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of this kind were originally developed in a linear algebra context, i.e., for the case
in which X is finite dimensional and A,B are single-valued affine operators (not
necessarily monotone), so that (1.1) reduces to solving a system of linear equations.
In fact, the most classical iterative methods for solving systems of linear equations,
namely Jacobi’s and Gauss-Seidel’s, as well as their more advanced versions SOR
and JOR, can be cast in the framework of splitting methods (see [11]).

Moving now to the realm of nonlinear operators, special attention has been given
to the case in which both A and B are maximal monotone, which allows for much
stronger results, both in terms of existence of the iterates and convergence of the
generated sequence. In the sequel, we will deal exclusively with a pair (A,B) of
maximal monotone operators.

Next we comment on splitting methods for solving problem P in the particular
case in which X is a Hilbert space. Three basic families of splitting methods for
this problem were identified in [14]:

i) The Douglas/Peaceman-Rachford family, whose iteration is given by:

yk = [2(I + ξB)−1 − I]xk,

zk = [2(I + ξA)−1 − I]yk,

(1.2) xk+1 = (1− ρk)x
k + ρkz

k,

where ξ > 0 is a fixed scalar, and {ρk} ⊂ (0, 1] is a sequence of relaxation
parameters.

ii) The double backward splitting method, with iteration given by:

yk = (I + λkB)−1xk,

xk+1 = (I + λkA)
−1yk,

where {λk} ⊂ R++ is a sequence of regularization parameters.
iii) The forward-backward splitting method, with iteration given by:

yk ∈ (I − λkA)x
k,

xk+1 = (I + λkB)−1yk,

with λk as in (ii).

Note first that all these are splitting methods, in the sense that each sub-step
requires solving an inclusion involving only A or B. The maximal monotonicity of
A and B ensures that yk and zk in case (i) are uniquely determined, and so the
same happens with xk+1; this is also the case for yk, xk+1 in case (ii), but for the
forward-backward method (iii) yk fails to be uniquely determined. In connection
with (i), we mention that the well known Peaceman-Rachford method corresponds
to taking ρk = 1 for all k in (1.2); taking ρk = 1/2 for all k in (1.2) produces the
classical Douglas-Rachford method. Convergence results for these two special cases
were established in [20], under some additional hypotheses on A,B for the case of
Peaceman-Rachford. Convergence results for the general scheme (i), in the case in
which {ρk} is contained in a compact subset of (0, 1), can be found in [12]. See also
[13] and [18] for additional insights on the scheme presented in (i).

The convergence analysis of the double backward scheme given by (ii), which can
be found in [19] and [21], establishes much weaker convergence properties (without
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additional assumptions on A,B, besides maximal monotonicity): the sequence {λk}
must converge to 0 in a particular way, and the sequence which is proved to converge
to a zero of A+B is not {xk}, but rather an “ergodic” average of {xk}.

The forward-backward scheme (iii) is computationally less demanding, since it
requires the solution of only one inclusion per iteration (it can be seen indeed as a
generalization of the projected gradient method for convex optimization). On the
other hand, the standard convergence analysis for this method (see [23]), requires
that A be single-valued and furthermore co-coercive, and the parameters λk must
have an upper bound related to A.

A substantial progress in this area was achieved in [14], which presents a new
scheme, generating a sequence in the product space X × X, for which quite solid
convergence results were established. Several of the previously known splitting
method turned out to be special cases of the scheme developed in [14], while others,
e.g. Douglas-Rachford, were identified as “excluding limiting” cases of this scheme,
corresponding to values of the parameters lying in the boundary of the region for
which convergence was established. Later on, a convergence analysis of Douglas-
Rachford method along the lines of [14] was presented in [22]. In general, the
convergence results in [14] and [22] proved to be stronger than those in the previous
literature.

The scheme in [14], which is the departure point for the method in this paper, is
essentially a projection method in the space X ×X. Consider the set Se(A,B) ⊂
X × X defined as Se(A,B) = {(z, w) : −w ∈ A(z), w ∈ B(z)}. Clearly, given
(z, w) ∈ Se(A,B), one has that 0 = −w+w ∈ A(z)+B(z), i.e., the first component
of a pair in Se(A,B) solves P . The basic ingredient of the scheme in [14] consists of,
given a pair (z, w) /∈ Se(A,B), constructing a hyperplane in X×X which separates
(z, w) from Se(A,B). The parameters of such hyperplane are obtained by solving
two inclusions, one involving only A and the other one only B, thus ensuring the
splitting nature of the algorithm. Then, the iterative scheme works by taking the
orthogonal projection of the current iterate (zk, wk) onto the hyperplane which
separates it from Se(A,B) as the next iterate (zk+1, wk+1).

Formally, the algorithm, to be refered as Algorithm ES in the sequel, proceeds
as follows:

i) Start the method with p0 = (z0, w0) ∈ X × X, and choose an exogenous
sequence of relaxation parameters {ρk} contained in a compact subset of
(0, 2), and two exogenous sequences of regularization parameters {λk}, {µk}
contained in a compact subset of (0,∞).

ii) Given pk = (zk, wk) ∈ X ×X, find (xk, bk), (yk, ak) ∈ X ×X satisfying:

xk + λkb
k = zk + λkw

k, bk ∈ B(xk),

yk + µka
k = zk − µkw

k, ak ∈ A(yk).

iii) Define φk : X ×X → R as φk(z, w) = ⟨z − xk, bk − w⟩+ ⟨z − yk, ak + w⟩.
iv) Define the halfspace Hk ⊂ X ×X as Hk = {(z, w) : φk(z, w) ≤ 0}.
v) Compute p̄k, the orthogonal projection of pk onto Hk.
vi) Define the next iterate as pk+1 = pk + ρk(p̄

k − pk).
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The basic algorithm in [14] uses also a second exogenous sequence {αk} of relax-
ation parameters, which we omit here, because it is absent from the algorithm to
be developed in this paper; the scheme just presented corresponds to the case of
αk = 1 for all k.

The main convergence result for the method above, established in Proposition
3 of [14], is the following: if A, B and A + B are maximal monotone, and A + B
has zeroes, then the sequences {zk}, {xk} and {yk} converge weakly to some zero
z∗ of A+B, the sequences {wk} and {bk} converge weakly to a point w∗ such that
w∗ ∈ B(z∗),−w∗ ∈ A(z∗), and finally the sequence {ak} converges weakly to −w∗.

Later on, it was shown that the hypothesis of maximal monotonicity of A + B
(which in general does not follow from maximal monotonicity of A and B), can be
removed; see [1].

The main purpose of this paper is to develop an algorithm based upon ES with
good convergence properties for solving problem P in Banach spaces. To our knowl-
edge, this is the first splitting algorithm for solving monotone inclusions in Banach
spaces.

The main obstacle in pursuing this goal is the following: a basic property of the
orthogonal projection onto a closed and convex set C in a Hilbert space is that,
when moving from a point z to its orthogonal projection onto C, the norm-induced
distance to any point in C decreases. This property is lost in Banach spaces, if we
replace the orthogonal projection onto C by the metric projection ΠC : X → C,
defined as ΠC(x) = argminy∈C ∥x− y∥2. This failure is due to the fact that the
derivative of the square of the norm in a nonhilbertian Banach space is not linear,
while in a Hilbert space it is just twice the identity operator I.

In a Banach space, in order to recover the decreasing distance property of the
orthogonal projection, one should minimize not the norm-induced distance, but
rather the so called Bregman distance, introduced in [2], which can be defined as

follows: Let f(x) = 1
2 ∥x∥

2. Assume that X is such that f is Gâteaux differentiable,
and define Df : X ×X → R as

(1.3) Df (x, y) = f(x)− f(y)− ⟨x− y, f ′(y)⟩,

where ⟨·, ·⟩ : X × X∗ → R denotes the duality coupling (i.e., ⟨z, w⟩ = w(z)),
and f ′ : X → X∗ is the Gâteaux derivative of f . If we define now the Bregman
projection PC

f onto a closed and convex set C ⊂ X as PC
f (x) = argminy∈C Df (y, x),

it happens to be the case that PC
f enjoys several of the desirable properties of the

orthogonal projections in Hilbert spaces, as we will explain in the following section
(Bregman distances and projections have been defined also for the case in which f
is not differentiable, see e.g. [8], but we will not be concerned with this issue in the
sequel).

Another feature of nonhilbertian Banach spaces is that the square of the norm
loses its privileged standing: when working, for instance, in Lp or ℓp spaces, calcu-

lations become simpler if we take f(x) = 1
p ∥x∥

p in (1.3), instead of f(x) = 1
2 ∥x∥

2.

Thus, it has become customary to consider a rather general auxiliary function
f : X → R in (1.3), in order to define the Bregman distance and projection (see
e.g. [4], [7], [15], [16]). The specific properties of f needed for convergence of
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the method, as well as examples of functions satisfying these properties, will be
exhibited in Section 2.

Once the Bregman distance related to f is introduced in the projection step of
Algorithm ES (item (v) above), one needs to match this step to the “proximal step”,
i.e., item (ii). It can be seen that the computation of xk, yk, ak, bk is akin to the
performance of an iteration of the proximal point method starting from zk using
either the operator A or B. In a Hilbert space, the proximal resolvent (I + τA)−1

of a maximal monotone operator A, with a positive regularization parameter τ , can
also be seen as a sort of projection, in the sense that (I + τA)−1(z) is closer than z
to any zero of A. Once again, this approximation property is lost in Banach spaces.
In order to recover it, one must use instead the generalized resolvent (f ′ + τA)−1,
where f : X → R enjoys the same properties that give a good behavior to the
Bregman distance Df and the Bregman projection PC

f .

Note that in a “Banach version” of the projection step (item(v)) of Algorithm
ES we need an auxiliary function defined on X × X∗, while for the proximal step
(item(ii)), we need a function defined just on X.

We will present in Section 3 a method based on Algorithm ES, appropriate for a
rather general class of Banach spaces. Its convergence behavior will be established in
Section 4. We will prove a convergence theorem rather close to the above described
Proposition 3 in [14], thus recovering most of the strength of the convergence prop-
erties which hold for Algorithm ES in Hilbert spaces. We remark that the proofline
of our convergence analysis is quite diffferent from (and in fact much simpler than)
that in [14], despite the additional complications resulting from working in Banach
spaces, as compared to Hilbert ones.

2. Preliminaries

We begin with some material related to the Bregman distances and projections
to be used in our algorithm. Most of the results presented in this section were
established in [6], [8], [17] and [22].

In this section, f : X → R is strictly convex, lower semicontinuous and Gâteaux
differentiable, and f ′ : X → X∗ is its Gâteaux derivative. We will denote the family
of such functions as F(X).

The Bregman distance Df : X ×X∗ → R is defined as

(2.1) Df (x, y) = f(x)− f(y)− ⟨x− y, f ′(y)⟩.
We start with two elementary properties of Bregman distances.

Proposition 2.1.

i) Df (x, y) ≥ 0 for all x, y ∈ X, and Df (x, y) = 0 if and only if x = y.
ii) Df (x, y) +Df (y, x) = ⟨x− y, f ′(x)− f ′(y)⟩ for all x, y ∈ X.

Proof. Item (i) follows from the strict convexity of f , and item(ii) is an immediate
consequence of (2.1). �

The next result is known as the Four-point Lemma for Bregman distances.

Lemma 2.2. Take f ∈ F(X). Then

(2.2) Df (w, z)−Df (w, x)−Df (y, z) +Df (y, x) = ⟨w − y, f ′(x)− f ′(z)⟩
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for all w, x, y, z ∈ X.

Proof. Follows easily from (2.1). �
We will use in the sequel the modulus of total convexity νf : X×R+ → R defined

as
νf (x, t) = infy∈{y∈X:∥y−x∥=t}Df (y, x),

with Df as in (2.1). If f ∈ F(X) is such that νf (x, t) > 0 for all x ∈ X and
all t > 0, then f is said to be totally convex. In finite dimensional spaces total
convexity is equivalent to strict convexity, but in infinite dimensional spaces total
convexity is more demanding that strict convexity, though less demanding than
uniform convexity (see [8]).

The methods we analyze in this paper use, as an auxiliary device, functions f ∈
F(X), F(X∗) or F(X×X∗) which satisfy some or all of the following assumptions:

H0: f is coercive, i.e. lim∥x∥→∞
f(x)
∥x∥ = ∞.

H1: The level sets of Df (x, ·) are bounded for all x ∈ X.
H2: infx∈Cνf (x, t) > 0, for all bounded set C ⊂ X and all t ∈ R++.
H3: f ′ is uniformly continuous on bounded subsets of X.
H4: f ′ is onto.
H5: f ′ is weak-to-weak∗ continuous.

It is important to exhibit functions which satisfy these properties in as large a
class of Banach spaces as possible, and we focuse our attention on Banach spaces
which are reflexive, uniformly convex and uniformly smooth, and on functions of
the form fr(x) =

1
r ∥x∥

r with r > 1.

Our results on the validity of H0–H5 for fr(x) =
1
r ∥x∥

r are summarized in the
following proposition.

Proposition 2.3.

i) If X is a reflexive, uniformly smooth and uniformly convex Banach space,
then fr(x) =

1
r ∥x∥

r satisfies H0, H1, H2, H3 and H4 for all r > 1.

ii) If X is a Hilbert space, then f2(x) = 1
2 ∥x∥

2 satisfies H5. If X = ℓp (1 <

p < ∞) then fp(x) =
1
p ∥x∥

p
p satisfies H5.

Proof. i) For H1-H4, see Proposition 2 in [17], in whose proof several results
from [9] are invoked. The result is immediate for H0, since r > 1.

ii) In the case of a Hilbert space, f ′
2 is the identity, which is certainly weak-to-

weak continuous. The result for fp in ℓp has been proved in Proposition 8.2
of [3].

�
We refer to [10] for the definitions of uniformly smooth and uniformly convex

Banach spaces. We mention that the spaces ℓp, Lp[α, β] and the Sobolev spaces
W p,m (in all cases with 1 < p < ∞), are uniformly smooth and uniformly convex.

Unfortunately, it has been proved in [8] that for X = ℓp or X = Lp[α, β] with
1 < p < ∞, the function fr(x) =

1
r ∥x∥

r
p does not satisfy H5, excepting in the two

cases considered in Proposition 2.3(ii). We remark that, as it will be seen, properties
H0–H4 are required for establishing existence and uniqueness of the iterates of
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the algorithm under consideration, boundedness of the generated sequences and
optimality of their weak cluster points, while H5 is required only for uniqueness of
the weak cluster points of such sequences. We mention also that the factor 1

r in the
definition of fr is inessential for Proposition 2.3, whose results trivially hold for all
positive multiples of ∥·∥r.

We discuss next some properties of functions satisfying some of the assumptions
above. Given Banach spaces X, Y with norms ∥·∥X , ∥·∥Y , we consider the Banach
space X × Y with the product norm ∥(x, y)∥ = ∥x∥X + ∥y∥Y .

Proposition 2.4. Let X, Y be real Banach spaces. Take f ∈ F(X) and g ∈ F(Y ).
Define h : X × Y → R as h(x, y) = f(x) + g(y). Then for i = 1, ..., 5, if both f and
g satisfy Hi then h also satisfies Hi.

Proof. See Proposition 3 in [17]. �

Proposition 2.5. Take f : X → R Gâteaux differentiable. If f satisfies H3, then
both f and f ′ are bounded on bounded subsets of X.

Proof. See Proposition 4 in [17]. �

Proposition 2.6. If f ∈ F(X) satisfies H2 then, for all {xk}, {yk} ⊂ X such that
{xk} (or {yk}) is bounded and limk→∞Df (y

k, xk) = 0, it holds that xk−yk s
k→∞→ 0.

Proof. See Proposition 5 in [17]. �

Proposition 2.7. Let T : X → P(X) be maximal monotone. Take f ∈ F(X)
satisfying H4. Then, for all z ∈ X∗ there exists a unique x ∈ X such that z ∈
f ′(x) + T (x).

Proof. See [6], Corollary 3.1. �

Proposition 2.7 can be rephrased as saying that under its assumptions the op-
erator (f ′ + T )−1 is single-valued and its domain is the whole space X∗. Since
(f ′+T )−1 is clearly maximal monotone, it follows from its single-valuedness that it
is continuous on X∗ (se, e.g., Theorem 4.6.4 in [5]). This operator is the proximal

resolvent associated to T and f . In a Hilbert space, if we take f(x) = 1
2 ∥x∥

2, so
that f ′ is the identity operator, this proximal resolvent is called the Moreau-Yoshida
transform.

The next result deals with the existence of Bregman projections.

Proposition 2.8. If f : X → R is totally convex and C ⊂ X is closed and convex,
then for all u ∈ X there exists a unique v̄ ∈ C which solves the problem min Df (v, u)
subject to v ∈ C.

Proof. See 2.1.5. in [8]. �

Given f and C as in Proposition 2.8, we define the Bregman projection onto C,
PC
f : X → C, in the following way: PC

f (u) is the only solution v̄ of the problem

minDf (v, u) subject to v ∈ C. Our next result deals with the basic property of the
Bregman projections onto hyperplanes.
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Lemma 2.9. Take a totally convex f ∈ F(X). Then for all v ∈ X∗ \ {0}, ỹ ∈ X,
x ∈ H+, x̄ ∈ H−, it holds that Df (x̄, x) ≥ Df (x̄, z) +Df (z, x), where z = PH

f (x)

and H,H+ and H− are defined as H = {y ∈ X : ⟨y − ỹ, v⟩ = 0}, H+ = {y ∈ X :
⟨y − ỹ, v⟩ ≥ 0} and H− = {y ∈ X : ⟨y − ỹ, v⟩ ≤ 0}.

Proof. See Lemma 1 in [17]. �
We end this section with a result on the graph of the sum of two maximal mono-

tone operators, taken from [22].

Lemma 2.10. If S, T : X → P(X∗) are maximal monotone operators, {xk}k∈K ,
{yk}k∈K are bounded nets in X, and {uk}k∈K , {vk}k∈K are bounded nets in X∗

such that:

i) uk ∈ S(xk), vk ∈ T (yk) for all k ∈ K,
ii) The net {xk − yk}k∈K is strongly convergent to 0,
iii) The net {uk + vk}k∈K is strongly convergent to a point s̄ ∈ X∗,
iv) The nets {xk}k∈K and {yk}k∈K both converge weakly to some x̄ ∈ X,
v) The nets {uk}k∈K and {vk}k∈K converge weakly to points ū, v̄ ∈ X∗ respec-

tively,

then ū ∈ S(x̄), v̄ ∈ T (x̄).

Proof. See Lemma 5 in [22]. �
We mention that Lemma 5 in [22] deals withm, rather than 2, maximal monotone

operators. The statement of our Lemma 2.10 corresponds to the one in [22] for the
case of m = 2.

3. A splitting algorithm in Banach spaces

We assume from now on that X is a reflexive Banach space. We consider set-
valued maximal monotone operators A,B : X → P(X∗) and problem P , as defined
in (1.1).

We present now Algorithm BS (Banach Splitting) for finding zeroes of A+B.

i) Initialization: Start with any initial iterate (z0, w0) ∈ X ×X∗. Choose:
a) constants ρ̄ ∈ (0, 1] and θ, θ̄ ∈ R such that 0 < θ ≤ θ̄,
b) sequences of regularization parameters {λk}, {µk} ⊂ [θ, θ̄],
c) auxiliary functions f ∈ F(X), g ∈ F(X∗).

ii) Proximal step: Given (zk, wk) ⊂ X × X∗, find xk, yk ∈ X, ak, bk ∈ X∗

such that:

(3.1) ak ∈ A(yk), bk ∈ B(xk),

(3.2) f ′(xk) + λkb
k = f ′(zk) + λkw

k,

(3.3) f ′(yk) + µka
k = f ′(zk)− µkw

k,

iii) Projection step: Define

(3.4) γk = ⟨xk, bk⟩+ ⟨yk, ak⟩,

(3.5) δk = ⟨zk, ak + bk⟩+ ⟨xk − yk, wk⟩.
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If γk = δk then stop. Otherwise, choose as the next iterate (zk+1, wk+1) any
pair (z, w) ∈ X ×X∗ satisfying:

(3.6) f ′(z) = f ′(zk) + η(ak + bk),

(3.7) g′(w) = g′(wk) + η(xk − yk),

(3.8) γk ≤ ⟨z, ak + bk⟩+ ⟨xk − yk, w⟩ ≤ (1− ρ̄)γk + ρ̄δk

for some η ∈ R.
We have presented Algorithm BS without any assumption on f, g besides the

fact that they belong to F(X),F(X∗) respectively. Along the course of Section
4, we will add the additional assumptions on f, g required for each convergence
result. Now, we will comment on several features of the algorithm, and compare it
to Algorithm ES.

Remark 3.1. Note that (3.1)–(3.3) reduce to finding xk ∈ (f ′ + λkB)−1(f ′(zk) +
λkw

k) and yk ∈ (f ′ + µkA)
−1(f ′(zk) − µkwk). When f satisfies H4, existence and

uniqueness of xk, uk are easy consequences of Proposition 2.7 (see Proposition 4.1 in
Section 4). We mention that for a maximal monotone operator T : X → P(X∗), the
iteration vk+1 = (f ′+λkT )

−1(vk), with λk as in our case, defines the proximal point
method for finding zeroes of T . Though our method is slightly different, because of
the presence of the second terms in the right hand sides of (3.2) and (3.3), it seems
reasonable to call this step “Proximal”.

Remark 3.2. In connection with the reformulation of the Proximal step as that of
finding xk ∈ (f ′+λkB)−1(f ′(zk)+λkw

k) and yk ∈ (f ′+µkA)
−1(fzk)−µkwk), note

that both inclusions are independent of each other, and that the first one involves
only the operator A, while the second one uses only B. Since the Projection step
requires neither A nor B, Algorithm BS is indeed a “bona fide” splitting method.

Remark 3.3. We show now that in a large class of Banach spaces, under a sensi-
ble choice of f, g, the Projection step (3.6)–(3.8) reduces to finding a real number
satisfying two nonlinear inequalities, and hence this step is computationally much
less demanding than the Proximal step, which requires solution of two nonlinear
inclusions in X. If f, g satisfy H4, then f ′ and g′ are invertible, and their inverses
are related to their Fenchel conjugates f∗, g∗ through the well known identities
(f ′)−1 = (f∗)′, (g′)−1 = (g∗)′, which follow easily from the definitions of f∗, g∗,
namely, f∗(u) = supz∈X{⟨z, u⟩ − f(z)}, g∗(v) = supw∈X∗{⟨v, w⟩ − g(w)}. So, we
can rewrite (3.6) and (3.7) as:

(3.9) z = (f∗)′[f ′(zk) + η(ak + bk)],

(3.10) w = (g∗)′[g′(wk) + η(xk − yk)],

and thus z, w are given by closed formulae on the already available data zk, wk, xk,
yk, ak and bk and the real unknowkn η. Replacing now z and w in (3.8) by the
right hand sides of (3.9) and (3.10), the Projection step reduces to finding η ∈ R
satisfying the double inequality in the new version of (3.8), and then replacing the
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obtained value of η in (3.9), (3.10), in order to get the next iterates zk+1, wk+1 as
the right hand sides of (3.9) and (3.10) respectively.

A further simplification is possible if we take the Fenchel conjugate f∗ as the
regularizing function g for the dual space X∗. Recalling that in our reflexive setting
(f∗)∗ = f , under this choice of g (3.10) becomes

(3.11) w = f ′[(f∗)′(wk) + η(xk − yk)].

In order to make this choice of g, one needs to ascertain that f∗ inherits the “good”
properties of f . This is the case in our main setting. If X is uniformly smooth
and uniformly convex, then the same holds for X∗ (in fact, uniform smoothness of
X implies uniform convexity of X∗, and uniform convexity of X implies uniform
smoothness of X∗, see [10]). If we take now f(z) = 1

r ∥z∥
r, with r > 1, then a

simple computation shows that f∗(w) = 1
s ∥w∥

s
∗, where s = r/(r − 1) > 1 and ∥·∥∗

denotes the dual norm in X∗. We already mentioned that in this family of Banach
spaces such an f satisfies H0-H4, and also H5 in the case of X = ℓp and r = p.
Since (ℓp)

∗ = ℓq with q = p/(p − 1), it follows that the choice g = f∗ does ensure
the good properties of g in all these cases.

Remark 3.4. Now we compare the Projection step of our method with steps (iii)-
(vi) of Algorithm ES in Section 1. The details of the following argument will be
presented in Lemma 4.3.

Define h : X × X∗ → R as h(z, w) = f(z) + g(w). In view of Proposition 2.4,
if f, g enjoy some of the good properties H0-H5, so does h. Take a hyperplane
H ⊂ X×X∗ of the form H = {(z, w) : ⟨z, c⟩+ ⟨d,w⟩ = σ}, with c ∈ X∗, d ∈ X and
σ ∈ R. In view of the convexity of Dh in its first argument, the Bregman projection
of (zk, wk) onto H with respect to h is determined by the first order optimality
conditions for the problem

minDh((z, w), (z
k, wk)) s.t. ⟨z, c⟩+ ⟨d,w⟩ = σ,

which are:

(3.12) f ′(z) = f ′(zk) + ηc,

(3.13) g′(w) = g′(wk) + ηd,

(3.14) ⟨z, c⟩+ ⟨d,w⟩ = σ,

where η ∈ R is the Lagrange multiplier of the affine constraint. If we look now at
(3.6), (3.7), taking c = ak + bk, d = xk − yk, and compare with (3.12)–(3.14), we
realize that the pair (zk+1, wk+1) is the Bregman projection of (zk, wk) onto the

hyperplane Ĥk ⊂ X ×X∗ defined as

Ĥk = {(z, w) : ⟨(z, w), (ak + bk, xk − yk)⟩ = σk},

with

(3.15) σk = ⟨zk+1, ak + bk⟩+ ⟨xk − yk, wk+1⟩.

Now, consider again φk : X ×X → R defined as φk(z, w) = ⟨z − xk, bk −w⟩+ ⟨z −
yk, ak + w⟩, note that φ is affine, because terms involving ⟨z, w⟩ cancel, and define



SPLITTING METHODS IN BANACH SPACES 389

the hyperplane H̄k ⊂ X × X as H̄k = {(z, w) : φk(z, w) = 0}, so that H̄k is the
limiting hyperplane of the halfspace Hk defined in step (iv) of Algorithm ES.

If we call now ρk = (σk − γk)/(δk − γk), it can be checked that ρk ∈ [ρ̄, 1], and

that Ĥk is a relaxed hyperplane parallel to H̄k lying between (zk, wk) and H̄k. For

ρk = 1 we get Ĥk = H̄k, and for ρk = 0 we would have (zk, wk) ∈ Ĥk, but this

case cannot occur because ρ̄ > 0, by virtue of which Ĥk strictly separates (zk, wk)
from the extended solution set Se(A,B), which is essential for convergence of the
method.

Summarizing this discussion, the pair (zk+1, wk+1) generated by Algorithm BS
can be seen as the Bregman projection of the pair (zk, wk) onto a hyperplane lying
between (zk, wk) and the limiting hyperplane of the halfspace Hk used in step (v)
of Algorithm ES, corresponding to a relaxation parameter ρk ∈ [ρ̄, 1]. In this sense,
Algorithm BS is similar to Algorithm ES, but there are three differences worth
mentioning:

a) In Algorithm ES, first the orthogonal projection p̄k of (zk, wk) onto Hk is
computed (step (v)), and the relaxation is performed afterward (step(vi)),
while in Algorithm BS the hyperplane is (implicitly) relaxed and the Breg-
man projection is computed after the relaxation. Since orthogonal projec-
tions onto hyperplanes in Hilbert spaces are affine, the order of the op-
erations relaxation-projection is irrelevant (in both cases the same point is
finally obtained). The nonlinear nature of Bregman projections in nonhilber-
tian Banach spaces makes the order relevant indeed, and the one selected in
Algorithm BS is esssential for the good behavior of the method.

b) In Algorithm ES the relaxation parameters ρk are contained in a compact
subset of (0, 2) while in Algorithm BS they are (implicitly) restricted to a
compact subset of (0, 1]. Again this is a consequence of the nonlinear nature
of Bregman projections in nonhilbertian spaces; over-relaxed projections
(i.e. with ρk > 1), do not enjoy the decreasing distance property, and thus
must be excluded.

c) In Algorithm ES the relaxation parameter ρk is exogenously given, while in
Algorithm BS no relaxation parameter is explicitly employed, but instead we
can take any pair (zk+1, wk+1) satisfying the double inequality in (3.8). This
is a significant advance: if we specify a relaxation parameter ρk beforehand,
(3.8) becomes an equality, i.e. a nonlinear equation in the real variable η
to be exactly solved; our formulation, with the two inequalities in (3.8), is
akin to admitting inexact solutions of the nonlinear equation. On the other
hand, this advantage would not be significant in Algorithm ES, because in
the hilbertian environment there is no equation to solve: the orthogonal
projection is given by an affine operator with well determined parameters,
and hence it is not worthwhile to admit inexactness in its computation.

Remark 3.5. We have seen in the previous remark that the next iterate in Algo-
rithm BS can be seen as the Bregman Projection with respect to the auxiliary
function h of the current iterate onto a certain hyperplane. The fact that we
have taken the auxiliary function h in X × X∗ as a separable one, of the form
h(z, w) = f(z) + g(w), is inessential for the analysis. The same convergence results



390 A. N. IUSEM AND B. F. SVAITER

can be established with any auxiliary function defined on X ×X∗ and enjoying the
required properties among H0-H5, possibly unrelated to the auxilary function f used
in the Proximal step. The advantage of the separable auxiliary function becomes
clear when we look at the first order optimality conditions related to the compu-
tation of the Bregman projection: in the separable case, we get (3.6)–(3.8), which
can be further simplified to (3.9)–(3.10), and even to (3.11) by choosing g = f∗;
the use of a nonseparable auxiliary function would lead to a system considerably
more involved than (3.6)–(3.8). For this reason, we prefered to present Algorithm
BS only with a separable auxiliary function in the product space.

4. Convergence analysis

We proceed to the convergence analysis of Algorithm BS. We start by establishing
that the generated sequence is well defined. From now on, we define h : X×X∗ → R
as h(z, w) = f(z) + g(w), where f, g are the auxiliary functions chosen in item (c)
of the Initialization of Algorithm BS.

Proposition 4.1. If f satisfies H2 and H4, and g satisfies H2, then the sequence
{(zk, wk)} generated by Algorithm BS is well defined, in the sense that, given the
k-th iterate (zk, wk), there exists always a pair (zk+1, wk+1) ∈ X × X∗ satisfying
the algorithm prescriptions. Also, γk ≤ δk for all k, with γk, δk as defined by (3.4)
and (3.5).

Proof. We consider first the Proximal step. An elementary algebraic manipulation
shows that (3.1)–(3.3) is equivalento to finding xk ∈ (f ′ + λkB)−1(f ′(zk) + λkw

k)
and yk ∈ (f ′+µkA)

−1(fzk)−µkwk). Since A,B are maximal monotone and λk, µk

are positive, we get that λkB and µkA are also maximal monotone. Proposition 2.7
and the fact that f satisfies H4 imply that xk, yk, ak and bk are uniquely determined
by (3.1)–(3.3).

We move on now to the Projection step. It suffices to show that

(4.1) γk ≤ (1− ρ̄)γk + ρ̄δk,

and that there exist z, w such that the leftmost inequality in (3.8) holds with equal-
ity. Note that, since ρ̄ ∈ (0, 1], the inequality in (4.1) is equivalent to stating that
γk ≤ δk. Using (3.4) and (3.5), and some elementary algebra, this inequality turns
out to be equivalent to

(4.2) ⟨zk − xk, bk − wk⟩+ ⟨zk − yk, ak + wk⟩ ≥ 0.

If we use (3.2) and (3.3) for writing bk −wk and ak +wk in terms of zk, xk and yk,
and replace the result in the left hand side of (4.2), we get

⟨zk − xk, bk − wk⟩+ ⟨zk − yk, ak + wk⟩ =
1

λk
⟨zk − xk, f ′(zk)− f ′(xk)⟩

+
1

µk
⟨zk − yk, f ′(zk)− f ′(yk)⟩(4.3)

≥ 0,

using the convexity of f and the positivity of λk, µk in the inequality of (4.3). We
have proved that (4.2) holds, and therefore γk ≤ δk, establishing the final statement
of the proposition.
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Now, we show that there exists a pair (z, w) ∈ X × X∗ satisfying the system
consisting of (3.6), (3.7) and (3.8) with equality in its leftmost inequality, i.e.

(4.4) ⟨z, ak + bk⟩+ ⟨xk − yk, w⟩ = ⟨xk, bk⟩+ ⟨yk, ak⟩

Using (2.1), it is easy to check that these three equations are just the first order
optimality conditions for the problem of minimizing Dh((z, w), (z

k, wk)) subject to
(4.4). These first order conditions are not only necessary but also sufficient, in view
of the convexity of both Dh(·, (zk, wk)) and the hyperplane in X ×X∗ defined by
(4.4), which we will call H̄k. Thus, the issue boils down to proving that there exists
the Bregman projection of (zk, wk) onto H̄k with respect to the auxiliary function h.
By Proposition 2.4, h satisfies H2, which implies total convexity. Since H̄k is clearly
closed and convex, the existence of the required pair (z, w) follows from Proposition
2.8. �

It can be seen that the hyperplane H̄k defined by (4.4) coincides with the hy-
perplane defined in Remark 3.4 of Section 3, though this fact is not needed in our
proofs.

Next we look at the stopping criterion in the Projection step of Algorithm BS.
We recall that Se(A,B) ⊂ X×X∗ is defined as Se(A,B) = {(z, w) : −w ∈ A(z), w ∈
B(z)}.

Proposition 4.2. If Algorithm BS stops at step k, then (zk, wk) belongs to Se(A,B),
i.e., zk solves problem P .

Proof. If BS stops at iteration k, then γk = δk, in which case, looking at the proof
of Proposition 4.1, we have equality in (4.2) and (4.3), i.e.

1

λk
⟨zk − xk, f ′(zk)− f ′(xk)⟩+ 1

µk
⟨zk − yk, f ′(zk)− f ′(yk)⟩ = 0.

In view of the positivity of λk, µk and the strict convexity of f , we conclude that
zk = xk = yk. Replacing xk and yk by zk in (3.2) and (3.3) we get that wk = bk,
−wk = ak. Looking now at (3.1), we conclude that

0 = −wk + wk = ak + bk ∈ A(yk) +B(xk) = A(zk) + b(zk),

i.e., zk is a zero of A+B, thus solving problem P . �

Next we prove the distance reducing property of Algorithm BS, i.e., that the
Bregman distance related to h from the iterates to any point in Se(A,B) decreases
with the iteration count. This is a consequence of the properties of the Bregman
projections, and is the driving mechanism leading to the optimality of the weak
cluster points of the sequence generated by the algorithm.

Lemma 4.3. Assume that problem P has solutions and that f satisfies H2. Take
any pair (z̄, w̄) ∈ Se(A,B). Let {(zk, wk)} be the sequence generated by Algorithm
BS. Define p̄ := (z̄, w̄), pk := (zk, wk). Then

(4.5) Dh(p̄, p
k) ≥ Dh(p̄, p

k+1) +Dh(p
k+1, pk).



392 A. N. IUSEM AND B. F. SVAITER

Proof. Observe that the existence of solutions of problem P is equivalent to nonempti-
ness of Se(A,B). As announced in Remark 3.4, we will show now that the pk+1 is
the Bregman projection of pk with respect to h onto a hyperplane which separates
pk from Se(A,B). The result will then be a consequence of Lemma 2.9.

Let us define, as in (3.15), σk = ⟨zk+1, ak + bk⟩ + ⟨xk − yk, wk+1⟩, and consider

the hyperplane Ĥk ⊂ X ×X∗ given by

(4.6) Ĥk = {(z, w) : ⟨z, ak + bk⟩+ ⟨xk − yk, w⟩ = σk}.

Note that σk has been defined precisely so that pk+1 belongs to Ĥk. Note also
that (3.6), (3.7) and (4.6) are the first order optimality conditions for the problem
min

p∈Ĥk
Dh(p, p

k). Since these conditions are sufficient, by virtue of the convexity

of Ĥk and of Dh(·, pk), we have proved that pk+1 is the Bregman projection of pk

onto Ĥk with respect to the auxilary function h. Now we must check that Se(A,B)

and pk lie on opposite sides of the hyperplane Ĥk. These two inclusions are a
consequence of the selection of xk, yk, ak and bk in the Proximal step of Algorithm
BS.

Define the halfspaces H+
k ,H−

k as

(4.7) H+
k = {(z, w) : ⟨z, ak + bk⟩+ ⟨xk − yk, w⟩ ≥ σk},

(4.8) H−
k = {(z, w) : ⟨z, ak + bk⟩+ ⟨xk − yk, w⟩ ≤ σk}.

Take any pair (z̄, w̄) ∈ Se(A,B). In order to establish that Se(A,B) ⊂ H−
k , it

suffices to verify that (4.8) holds with (z, w) = (z̄, w̄). Look now at the leftmost
inequality in (3.8) with (z, w) = (zk+1, wk+1), which holds indeed because (3.8)
defines the next iterate (zk+1, wk+1). Taking into account (3.15), such inequality
can be rewritten as

(4.9) γk ≤ σk.

We claim that

(4.10) ⟨z̄, ak + bk⟩+ ⟨xk − yk, w̄⟩} ≤ γk.

In view of (3.4), (4.10) is equivalent to

(4.11) ⟨z̄, ak + bk⟩+ ⟨xk − yk, w̄⟩} ≤ ⟨xk, bk⟩+ ⟨yk, ak⟩.

Adding and substracting ⟨z̄, w̄⟩ in the right hand side of (4.11), an elementary
algebraic manipulation shows that (4.11) is equivalent to

(4.12) ⟨z̄ − yk,−w̄ − ak⟩+ ⟨z̄ − xk, w̄ − bk⟩ ≥ 0.

Since −w̄ ∈ A(z̄), w̄ ∈ B(z̄) by definition of Se(A,B), and ak ∈ A(yk), bk ∈ B(xk)
by (3.1), the monotonicity of A,B implies that (4.12) holds, establishing the claim,
i.e. the validity of (4.10). Combining (4.10) with (4.9), we conclude that (4.8) holds
with (z, w) = (z̄, w̄), i.e. that Se(A,B) ⊂ H−

k .

Now we prove that pk belongs to H+
k . We must verify that (4.7) holds with

(z, w) = (zk, wk). By the Projection step of Algorithm BS, (3.8) holds with (z, w) =
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(zk+1, wk+1). Taking into account (3.15), the rightmost inequality in (3.8) with
(z, w) = (zk+1, wk+1) is equivalent to

(4.13) σk ≤ (1− ρ̄)γk + ρ̄δk.

Since ρ̄ ≤ 1 by item (a) in the Initialization of Algorithm BS, and γk ≤ δk by
Proposition 4.1, we get from (4.13) that

(4.14) σk ≤ δk.

In view of (4.7) and (4.14), in order to check that (zk, wk) belongs to H+
k it suffices

to check that

⟨zk, ak + bk⟩+ ⟨xk − yk, wk⟩} ≥ δk,

which holds (indeed, with equality) by virtue of (3.5). We have established that

pk ∈ H+
k , Se(A,B) ⊂ H−

k and pk+1 = P Ĥk
h (pk). Since h is totally convex because it

satisfies H2, we are precisely within the hypotheses of Lemma 2.10, and hence (4.5)
holds true. �

We remark that only (3.1) is needed for proving that Se(A,B) ⊂ H−
k , while the

fact that pk belongs to H+
k is a consequence of (3.2) and (3.3), used in Proposition

4.1 for proving that γk ≤ δk. We also mention that the fact that Ĥk can be written
as a relaxed hyperplane with relaxation parameter ρk, as explained in Remark 3.4
in Section 3, is not needed in the convergence analysis.

Now all the pieces are in order for our convergence theorem. Note that up to
now only properties H2 and H4 of the auxiliary functions have been invoked. The
remaining properties, namely H0, H1, H3 and H5, will be used in the proof of the
theorem.

Theorem 4.4. i) Assume that Problem P has solutions and that f and g sat-
isfy H0-H4. Then the sequences {zk} and {wk} are bounded, the correspond-
ing differences between consecutive iterates, {zk − zk+1} and {wk − wk+1},
converge strongly to 0, and all weak cluster points of {(zk, wk)} belong to
Se(A,B), so that all weak cluster points of {zk} are zeroes of A+B.

ii) If additionally f and g satisfy H5, then the sequences {zk}, {xk} and {yk}
converge weakly to some zero z∗ of A + B, the sequences {wk} and {bk}
converge weakly to a point w∗ such that w∗ ∈ B(z∗),−w∗ ∈ A(z∗), and the
sequence {ak} converges weakly to −w∗.

Proof. Assume first that f, g satisfy H0-H4. Define h : X ×X∗ → R as h(z, w) =
f(z) + g(w). By Proposition 2.3, h satisfies H1-H4.

Take any pair (z̄, w̄) ∈ Se(A,B), which is nonempty because P has solutions.
Again we take p̄ = (z̄, w̄), pk = (zk, wk). In view of Lemma 4.3, (4.5) holds. Since
Dh is nonnegative by Proposition 2.1(i), it follows that {Dh(p̄, p

k)} ⊂ R is nonin-
creasing and nonnegative, hence convergent. Define ζ = Dh(p̄, p

0). It follows that
Dh((p̄, p

k) ≤ ζ for all k. Since h satisfies H1, {pk} is bounded, and hence {zk} and
{wk} are bounded.

Also, since (4.5) implies that

(4.15) Dh(p
k+1, pk) ≤ Dh(p̄, p

k)−Dh(p̄, p
k+1),
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we have that {Dh(p
k+1, pk)} converges to 0, because the right hand side of (4.15) is

the difference between consecutive terms of a convergent sequence. By Proposition
2.6, pk − pk+1 s

k→∞→ 0, and therefore,

(4.16) zk − zk+1 s
k→∞→ 0, wk − wk+1 s

k→∞→ 0.

Next we will use H0 to get boundedness of {xk}, {bk}, {yk} and {ak}. Let qk =
f ′(zk) + λkw

k, so that (3.2) becomes

(4.17) f ′(xk) + λkb
k = qk.

Since {zk} is bounded and f satisfies H3, {f ′(zk)} is bounded by Proposition 2.5.
Since λk ≤ θ̄, boundeness of {wk} implies boundedness of {qk}. Substracting
f ′(x0) + λkb

k from both sides of (4.17) and computing the duality product with
xk − x0, we get

⟨xk − x0, qk⟩ = ⟨xk − x0, f ′(xk)− f ′(x0)⟩+ λk⟨xk − x0, bk − b0⟩ ≥

(4.18) ⟨xk − x0, f ′(xk)− f ′(x0)⟩ = Df (x
k, x0) +Df (x

0, xk) ≥ Df (x
k, x0),

using nonnegativity of λk, monotonicity of B and (3.1) in the first inequality, Propo-
sition 2.1(ii) in the second equality and Proposition 2.1(i) in the second inequality.
From (4.18) and (2.1) we get

f(xk) ≤ ⟨xk − x0, qk⟩+ f(x0) + ⟨f ′(x0), xk − x0⟩(4.19)

≤ f(x0) +
∥∥∥xk − x0

∥∥∥ [∥∥∥qk∥∥∥+
∥∥f ′(x0)

∥∥] ,
using the Cauchy-Schwartz inequality in the second inequality of (4.19). Therefore

(4.20)
f(xk)

∥xk∥

∥∥xk∥∥
∥xk − x0∥

=
f(xk)

∥xk − x0∥
≤ f(x0)

∥xk∥
+

[∥∥∥qk∥∥∥+
∥∥f ′(x0)

∥∥] .
We claim that (4.20) implies boundedness of {xk}. Suppose, for the sake of
contradiction, that {xk} has an unbounded subsequence. Then, the left hand
side of (4.20) tends to ∞ along such subsequence, because f satisfies H0 and
limk→∞

∥∥xk∥∥ / ∥∥xk − x0
∥∥ = 1, while in the right hand side, the first term con-

verges to 0, and the second one remains bounded, by boundedness of {qk}. The
resulting contradiction implies that the claim holds. From (4.17) we get

bk =
1

λk
[qk − f ′(xk)].

Since λk ≥ θ > 0, we obtain, from Proposition 2.5 and the boundedness of {qk} and
{xk}, that {bk} is bounded. A similar argument, starting from (3.3), establishes
boundedness of {yk} and {ak}.

Now, we combine (3.8), (3.4) and (3.5) to get

⟨zk+1, ak + bk⟩+ ⟨xk − yk, wk+1⟩ ≤ (1− ρ̄)[⟨xk, bk⟩+ ⟨yk, ak⟩](4.21)

+ρ̄[⟨zk, ak + bk⟩+ ⟨xk − yk, wk⟩]
Multiplying (4.21) by −1 and adding ⟨zk, ak + bk⟩+ ⟨xk − yk, wk⟩ to both sides, we
obtain

⟨zk − zk+1, ak + bk⟩+ ⟨xk − yk, wk − wk+1⟩(4.22)
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≥ (1− ρ̄)[(⟨zk, ak + bk⟩+ ⟨xk − yk, wk⟩)− (⟨xk, bk⟩+ ⟨yk, ak⟩)
= (1− ρ̄)[⟨zk − yk, ak + wk⟩+ ⟨zk − xk, bk − wk⟩]

= (1− ρ̄)

[
1

µk
⟨zk − yk, f ′(zk)− f ′(yk)⟩+ 1

λk
⟨zk − xk, f ′(zk)− f ′(xk)⟩

]
= (1− ρ̄)

[
1

µk

(
Df (z

k, yk) +Df (y
k, zk)

)
+

1

λk

(
Df (z

k, xk) +Df (x
k, zk)

)]
≥ 1− ρ̄

θ̄

[
(Df (z

k, yk) +Df (y
k, zk) +Df (z

k, xk) +Df (x
k, zk)

]
,

using some elementary algebra in the first equality, (3.2) and (3.3) in the second
equality, Proposition 2.1(ii) in the third equality, and the upper bound for {λk}, {µk}
given in item (b) in the initialization of Algorithm BS in the second inequality.

In view of (4.16) and the boundedness of {xk}, {yk}, {ak} and {bk}, the leftmost
expression on (4.22) converges to 0 as k → ∞. Using now Proposition 2.1(i), we
get limk→∞Df (x

k, zk) = limk→∞Df (y
k, zk) = 0, and then, using Proposition 2.6,

we conclude that

(4.23) zk − xk s
k→∞→ 0, zk − yk s

k→∞→ 0,

which implies

(4.24) xk − yk s
k→∞→ 0,

From (4.23), boundedness of {xk}, {yk} and {zk}, together with the fact that
f satisfies H3, we get f ′(zk) − f ′(xk) s

k→∞→ 0, f ′(zk) − f ′(yk) s
k→∞→ 0, so that,

taking into account (3.2) and (3.3), we obtain that λk(b
k − wk) s

k→∞→ 0, µk(a
k +

wk) s
k→∞→ 0, implying, since λk, µk ≤ θ̄, that

(4.25) bk − wk s
k→∞→ 0, ak + wk s

k→∞→ 0,

and therefore

(4.26) ak + bk s
k→∞→ 0.

By reflexivity of X, the sequences {zk}, {wk}, {xk}, {yk}, {ak} and {bk} have
weak cluster points. Let z∗ be a cluster point of {zk}, and {zjk} a subsequence of
{xk} weakly convergent to z∗. In view of (4.23), we have

(4.27) xjk w
k→∞⇀z∗, yjk w

k→∞⇀z∗.

Without loss of generality, i.e. refining the subsequence if needed, we can assume
that there exist a∗, b∗, w∗ ∈ X∗ such that

(4.28) ajk w
k→∞⇀a∗, bjk w

k→∞⇀b∗, wjk w
k→∞⇀w∗.

Now we check the assumptions of Lemma 2.10 with S = B, T = A, xk = xjk ,
yk = yjk , uk = bjk and vk = ajk . Assumption (i) holds by (3.1), (ii) follows from
(4.24), (iii) from (4.26), (iv) from (4.27) and (v) from (4.28). We conclude from
Lemma 2.10 that a∗ ∈ A(z∗), b∗ ∈ B(z∗). On the other hand, (4.26) implies that
a∗ = −b∗, so that 0 = a∗ + b∗ ∈ A(z∗) + B(z∗), i.e. z∗ is a solution of problem P .
Now, from (4.25) and (4.28) we get w∗ = b∗ = −a∗, so that −w∗ ∈ A(z∗), w ∈ B(z∗),
i.e., (z∗, w∗) belongs to Se(A,B), completing the proof of item (i).
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Now we proceed to prove item (ii), assuming that f and g satisfy H5, and hence
h satisfies H5 by Proposition 2.4. We have already shown that {pk} = {(zk, wk)} is
bounded. We will establish next that {pk} has a unique weak cluster point. Assume
that both p̃ and p̂ are cluster points of {pk}, and let {pik}, {pjk} be subsequences
of {pk} which converge weakly to p̃, p̂ respectively. We have proved in item (i) that
both p̂ and p̃ belong to Se(A,B). In view of Lemma 4.3, we get from (4.5) that both
{Dh(p̂, p

k)} and {Dh(p̃, p
k)} are nonnegative and nonincreasing, hence convergent,

i.e. there exist β̂, β̃ ∈ R such that

(4.29) lim
k→∞

Dh(p̂, p
k) = β̂, lim

k→∞
Dh(p̃, p

k) = β̃.

Now, using (2.2) in Lemma 2.2, we get∣∣⟨h′(pik)− h′(pjk), p̂− p̃⟩
∣∣ = ∣∣[Dh(p̂, p

ik)−Dh(p̂, p
jk)

]
−
[
Dh(p̃, p

ik)−Dh(p̃, p
jk)

]∣∣
≤

∣∣Dh(p̂, p
ik)−Dh(p̂, p

jk)
∣∣+ ∣∣Dh(p̃, p

ik)−Dh(p̃, p
jk)

∣∣ .(4.30)

In view of (4.29), both terms in the rightmost expression of (4.30) converge to 0 as
k → ∞, so that

0 = lim
k→∞

∣∣⟨h′(pik)− h′(pjk), p̂− p̃⟩
∣∣ = ∣∣⟨h′(p̃)− h′(p̂), p̂− p̃⟩

∣∣
= ⟨h′(p̃)− h′(p̂), p̃− p̂⟩ = Dh(p̂, p̃) +Dh(p̃, p̂) ≥ Dh(p̃, p̂) ≥ 0,(4.31)

using property H5 of h in the second equality, convexity of h in the second one, and
Proposition 2.1(ii) in the third one. It follows from (4.31) that Dh(p̃, p̂) = 0, so that
p̂ = p̃ by Proposition 2.1(i). We have proved that {pk} has a unique cluster point,
and so both {zk} and {wk} are weakly convergent, say to z∗ and w∗ respectively.
By item (i), (z∗, w∗) belongs to Se(A,B), and hence z∗ solves problem P . The weak
convergence of {xk}, {yk}, {ak} and {bk}, as well as the value of their weak limits,
follow then from (4.23) and (4.25). �
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