [7] we obtain the following gener-

alization of Theorem 5.3.

Theorem 5.4. Let C be a nonempty, convex and weakly compact subset of a Ba-
nach space X. Suppose also that C has the following property: If T : C → C is
nonexpansive, then T has a fixed point in every nonempty, closed and convex and T -
invariant subset of C. Let S = {Tj : j = 1, 2, . . . , k} be a finite family of commuting
nonexpansive mappings from C to C. Then there exists a nonexpansive retraction
R from C onto FixS which satisfies:

(i) R ◦ Tj = R for j = 1, 2, . . . , k,
(ii) every closed convex S-invariant subset of C is also R-invariant.

Now one can apply the latter theorem to the case of subsets C in Cartesian
products of Banach spaces or use the result due to S. Saeidi (see Theorem 3.4 in
[23]) and get.

Theorem 5.5. Suppose X is uniformly convex, Y is a Banach space and ∥ · ∥Z
is a norm in X ⊕ Y . Suppose also that the norm ∥ · ∥Z satisfies the condition
(∗). Let C be a nonempty, convex and weakly compact subset of X ⊕ Y such that
P2(C) is compact in Y and let S = {Tα}α∈A be a family of commuting nonexpansive
mappings from C to C. Then there exists a nonexpansive retraction R from C onto
FixS which satisfies:

(i) R ◦ Tα = R for α ∈ A,
(ii) every closed convex S-invariant subset of C is also R-invariant.

We will also need the following definition.

Definition 5.6. Let X be a Banach space, C a nonempty subset of X, {xξ}ξ∈I a
net in C and T : C → C a mapping. If

lim
ξ∈I

∥Txξ − xξ∥ = 0,

we say that {xξ} is an approximate fixed point net (afpn) for T .

Suppose X is uniformly convex, Y is a Banach space and ∥·∥Z is a norm in X⊕Y .
Suppose also that the norm ∥ · ∥Z satisfies the condition (∗). Let C be a nonempty,
bounded, closed and convex subset of X ⊕Y such that P2(C) is compact in Y , and
let T : C → C be a uniformly continuous and asymptotically nonexpansive in the
intermediate sense mapping. We now show that there exists a weakly convergent
approximate fixed point net assigned to each (x, y) in C in such a way that the
family of these nets is in some sense nonexpansive. Let us recall that we will apply
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the fixed ultranet {nξ} of the sequence {n}n∈N of positive integers, which we have

used in the construction of the Banach space ultrapower X̃ ⊕ Y of X ⊕ Y .

Theorem 5.7. Suppose X is uniformly convex, Y is a Banach space and ∥ · ∥Z is
a norm in X ⊕ Y . Suppose also that the norm ∥ · ∥Z satisfies the condition (∗).
Let C be a nonempty, bounded, closed and convex subset of X ⊕ Y such that P2(C)
is compact in Y , and let S = {Tα : α ∈ A} be a family of commuting, uniformly
continuous and asymptotically nonexpansive in the intermediate sense self-mappings
of C. Then there exists a mapping

C ∋ (x, y) → {rn(x, y)} ∈ CN

such that

(i) for each (x, y) ∈ C, the ultranet {rnξ
(x, y)} is an approximate fixed point

net (afpn) with respect to each Tα, that is,

lim
ξ

∥Tα(rnξ
(x, y))− rnξ

(x, y)∥Z = 0,

(ii) each ultranet {rnξ
(x, y)} is weakly convergent,

(iii) for all (x, y), (x1, y1) ∈ C we have

lim
ξ

∥rnξ
(x, y)− rnξ

(x1, y1)∥Z ≤ ∥(x, y)− (x1, y1)∥Z ,

(iv) for each (x, y) ∈ C and α ∈ A,

lim
ξ

∥rnξ
(Tα(x, y))− rnξ

(x, y)∥Z = 0,

(v) if D is a closed convex S-invariant subset of C, then

[{rn(x, y)}] ∈ D̃

and

w- lim
ξ

rnξ
(x, y) ∈ D

for each (x, y) ∈ D.

Proof. Our proof is partially based on the ideas given in the proof of Theorem 4.2

in the paper by Kirk, Yañez and Shin [20]. We consider the set C̃ in a Banach space

ultrapower X̃ ⊕ Y of X ⊕ Y (relative to the fixed ultranet {nξ}). As we know all

mappings T̂α : C̃ → C̃ are nonexpansive. Similarly mappings T̃α ◦ T̂α : C̃ → C̃,
α ∈ A, are nonexpansive. It is easy to see that all mappings of these two types
commute. Let S ′ consist of all these mappings. Hence, by Theorem 5.5, the common
fixed point set of these mappings is nonempty and there exists a nonexpansive S ′-
ergodic retraction

r : C̃ → FixS ′ =
∩
β∈A

(
Fix T̂β ∩ Fix (T̃β ◦ T̂β)

)
.

Thus

r ◦ T̂α = r,

r ◦ T̃α ◦ T̂α = r
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for α ∈ A and if D̃ is a closed convex S ′-invariant subset of C̃, then it is also
r-invariant. Let us observe that for α ∈ A if

(̃x, y) ∈ FixS ′ =
∩
β∈A

(
Fix T̂β ∩ Fix (T̃β ◦ T̂β)

)
,

then

T̂α(̃x, y) = (T̃α ◦ T̂α)(̃x, y) = (̃x, y)

from which

T̃α(̃x, y) = (̃x, y).

This means that

lim
ξ

∥Tα(xnξ
, ynξ

)− (xnξ
, ynξ

)∥Z = 0.

Next

r((̃x, y)) = r(T̂α(̃x, y)) = r(T̃α(T̂α(̃x, y)))

= r(T̂α(T̃α(̃x, y))) = r(T̃α(̃x, y))

for all (̃x, y) ∈ C̃ and α ∈ A. Now taking the isometric mapping i : C → Ċ ⊂ C̃

given by i(x, y) = ˙(x, y) for (x, y) ∈ C, we get the mapping

r ◦ i : C → FixS ′,

which is nonexpansive. We introduce the following notation

(r ◦ i)(x, y) = r( ˙(x, y)) = [{rn(x, y)}]

for each (x, y) ∈ C. Hence we have

lim
ξ

∥Tα(rnξ
(x, y))− rnξ

(x, y)∥Z = 0

for (x, y) ∈ C, α ∈ A; and

lim
ξ

∥rnξ
(x, y)− rnξ

(x1, y1)∥Z ≤ ∥(x, y)− (x1, y1)∥Z

for all (x, y), (x1, y1) ∈ C. Additionally we get

[{rn(x, y)}] = r( ˙(x, y)) = r(T̃α
˙(x, y))

= r( ˙(Tα(x, y))) = [{rn(Tα(x, y))}],

or equivalently,

lim
ξ

∥rnξ
(Tα(x, y))− rnξ

(x, y)∥Z = 0

for all (x, y) ∈ C and α ∈ A. Since the net {rnξ
(x, y)} is an ultranet and C is

weakly compact, this ultranet {rnξ
(x, y)} is weakly convergent to an element of C

(for every (x, y) ∈ C). Next, if D is a closed convex S-invariant subset of C then

D̃ is a closed convex S ′-invariant subset of C̃. By S ′-ergodicity of r we have that

r(D̃) ⊂ D̃. In particular, for (x, y) ∈ D we find [{(un,D(x, y), vn,D(x, y))}] such that
(un,D(x, y), vn,D(x, y)) ∈ D for each n and

r( ˙(x, y)) = [{rn(x, y)}] = [{(un,D(x, y), vn,D(x, y))}] ∈ D̃.



NET CONSTRUCTION OF A RETRACTION 425

Therefore

w- lim
ξ

rnξ
(x, y)) = w- lim

ξ

(
unξ,D(x, y), vnξ,D(x, y)

)
∈ D.

Thus the mapping

C ∋ (x, y) → {rn(x, y)} ∈ CN

enjoys the claimed properties. �

Remark 5.8. Properties (iv) and (v) describe, in some sense, a limit ergodic prop-
erty of the mapping C ∋ (x, y) → {rn(x, y)} ∈ CN with respect to each Tα.

Now, using the family {rnξ
} of mappings and demiclosedness principle we give

an earlier announced construction of a nonexpansive retraction onto the fixed point
set of commuting, uniformly continuous and asymptotically nonexpansive in the
intermediate sense mappings.

Theorem 5.9. Suppose X is uniformly convex, Y is a Banach space and ∥ · ∥Z is
a norm in X ⊕ Y . Suppose also that the norm ∥ · ∥Z satisfies the condition (∗).
Let C be a nonempty, convex and weakly compact subset of X ⊕ Y such that P2(C)
is compact in Y and let S = {Tα : α ∈ A} be a family of commuting, uniformly
continuous and asymptotically nonexpansive in the intermediate sense self-mappings
of C. Then there exists a nonexpansive S-ergodic retraction

R : C → FixS.

Proof. Let (x, y) be a point in C. Taking the ultranet {rnξ
(x, y)} from Theorem

5.7, which is weakly convergent and is an afpn with respect to each Tα, by the
demiclosedness principle (Corollary 4.4), we see that the weak limit of this ultranet
is a common fixed point of S. Denote this limit by R(x, y). Thus we have a mapping
R : C → FixS, which by the lower semicontinuity of the norm (with respect to the
weak topology) and by the properties (iii), (iv) and (v) in Theorem 5.7 is the claimed
nonexpansive S-ergodic retraction. �

As a direct consequence we get.

Corollary 5.10. Suppose X is uniformly convex, Y has the Schur property and
∥ · ∥Z is a norm in X ⊕ Y . Suppose also that the norm ∥ · ∥Z satisfies the condition
(∗). Let C be a nonempty, convex and weakly compact subset of X ⊕Y and let S =
{Tα : α ∈ A} be a family of commuting, uniformly continuous and asymptotically
nonexpansive in the intermediate sense self-mappings of C. Then there exists a
nonexpansive S-ergodic retraction

R : C → FixS.
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E-mail address: jwalczuk@op.pl


