
Copyright 2014



400 JACEK JACHYMSKI

To present the results of Barnsley et al. [1,3] we also need the notion of the joint
spectral radius introduced by Rota and Strang [14]. Let X be a Banach space and
T be a nonempty bounded subset of B(X), the Banach space of all linear bounded
operators. Then the joint spectral radius r(T ) of the family T is defined by

r(T ) := lim
n→∞

sup{∥ T1 ◦ · · · ◦ Tn ∥1/n: T1, . . . , Tn ∈ T }.

This notion can also be attributed to a family of continuous affine mappings by
considering the joint spectral radius of the set of linear factors of these mappings
as done in [1] and [3].

In [1] the authors established a list of equivalent conditions for an affine IFS
((Rm, de); T1, . . . , TN ) to be hyperbolic. In particular, they announced the following
result: such an IFS is hyperbolic if and only if the joint spectral radius of the family
{T1, . . . , TN} is less than one. Subsequently, this result was proved and extended
in [3] to infinite affine IFSs ((Rm, de); T ), where T is assumed to be compact in
the compact-open topology. In particular, this implies that the set of Lipschitz
constants of all mappings from T is bounded (see Proposition 2.1).

In this paper we generalize the results of Barnsley et al. by considering lips-
chitzian IFSs ((X, d); T ): here (X, d) is an arbitrary metric space, T is allowed to
be infinite and all mappings from T are lipschitzian. Actually, we also use yet more
general assumption on T ; namely, T is such that for some positive integer p, the
set of Lipschitz constants of all compositions of p mappings from T is bounded. For
such families T , we establish four remetrization theorems giving necessary and suffi-
cient conditions for the existence of an equivalent (uniformly equivalent or Lipschitz
equivalent) metric ρ such that all mappings from T are lipschitzian with respect to
ρ. We emphasize that the proofs given in [3] depend strongly on the linear struc-
ture of the Euclidean space (Rm, de). Our argument is completely different since
our proofs deal with a nonlinear case.

Finally, we extend the notion of the joint spectral radius r(T ): it is possible to
define it for any family T of selfmaps, which is uniformly lipschitzian, i.e., the set of
Lipschitz constants of all these mappings is bounded. Then the inequality r(T ) < 1
is equivalent to the condition that for some p ∈ N, the set of Lipschitz constants of
all compositions of any p mappings from T is upper bounded by some constant less
than one. This fact shows that our remetrization theorems given in the next section
do extend results of Barnsley et al. [1, 3]. At last we obtain a generalization of
the Rota–Strang formula for the joint spectral radius of a bounded family of linear
continuous operators. This also extends Goebel’s [7] (or see [8, p. 11]) formula for a
generalized spectral radius of a lipschitzian selfmap of a metric space. Let us point
out that though Goebel’s result concerns a nonlinear mapping and his argument is
different than that of Rota and Strang, it seems to be unclear how to modify his
proof so that it would work for a family of mappings. Thus we had to use a different
approach than both in [14] and [7].
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2. Remetrization theorems for families of mappings

Given a selfmap T of a metric space (X, d), we denote by Ld(T ) the Lipschitz
constant of T , i.e.,

Ld(T ) := sup{d(Tx, Ty)/d(x, y) : x, y ∈ X, x ̸= y}.
(We allow Ld(T ) to be infinite.) If T is a nonempty family of selfmaps of X, then
we set

Ld(T ) := sup{Ld(T ) : T ∈ T }.
Moreover, for any n ∈ N, we define

T n := {T1 ◦ · · · ◦ Tn : T1, . . . , Tn ∈ T }.
Also, we set T 0 := {Id}, where Id is the identity mapping on X.

We start with a characterization of IFSs considered by Barnsley and Vince [3].

Proposition 2.1. Let ((Rm, de); T ) be an affine IFS which is compact in the compact-
open topology. Then there exists T0 ∈ T such that Lde(T ) = Lde(T0). In particular,
Lde(T ) is finite.

Proof. It suffices to show that the mapping T 7→ Lde(T ) is continuous from T with
the compact-open topology to (R, de). Since in this case the compact-open topology
is metrizable (see, e.g., [6, p. 332]), it is enough to prove that the above mapping
is sequentially continuous. So let T, Tn ∈ T and Tn → T . There exist an, a ∈ Rm

and linear operators Ln and L such that Tn = Ln + an and T = L + a. Since,
in particular, Tn0 → T0, we get that an → a. For any x ∈ Rm, we have that
∥ Lnx − Lx ∥ ≤ ∥ Tnx − Tx ∥ + ∥ an − a ∥. Hence, by compactness of the closed
unit ball, we infer that ∥ Ln − L ∥ → 0, so ∥ Ln ∥ → ∥ L ∥. To complete the proof
it is enough to observe that ∥ Ln ∥= Lde(Tn) and ∥ L ∥= Lde(T ). �

In the sequel we establish four remetrization theorems for a family T such that
Ld(T p) < ∞ for some p ∈ N. We start with a few lemmas which seem to be folklore
results.

Lemma 2.2. Let d and ρ be equivalent metrics on X such that for some α > 0,
ρ(x, y) ≥ αd(x, y) for all x, y ∈ X. If (X, d) is complete, so is (X, ρ).

Proof. Let (xn) be a Cauchy sequence in (X, ρ). Since d(xn, xm) ≤ (1/α)ρ(xn, xm),
we infer (xn) is a Cauchy sequence in (X, d), so by completeness, d(xn, x) → 0 for
some x ∈ X. Then ρ(xn, x) → 0 since the two metrics are equivalent. �

Let us recall that two metrics d and ρ on a set X are uniformly equivalent (see,
e.g., [6, p. 321]) if the identity mapping on X is uniformly continuous from (X, d)
onto (X, ρ), and from (X, ρ) onto (X, d).

Lemma 2.3. Let d and ρ be equivalent metrics on X, and T be a nonempty family
of selfmaps of X such that Lρ(T ) < ∞. Then we have:

(1) if there exists α > 0 such that ρ(x, y) ≥ αd(x, y) for all x, y ∈ X, then T is
equicontinuous with respect to d;

(2) if d and ρ are uniformly equivalent, then T is uniformly equicontinuous with
respect to d;
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(3) if d and ρ are Lipschitz equivalent with constants α, β as in (1.1), then

Ld(T ) ≤ β

α
Lρ(T ).

Proof. 1. Let x0 ∈ X and T ∈ T . By hypothesis, for any x ∈ X,

(2.1) d(Tx, Tx0) ≤
1

α
ρ(Tx, Tx0) ≤

Lρ(T )

α
ρ(x, x0).

If Lρ(T ) = 0 then we are done. So let Lρ(T ) > 0. Since d and ρ are equivalent,
given ε > 0 there is δ > 0 such that

if d(x, x0) < δ, then ρ(x, x0) <
αε

Lρ(T )
.

Hence, by (2.1), we get that d(Tx, Tx0) < ε if d(x, x0) < δ. Since δ does not depend
on T , we obtain that T is equicontinuous at x0.

2. As in point 1, it suffices to consider the case when Lρ(T ) > 0. By hypothesis,
for any ε > 0, there is η > 0 such that if u, v ∈ X and ρ(u, v) < η, then d(u, v) < ε.
On the other hand, there is δ > 0 such that if x, y ∈ X and d(x, y) < δ, then
ρ(x, y) < η/Lρ(T ). Hence, for such x, y, we get

ρ(Tx, Ty) ≤ Lρ(T )ρ(x, y) < η

which yields d(Tx, Ty) < ε. So T is uniformly equicontinuous with respect to d.
3. Let x, y ∈ X and T ∈ T . By (1.1), we get

d(Tx, Ty) ≤ 1

α
ρ(Tx, Ty) ≤ Lρ(T )

α
ρ(x, y) ≤ β

α
Lρ(T )d(x, y),

and hence Ld(T ) ≤ (β/α)Lρ(T ). �
The following example shows that condition ‘ρ ≥ αd’ in point 1 of Lemma 2.3

cannot be omitted. (Actually, it can be weakened by assuming that the identity
mapping is uniformly continuous from (X, ρ) onto (X, d).)

Example 2.4. Set X := [1,∞), d := de, and for x, y ∈ X, ρ(x, y) := | lnx − ln y|.
Clearly, ρ is a metric equivalent to d and (X, ρ) is complete. For n ∈ N and x ∈ X,
define

Tnx := nx and T := {Tn : n ∈ N}.
Then Tn are isometries with respect to ρ, so Lρ(T ) = 1, but T is not equicontinuous
with respect to d at any point of X. Let us note that ρ ≤ d by the mean value
theorem.

We omit a simple proof of the following

Lemma 2.5. Let T be a nonempty family of selfmaps of a metric space (X, d). If
T is uniformly equicontinuous, so is T n for any n ∈ N.

Theorem 2.6. Let (X, d) be a [complete] metric space and T be a nonempty family
of selfmaps of X such that for some p ∈ N, Ld(T p) < ∞ and for any x, y ∈ X,

(2.2) sup

{
d(Tx, Ty) : T ∈

p−1∪
k=0

T k

}
< ∞.

The following statements are equivalent:
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(i) the family
∪p−1

k=0 T
k is equicontinuous;

(ii) for any ε > 0, there exists a [complete] metric ρ equivalent to d such that
ρ ≥ αd for some α > 0, and

Lρ(T ) ≤ max{ε, Ld(T p)1/p}.

Proof. (i)⇒(ii): For λ > 0 and x, y ∈ X, define
(2.3)

ρλ(x, y) := sup{d(Tx, Ty) : T ∈ T p−1}+ λ sup{d(Tx, Ty) : T ∈ T p−2}+ · · ·
+ λp−2 sup{d(Tx, Ty) : T ∈ T }+ λp−1d(x, y).

By (2.2), ρλ is well-defined. It is easily seen that ρλ is a metric and condition (i)
implies that ρλ and d are equivalent. Since ρλ ≥ λp−1d, Lemma 2.2 implies that if
(X, d) is complete, so is (X, ρλ). Observe that for any S ∈ T ,

ρλ(Sx, Sy) ≤ sup{d(Tx, Ty) : T ∈ T p}+ λ sup{d(Tx, Ty) : T ∈ T p−1}+ · · ·
+ λp−2 sup{d(Tx, Ty) : T ∈ T 2}+ λp−1 sup{d(Tx, Ty) : T ∈ T }

≤ Ld(T p)d(x, y) + λρλ(x, y)− λpd(x, y)
= (Ld(T p)− λp)d(x, y) + λρλ(x, y),

since T ◦ S ∈ T p−i+1 for any i = 1, . . . , p and T ∈ T p−i. Now we consider the
following two cases.

1. Ld(T p) > 0. Set λ0 := Ld(T p)1/p and ρ := ρλ0 . Then ρ(Sx, Sy) ≤ λ0ρ(x, y)

which yields Lρ(T ) ≤ Ld(T p)1/p.
2. Ld(T p) = 0. Then for any λ > 0 and S ∈ T , ρλ(Sx, Sy) ≤ λρλ(x, y), so

Lρλ(T ) ≤ λ.
Thus in both cases given ε > 0, there is a metric as in (ii).

(ii)⇒(i): Clearly, (ii) implies that Lρ(T ) < ∞ and hence Lρ(T n) < ∞ for any
n ∈ N since Lρ(T n) ≤ (Lρ(T ))n. By Lemma 2.3 applied to T n, we get that

each T n is equicontinuous with respect to d. Hence the finite union
∪p−1

k=0 T
k is

equicontinuous. �

Observe that, under the assumptions of Theorem 2.6, if a family T is finite, then
(2.2) is satisfied. Moreover, in this case (i) is equivalent to the condition that each

mapping from T is continuous since the family
∪p−1

k=0 T
k is finite. Thus Theorem 2.6

yields the following result which was proved in [13].

Corollary 2.7. Let (X, d) be a [complete] metric space and T := {T1, . . . , T N} be
a family of selfmaps of X such that for some p ∈ N, Ld(T p) < ∞. The following
statements are equivalent:

(i) T1, . . . , TN are continuous;
(ii) for any ε > 0, there exists a [complete] metric ρ equivalent to d such that

ρ ≥ αd for some α > 0, and

Lρ(T ) ≤ max{ε, Ld(T p)1/p}.

We give two examples to illustrate the assumptions of Theorem 2.6. First let us
note that condition ‘Ld(T p) < ∞’ implies that sup{d(Tx, Ty) : T ∈ T p} < ∞ for
any x, y ∈ X, but in general it does not imply (2.2) as shown in the following
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Example 2.8. Set X := [0,∞), d := de and for n ∈ N,

Tnx := n− (n− 1)x if x ∈ [0, 1], and Tnx := 1 if x > 1.

Define T := {Tn : n ∈ N}. It is easily seen that for any m,n ∈ N and x ∈ X,
(Tm ◦ Tn)x = 1, so Ld(T 2) = 0. On the other hand, if x, y ∈ X and x ̸= y, then
sup{d(Tx, Ty) : T ∈ T } < ∞ if and only if x, y ≥ 1, so (2.2) does not hold.

The next example shows that condition (2.2) cannot be simplified by assuming
only that sup{d(Tx, Ty) : T ∈ T } < ∞ for any x, y ∈ X. Also, the same example
illustrates that condition (i) in Theorem 2.6 is not equivalent to the condition ‘T is
equicontinuous’.

Example 2.9. Set X := R, d := de, and for n ∈ N and x ∈ R,

Tnx := x+ n and T0x := x2.

Let T := {Tn : n ∈ N ∪ {0}}. Then for any x, y ∈ R,

sup{|Tx− Ty| : T ∈ T } = max{|x− y|, |x2 − y2|} < ∞,

but if x ̸= y, then

sup{|Tx− Ty| : T ∈ T 2} ≥ sup{|(T0 ◦ Tn)x− (T0 ◦ Tn)y| : n ∈ N} = ∞.

Moreover, it is easily seen that T is equicontinuous, but T 2 is not equicontinuous.
(Consider its subfamily {T0 ◦ Tn : n ∈ N}.)

Our next remetrization theorem deals with a pair of uniformly equivalent metrics.

Theorem 2.10. Let (X, d) be a metric space and T be a nonempty family of self-
maps of X such that for some p ∈ N, Ld(T p) < ∞ and for any x, y ∈ X, (2.2)
holds. The following statements are equivalent:

(i) T is uniformly equicontinuous;
(ii) for any ε > 0, there exists a metric ρ uniformly equivalent to d such that

Lρ(T ) ≤ max{ε, Ld(T p)1/p}.

Proof. It suffices to modify the proof of Theorem 2.6.
(i)⇒(ii): For λ > 0, define the metric ρλ by (2.3). By Lemma 2.5, since T is

uniformly equicontinuous, so is the family T k for each k = 0, . . . , p− 1. This easily
yields that d and ρλ are uniformly equivalent. Now it suffices to repeat the argument
used in the proof of Theorem 2.6 ((i)⇒(ii)).

(ii)⇒(i): By (ii), Lρ(T ) < ∞, so Lemma 2.3 (point 2) implies that (i) holds. �

It turns out that the formulation of Theorem 2.10 can be simplified if a metric
space (X, d) is connected. In this case condition (2.2) can be dropped. To show
that, we start with the following

Lemma 2.11. Let T be a nonempty family of selfmaps of a connected metric space
(X, d). If T is uniformly equicontinuous, then for any x, y ∈ X, sup{d(Tx, Ty) :
T ∈ T } < ∞.
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Proof. By hypothesis, there exists δ > 0 such that for any x, y ∈ X, if d(x, y) < δ,
then d(Tx, Ty) < 1 for any T ∈ T . Fix x0, y0 ∈ X. Since (X, d) is connected,
there exists a finite sequence (xi)

N
i=0 such that xN = y0 and d(xi−1, xi) < δ for each

i ∈ {1, . . . , N} (see, e.g., [6, p. 442]). Hence we get that for any T ∈ T ,

d(Tx0, T y0) ≤
N∑
i=1

d(Txi−1, Txi) < N,

so sup{d(Tx0, T y0) : T ∈ T } < ∞. �

Theorem 2.12. Let (X, d) be a connected metric space and T be a nonempty family
of selfmaps of X such that for some p ∈ N, Ld(T p) < ∞. The following statements
are equivalent:

(i) T is uniformly equicontinuous;
(ii) for any ε > 0, there exists a metric ρ uniformly equivalent to d such that

Lρ(T ) ≤ max{ε, Ld(T p)1/p}.

Proof. (i)⇒(ii): By Lemma 2.5, since T is uniformly equicontinuous, so is T k for k =

0, . . . , p−1. Hence the family
∪p−1

k=0 T
k is uniformly equicontinuous, so Lemma 2.11

applied to this family implies that (2.2) holds. By Theorem 2.12, (ii) is satisfied.
Implication (ii)⇒(i) follows from Lemma 2.3 (point 2). �

Remark 2.13. Actually, the connectivity condition in Theorem 2.12 can be weak-
ened: it suffices to assume that for any ε > 0, (X, d) is ε-chainable (see, e.g., [9,
p. 19]), i.e., for any x, y ∈ X, there exists a finite sequence (xi)

N
i=0 such that x0 = x,

xN = y and d(xi−1, xi) < ε. The latter condition, however, is equivalent to the
connectivity if (X, d) is compact [6, p. 442].

We close this section with the remetrization theorem dealing with a pair of Lip-
schitz equivalent metrics.

Theorem 2.14. Let (X, d) be a metric space and T be a nonempty family of self-
maps of X. The following statements are equivalent:

(i) Ld(T ) < ∞;
(ii) for any p ∈ N and ε > 0, there exists a metric ρ Lipschitz equivalent to d

such that Lρ(T ) is finite and

Lρ(T ) ≤ max{ε, Ld(T p)1/p}.

Proof. (i)⇒(ii): Let p ∈ N. Since Ld(T ) is finite, so is Ld(T k) for k = 0, . . . , p− 1.
Hence (2.2) holds for any x, y ∈ X, and by (2.3), we may define the metric ρλ for
any λ > 0. It is easily seen that for any x, y ∈ X,

λp−1d(x, y) ≤ ρλ(x, y) ≤ (Ld(T p−1) + λLd(T p−2) + · · ·+ λp−2Ld(T ) + λp−1)d(x, y),

so d and ρλ are Lipschitz equivalent. Now the same argument as in the proof of
Theorem 2.6 ((i)⇒(ii)) shows that (ii) holds.

(ii)⇒(i): By (ii), Lρ(T ) < ∞, so by Lemma 2.3 (point 3) we get that also Ld(T )
is finite. �
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3. Generalized joint spectral radius and an extension
of the Rota–Strang and Goebel formulas

Let (X, d) be a metric space and T be a nonempty family of selfmaps of X such
that Ld(T ) < ∞. Set an := Ld(T n) for n ∈ N. Then each an is finite and it is easy
to check that

am+n ≤ aman for any m,n ∈ N.
We say then that (an) is submultiplicative. It is known that any submultiplicative

sequence (an) of nonnegative reals has the property that the limit limn→∞ a
1/n
n

exists and

lim
n→∞

a1/nn ≤ a1/mm for any m ∈ N.

(For a direct proof of this fact, see, e.g., [12]; the result can also be derived from [10,
Lemma 4.7.1] applied to the sequence (log an).) In particular, the limit

rd(T ) := lim
n→∞

Ld(T n)1/n

exists and we call it the generalized joint spectral radius of T or just joint spectral
radius of T . Let us observe that if X is a Banach space and T ⊆ B(X), then for any
T ∈ T , Ld(T ) = ∥ T ∥ (here d denotes the metric induced by the norm on X), so
the inequality Ld(T ) < ∞ means that T is a bounded (with respect to the operator
norm) subset of B(X). In this case rd(T ) coincides with the Rota–Strang [14] joint
spectral radius. On the other hand, if T is a singleton, say T = {T}, then rd(T ) is
equal to the constant denoted in [8, p. 10] by k∞(T ). Goebel [7] (see also [8, p. 11])
proved the following formula for k∞(T ):

(3.1) k∞(T ) = inf{Lρ(T ) : ρ is Lipschitz equivalent to d}.

A similar formula was proved earlier by Rota and Strang [14] for the joint spectral
radius r(T ) of a nonempty bounded family T of linear continuous operators on a
Banach space X:

(3.2) r(T ) = inf

{
sup
T∈T

N (T ) : N is equivalent to the operator norm on B(X)

}
.

In this section we give a common extension of both these results. We start with the
following

Lemma 3.1. Let (X, d) be a metric space and T be a nonempty family of selfmaps
of X such that Ld(T ) < ∞. If a metric ρ is Lipschitz equivalent to d, then rd(T ) =
rρ(T ).

Proof. By hypothesis, there exist α, β > 0 as in (1.1). Clearly, Ld(T n) < ∞ for
any n ∈ N. By Lemma 2.3 (point 3) applied to T n, we infer that Ld(T n) ≤
(β/α)Lρ(T n), and by interchanging the roles between d and ρ, Lρ(T n) ≤
(β/α)Ld(T n). Hence we get that(

α

β

)1/n

Ld(T n)1/n ≤ Lρ(T n)1/n ≤
(
β

α

)1/n

Ld(T n)1/n,

so letting n tend to ∞ we obtain rd(T ) = rρ(T ). �
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Let us note that in the case when T is a singleton, Lemma 3.1 was proved by
Goebel [7]. The case of a finite T was considered in [13].

Theorem 3.2. Let (X, d) be a metric space and T be a nonempty family of selfmaps
of X such that Ld(T ) < ∞. For λ > 0, let ρλ be defined by (2.3). Then

rd(T ) = inf{Lρ(T ) : ρ is Lipschitz equivalent to d} = inf
λ>0

Lρλ(T ).

Proof. Denote a := inf{Lρ(T ) : ρ is Lipschitz equivalent to d} and b :=
infλ>0 Lρλ(T ). Let ρ be Lipschitz equivalent to d. By Lemma 3.1, rd(T ) = rρ(T ).

Hence, since rρ(T ) ≤ Lρ(T n)1/n for any n ∈ N, we infer that rd(T ) ≤ Lρ(T ). This
shows that rd(T ) ≤ a. Since for any λ > 0, ρλ is Lipschitz equivalent to d, it is clear
that a ≤ b. Thus it suffices to prove that b ≤ rd(T ). We consider the following two
cases.

1. Ld(T p) = 0 for some p ∈ N. Then by Theorem 2.14, for any ε > 0, there
exists a metric ρ Lipschitz equivalent to d such that Lρ(T ) ≤ ε. In fact, the proof
of Theorem 2.6 shows that we may set ρ := ρε. Hence b = 0, so b ≤ rd(T ).

2. Ld(T n) > 0 for all n ∈ N. Then by Theorem 2.14, for any n ∈ N, there exists

a metric ρ Lipschitz equivalent to d such that Lρ(T ) ≤ Ld(T n)1/n. Since ρ may
be chosen from the family {ρλ : λ > 0} as shown in the proof of Theorem 2.6, this

implies that b ≤ Ld(T n)1/n. Hence, letting n tend to ∞ we get that b ≤ rd(T ). �

It is clear that Theorem 3.2 extends Goebel’s formula (3.1). Now we show that
it also extends the Rota–Strang formula (3.2). So let X be a Banach space and T
be a bounded subset of B(X). Then for any λ > 0, ρλ (see (2.3)) is well-defined
and it is easily seen that ρλ is induced by the norm ∥ · ∥λ on X defined by

∥ x ∥λ:= sup{∥ Tx ∥: T ∈ T p−1}+ λ sup{∥ Tx ∥: T ∈ T p−2}+ · · ·+ λp−1 ∥ x ∥ .

Every norm ∥ · ∥λ on X induces the norm ∥ · ∥λ on B(X) (we use the same notation
for both norms), and Lρλ(T ) = ∥ T ∥λ for T ∈ T , so Lρλ(T ) = supT∈T ∥ T ∥λ.
Thus Theorem 3.2 yields that

r(T ) = inf

{
sup
T∈T

∥ T ∥λ: λ > 0

}
,

which implies that r(T ) ≤ c, where c denotes the right side of (3.2). That c ≤ r(T )
follows from the fact that if N is any norm equivalent to the operator norm
on B(X), then by Lemma 3.1, r(T ) = limn→∞(supT∈T n N (T ))1/n and r(T ) ≤
(supT∈T n N (T ))1/n for any n ∈ N since the sequence (supT∈T n N (T ))n∈N is sub-
multiplicative; in particular, r(T ) ≤ supT∈T N (T ).

Now we recall the result of Barnsley and Vince [3] mentioned in the introduction.
(In fact, they established a list of five equivalent conditions.)

Theorem 3.3. Let ((Rm, de); T ) be an affine IFS such that T is compact in the
compact-open topology. The following statements are equivalent:

(i) there exists a metric ρ Lipschitz equivalent to de such that each T ∈ T is a
contraction with respect to ρ;

(ii) r(T ) < 1.
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As an immediate consequence of Theorem 3.2, we obtain the following extension
of Theorem 3.3.

Corollary 3.4. Let (X, d) be a metric space and T be a nonempty family of selfmaps
of X such that Ld(T ) < ∞. The following statements are equivalent:

(i) there exists a metric ρ Lipschitz equivalent to d such that Lρ(T ) < 1;
(ii) rd(T ) < 1.

We show that indeed, Corollary 3.4 is a generalization of Theorem 3.3. So let
((Rm, de); T ) be as in Theorem 3.3. By Proposition 2.1, Lde(T ) < ∞. Thus implica-
tion (ii)⇒(i) of Theorem 3.3 follows directly from Corollary 3.4. We prove (i)⇒(ii)
of Theorem 3.3. By Proposition 2.1, there exists T0 ∈ T such that Lρ(T ) = Lρ(T0).
Hence Lρ(T ) < 1, so by Corollary 3.4, (ii) holds.

Now let us observe that since rd(T ) = limn→∞ Ld(T n)1/n and rd(T ) ≤ Ld(T n)1/n

for any n ∈ N, we have the following equivalence:

rd(T ) < 1 if and only if Ld(T p) < 1 for some p ∈ N.
Thus if T is not a family of lipschitzian mappings, so that rd(T ) cannot be defined,
we may substitute condition ‘Ld(T p) < 1 for some p ∈ N’ for ‘rd(T ) < 1’. For such
families of mappings, we may obtain further extensions of Theorem 3.3 with the
help of our remetrization theorems. To illustrate this fact, we present here only one
of possible applications of the results of the previous section.

Corollary 3.5. Let (X, d) be a connected metric space and T be a nonempty family
of selfmaps such that for some p ∈ N, Ld(T p) < 1. The following statements are
equivalent:

(i) T is uniformly equicontinuous;
(ii) there exists a metric ρ uniformly equivalent to d such that Lρ(T ) < 1.

Proof. (i)⇒(ii): By Theorem 2.12, there exists a metric ρ uniformly equivalent to
d such that

Lρ(T ) ≤ max{1/2, Ld(T p)1/p} < 1,

so (ii) holds.
(ii)⇒(i) follows from Lemma 2.3 (point 2). �
Finally, we present yet another condition equivalent to the inequality r(T ) < 1

for affine IFSs. This extends the list of equivalent conditions in [3, Theorem 4].

Theorem 3.6. Let ((Rm, de); T ) be an affine IFS such that T is compact in the
compact-open topology. The following statements are equivalent:

(i) r(T ) < 1;
(ii) for any sequence (Tn) such that Tn ∈ T for n ∈ N, Ld(T1 ◦ · · · ◦ Tn) → 0.

Proof. For any T ∈ T , there is a unique L ∈ B(Rm) and a ∈ Rm such that Tx =
Lx+ a for any x ∈ Rm. Thus we may define the mapping

F (T ) := L for any T ∈ T .

The proof of Proposition 2.1 shows that F is continuous from T with the compact-
open topology into B(Rm). Thus the set F (T ) is compact with respect to the
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operator norm. By definition of r(T ), we have that r(T ) = r(F (T )). Hence by [12,
Theorem 5.1], (i) is equivalent to the condition

(iii) for any sequence (Ln) such that Ln ∈ F (T ) for n ∈ N, limn→∞ ∥ L1◦· · ·◦Ln ∥
= 0.

Observe that for any sequence (Tn) elements of T , if Ln := F (Tn), then for any
n ∈ N, there is bn ∈ Rm such that

(T1 ◦ · · · ◦ Tn)x = (L1 ◦ · · · ◦ Ln)x+ bn for all x ∈ Rm,

which implies that Ld(T1 ◦ · · · ◦ Tn) = ∥ L1 ◦ · · · ◦ Ln ∥. This easily yields the
equivalence between (ii) and (iii), so the proof is completed. �

Theorem 3.6 is a generalization of [4, Theorem 4.1] (see also [5]) by Daubechies
and Lagarias in which T is assumed to be a finite family of linear mappings.
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