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every nonexpansive mapping T : C → C, where C is a closed convex bounded
subset of X, has a fixed point. In this sense, every uniformly convex space or more
generally every reflexive Banach space with normal structure verify the FPP [20].
Two important monographs which collect the advances in the development of the
Fixed Point Theory for nonexpansive mappings are [13] and [21].

Notice that the nonexpansiveness of a mapping depends strongly on the norm
which is considered in the Banach space. If we replace the original norm by an
equivalent one, the set of nonexpansive mappings may change. In fact, the FPP
is not preserved by isomorphisms which implies that the FPP is a condition that
depends on the given norm in the Banach space.

For a long time it was unknown whether the fixed point property could imply
reflexivity. This question was solved in 2008 by P.K. Lin [24] in a negative way: he
proved that there exists an equivalent norm in ℓ1 with the FPP. His result showed
the first known nonreflexive Banach space with the FPP and opened new fields of
research in Fixed Point Theory for nonexpansive mappings. We say that a Banach
space X is FPP-renormable if there exists some equivalent norm p on X such that
(X, p) satisfies the FPP. Although it is a long open question whether every reflexive
Banach space satisfies the FPP, T. Domı́nguez-Benavides [5] proved that all reflexive
Banach spaces are FPP-renormable, even in a dense way, that is, in [8] the authors
proved that the subset of all renormings in a reflexive Banach space with the FPP
is dense in the set of all equivalent norms on X. The case of nonreflexive Banach
spaces is quite different. Firstly, there are nonreflexive (and nonseparable) Banach
spaces which are not FPP-renormable: ℓ∞, ℓ1(Γ) and c0(Γ) (for Γ uncountable)
cannot be renormed to have the FPP [21](Chapter 9). In the case of nonreflexive
and separable Banach spaces, it is known that ℓ1 fails the FPP but it is still FPP-
renormable [24]. Whether the sequence space c0 is FPP-renormable is unknown.
Some other nonreflexive Banach spaces which are FPP-renormable can be found in
[15]. However, the structure of the subset of all equivalent norms with the FPP in ℓ1
is not well-understood. In this manuscript we obtain new equivalent norms in some
nonreflexive Banach spaces verifying the FPP and we prove that the subset of such
norms has certain linear structure, in the sense that it contains linear rays. These
are new results in Fixed Point Theory since it is unknown whether the sum of two
norms with the FPP keeps the FPP. In Section 4 we particularize our results for the
sequence space ℓ1 and for those Banach spaces that can be isomorphically written as
a one-direct sum of finite dimensional Banach spaces, such as the Fourier-Stieltjes
algebra B(G) of a separable compact group G or L1(M) for a finite atomic von
Neumann algebra on a separable Hilbert space. Some closed subspaces of L1[0, 1]
such as the Bergman space will also be considered.

In Section 5 we use the techniques introduced in Section 3 in order to obtain
some linear rays of equivalent norms in L1[0, 1] and, more generally in noncommu-
tative L1(M) spaces, which verify the fixed point property for affine nonexpansive
mappings.

All the renormings included in the papers [24], [25], [15], [16], [17] and [18] with
the FPP can be derived from Theorem 3.1 and Theorem 3.5 in Section 3. We
will prove that the applications achieved by using the techniques introduced in this
manuscript go beyond those obtained in the previous articles.
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More precisely, the fixed point results proved in this paper are given for (L)-type
mappings, which form a class of mappings that includes the nonexpansive mappings
as a particular subclass. This shows that all the equivalent norms given in [24], [25],
[15], [16], [17] and [18] verify the fixed point property for mappings with the (L)-
condition. The class of (L)-type mappings was defined in [28] and they contain
strictly the class of nonexpansive mappings, mappings satisfying condition (C) of
Suzuki [34], most of generalized nonexpansive mappings and certain mappings with
the (E) condition introduced in [12].

This manuscript is organized as follows:
In Section 2 we give the notation and the definitions that will be used throughout

the paper. Section 3 includes Theorem 3.1, which provides a fixed point result for
mappings that verify the (L)-condition for norms defined as the supremum of a
family of seminorms satisfying certain properties. Also Theorem 3.5 is proved in
this section, which is the technical key to let us obtain open rays of equivalent
norms with the fixed point property. In Section 4 we apply these results to produce
new equivalent norms with the fixed point property in certain nonreflexive Banach
spaces. As far as we know, we collect all known equivalent norms with the FPP in ℓ1
as a consequence of Theorem 3.1. We add new examples and the existence of open
rays of equivalent norms with the FPP in ℓ1 and in some other nonreflexive Banach
spaces, which are not isomorphic to ℓ1. It will be remarkable the existence of many
norms failing to have the FPP but that they can be considered as the initial points
of different open rays composed of equivalent norms verifying the FPP. Finally, in
Section 5 we will study how apply our results to L1(µ) function spaces and to non-
commutative L1-spaces. In these spaces, we will obtain equivalent norms with the
fixed point property for affine nonexpansive mappings and the existence of some
open rays of equivalent norms with such property. We finish the paper with a short
section of comments and some open problems connecting Renorming Theory with
Fixed Point Theory for nonexpansive mappings

2. Preliminaries

We start this section by introducing some notation which will be used throughout
the manuscript.

For a Banach space X we define by P(X) the set of all equivalent norms on X.
The set P(X) can be endowed with the structure of a metric space by the distance
[10]:

d(p, q) = sup{|p(x)− q(x)| : ∥x∥ ≤ 1}, if p, q ∈ P(X).

Moreover, P(X) is a convex cone, in the sense that λp1 + µp2 ∈ P(X) if p1, p2 ∈
P(X) and λ, µ ≥ 0 with max{λ, µ} > 0. Given p1, p2 ∈ P(X) we say that the
subset {p1 + λp2 : λ > 0} is a (linear) open ray contained in P(X) and that p1 is
its initial point.

By using Banach’s Contraction Principle, it can be proved that every nonexpan-
sive mapping has an approximate fixed point sequence {xn} ⊂ C whenever C is a
convex closed bounded subset of X and T : C → C. Recall that a sequence {xn} is
called an approximate fixed point sequence (a.f.p.s.) for a mapping T if

lim
n

∥xn − Txn∥ = 0.
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Notice that every subsequence of an a.f.p.s. is again an a.f.p.s.
In this manuscript we will obtain fixed point results for a family of mappings

which contain the nonexpansive mappings as a particular subclass. Next we intro-
duce the (L)-type mappings:

Definition 2.1. Let (X, ∥ · ∥) be a Banach space and C a subset of X. It is said
that a mapping T : C → C satisfies condition (L), (or it is an (L)-type mapping),
if it fulfills the following two properties:

(1) Every closed, convex, bounded, T -invariant and nonempty subset D of C
contains an a.f.p.s.

(2) For any a.f.p.s. {xn} in C and each x belonging to C

lim sup
n

∥xn − Tx∥ ≤ lim sup
n

∥xn − x∥.

The definition of (L)-type mappings was introduced by E. Llorens-Fuster and E.
Moreno-Gálvez in [28]. They prove that different classes of mappings which often
appear in metric fixed point theory are (L)-type mappings. It is worth noticing that,
whereas condition (1) is invariant by renorming, condition (2) strongly depends on
the given norm and it can fail if we replace the norm by an equivalent one.

Nonexpansive mappings are the classical examples of (L)-type mappings. How-
ever, we can find in the literature different classes of mappings which satisfy condi-
tion (L) and are not nonexpansive in general.

The following definition was introduced by T. Suzuki in [34]:

Definition 2.2. Let C be a nonempty subset of a Banach space X. It is said that
T : C → X satisfy condition (C) if

1

2
∥x− Tx∥ ≤ ∥x− y∥ implies ∥Tx− Ty∥ ≤ ∥x− y∥,

for all x, y ∈ C.

Every nonexpansive mapping trivially satisfies condition (C). However, several
examples of noncontinuous mappings satisfying condition (C) are given in [34].

Definition 2.3. A mapping T : C → X is called a generalized nonexpansive
mapping if there exist a, b, c ≥ 0 which satisfy a+ 2b+ 2c ≤ 1 such that

∥Tx− Ty∥ ≤ a∥x− y∥+ b(∥x− Tx∥+ ∥y − Ty∥) + c(∥x− Ty∥+ ∥y − Tx∥),

for all x, y ∈ C.

The following class of mappings was introduced in [12]:

Definition 2.4. For µ ≥ 1, a mapping T : C → X is said to satisfy condition (Eµ)
on C if

∥x− Ty∥ ≤ µ∥x− Tx∥+ ∥x− y∥
for all x, y ∈ C. It is said that T satisfies condition (E) on C if T satisfies condition
(Eµ) on C for some µ ≥ 1.

It can be proved that the class of (L)-type mappings contains strictly the class of
nonexpansive mappings, mappings satisfying condition (C) of Suzuki, generalized
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nonexpansive mappings ( if b ̸= 1/2) and mappings satisfying condition (E) which
in turn satisfy condition (1) in the definition of (L)-type mappings [28].

We say that a Banach spaceX has the fixed point property for (L)-type mappings
(FPP for (L)-type mappings) if every self-mapping satisfying condition (L) has a
fixed point when it is defined from a closed convex bounded subset of X. Obviously,
FPP for (L)-type mappings implies the FPP.

The following remark, which easily follows from the definition, will be essential
throughout the proof of the main theorem in the next section:

Remark 2.5. Let C be a closed convex bounded subset of a Banach space and
T : C → C an (L)-type mapping. Let {xn} be an a.f.p.s. in C and d > 0. If the set

D =

{
x ∈ C : lim sup

n
∥xn − x∥ ≤ d

}
is nonempty, then D is a convex closed T -invariant subset of C.

For x ∈ X and a bounded sequence {xn} ⊂ X, the asymptotic radius of {xn} at
x is defined as

r({xn}, x) := lim sup
n

∥xn − x∥.

For a subset C ⊂ X, the value

r({xn}, C) := inf{r({xn}, x) : x ∈ C}

is called the asymptotic radius of {xn} relatively to C.
The following lemma holds for all Banach spaces and all (L)-type mappings. It

can be proved in a similar way as the remark after Lemma 1 in [15]:

Lemma 2.6. Let C be a nonempty closed convex bounded subset of a Banach space
(X, ∥ · ∥) and T : C → C an (L)-type mapping. If T is fixed point free, there exist
some constant a > 0 and a convex closed T -invariant nonempty subset D ⊂ C such
that

r({xn}, D) ≥ a

for each a.f.p.s. {xn} in D.

We make the following observation:

Remark 2.7. Let D be the subset given in Lemma 2.6. If we assign to every
a.f.p.s. {xn} in D, satisfying certain property P , a vector x̂ ∈ X depending on the
sequence, there holds

inf {r ({xn}, x̂) : {xn} is an a.f.p.s. in D satisfying P } > 0.

Indeed, from Lemma 2.6, we have

a ≤ lim sup
n

lim sup
m

∥xn − xm∥ ≤ 2 lim sup
n

∥xn − x̂∥.

Hence r({xn}, x̂) ≥ a/2 for all {xn} an a.f.p.s. satisfying P in the subset D .
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3. Technical results

This section contains the technical part of this manuscript. It consists mainly of
two theorems. Theorem 3.1 is a general fixed point result for (L)-type mappings
defined for a certain norm given by a family of seminorms. We will introduce the
background setting and conditions (I), (II), (III), which have to be verified by the
family of seminorms in order to assure the fixed point results. The arguments used
in the proof are inspired in [24] and [15]. However, we will discover that the scope
of its applications goes beyond the results obtained in [15], [16], [17], [18] and [24].

Given a family of seminorms with conditions (I), (II) and (III), in Theorem 3.5
we will prove how to obtain new families of seminorms in the same conditions. This
will be the key point for obtaining rays of equivalent norms verifying the fixed point
property.

Since the results are given for (L)-type mappings, they can be particularized for
nonexpansive mappings, mappings with the condition (C) of Suzuki and for cer-
tain generalized nonexpansive mappings and mappings with condition (E) defined
previously.

Our general framework will be the following:
Let X be a vector space. Assume that X can be endowed with a topology T for

which the convergence is invariant by translations, in the sense that xn
T→ x if and

only if xn − x
T→ 0.

Assume that there is a family ρ = {ρk(·) : k ∈ N} of seminorms on X which
separates points and it is pointwise bounded. In this case the function

|x|ρ := sup
k

ρk(x)

defines a norm on X. Assume that (X, | · |ρ) is complete and that the family of
seminorms satisfy the following properties:

(I) There exists a positive sequence (δk) with limk δk = 1 such that for all k ∈ N
there holds

lim sup
n

ρk(xn) + ρk(x) ≤ δk lim sup
n

ρk(xn + x)

whenever x ∈ X and {xn} is a ρk-bounded sequence with xn
T→ 0.

(II) There exist two sequences (αk) and (βk) satisfying 0 ≤ αk ≤ βk < 1 with
limk αk = 1 such that for all k ∈ N

αk lim sup
n

|xn|ρ ≤ lim sup
n

ρk(xn) ≤ βk lim sup
n

|xn|ρ,

whenever {xn} is a ρk-bounded sequence with xn
T→ 0.

(III) There exists some α > 1 such that for every T -null sequence {xn} there
holds

lim sup
k

ρk(x0) ≤
lim supn |xn|ρ

α

for some x0 ∈ co|·|ρ({xn}).
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Theorem 3.1. Under the above conditions the following holds: Let C be a convex,
|·|ρ-closed, |·|ρ-bounded subset of X and T : C → C a mapping which satisfies condi-
tion (L). Then T has a fixed point whenever T has some T -convergent approximate
fixed point sequence in every | · |ρ-closed convex T -invariant subset of C.

Notice that condition (L) lets us assure the existence of approximate fixed point
sequences in every | · |ρ-closed convex T invariant subset of C. In the absence of
compactness hypotheses, it can not be deduced one of these sequences to be T -
convergent.

Before going to the proof we need the following previous lemmas:

Lemma 3.2. Under the above conditions, the following inequality holds: if {xn}
and {yn} are | · |ρ-bounded sequences in X such that xn

T→ x and yn
T→ y then

lim sup
m

lim sup
n

|xn − ym|ρ ≥ lim sup
n

|xn − x|ρ + lim sup
m

|ym − y|ρ.

Proof.

lim sup
m

lim sup
n

|xn − ym|ρ ≥ lim sup
m

lim sup
n

ρk(xn − ym)

≥ 1

δk
lim sup

m

[
lim sup

n
ρk(xn − x) + ρk(x− ym)

]
(by (I))

=
1

δk

[
lim sup

n
ρk(xn − x) + lim sup

m
ρk(x− ym)

]
≥ 1

δk

[
lim sup

n
ρk(xn − x) +

1

δk

(
lim sup

m
ρk(y − ym) + ρk(x− y)

)]
(by (I))

≥ 1

δk
lim sup

n
ρk(xn − x) +

1

δ2k
lim sup

m
ρk(ym − y)

≥ αk

δk
lim sup

n
|xn − x|ρ +

αk

δ2k
lim sup

m
|ym − y|ρ (by (II))

Taking limit when k goes to infinity we have

lim sup
m

lim sup
n

|xn − ym|ρ ≥ lim sup
n

|xn − x|ρ + lim sup
m

|ym − y|ρ.

�

Lemma 3.3. Under the above conditions, let C be a convex, |·|ρ-closed, |·|ρ-bounded
subset of X and T : C → C an (L)-type mapping. If T is fixed point free, let D be
as in Lemma 2.6. If K is any closed convex T -invariant subset of D and

r = inf

{
lim sup

n
|xn − x|ρ : {xn} ⊂ K is an a.f.p.s. and xn

T→ x

}
,

then r > 0 and for every a.f.p.s. {xn} ⊂ K which is T -convergent and for every
z ∈ K we have

lim sup
n

|xn − z|ρ ≥ 2r.

Proof. For a sequence {xn} we define the property P as being T -convergent and
consider x̂ as its T -limit (see Remark 2.7). This implies that r > 0. Now using
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Lemma 3.2 and the same arguments as in the proof of Lemma 3 in [15] we obtain
the result. �

Now we prove Theorem 3.1.

Proof. Assume the contrary, that is, there exist a convex bounded subset C of
(X, | · |ρ) and an (L)-type mapping T : C → C without fixed points.

We introduce the following notation: for a | · |ρ-closed convex T -invariant subset
K of C we define

A(K) = {{xn} ⊂ K : {xn} is an a.f.p.s T -convergent to some x ∈ X} .
Notice that A(K) always contains an approximate fixed point sequence by hypothe-
ses.

Let D be as in the conclusion of Lemma 2.6.
Take

c = inf

{
lim sup

n
|xn − x|ρ : {xn} ∈ A(D), xn

T→ x

}
,

which is strictly greater than cero from Lemma 3.3.
We choose some constants m, ε1 > 0 such that

2ε1 +
c+ ε1
α

< m < c.(3.1)

Take an a.f.p.s. {xn} ⊂ D such that xn
T→ x and lim sup |xn−x|ρ < c+ ε1. Now,

by translation we can suppose that x = 0.
Define

K =

{
z ∈ D : lim sup

n
|xn − z|ρ ≤ 2c+ 2ε1

}
.

Notice that K is nonempty, closed, convex, bounded and T -invariant. In fact, there
exists n0 ∈ N such that xn ∈ K for n ≥ n0.

Define

dk := δ2k(2c+ 2ϵ1)− αk(δk + 1)c(3.2)

Notice that (dk) is a bounded sequence and limk dk = 2ϵ1.

Let us prove that for all {yn} ∈ A(K) with yn
T→ y there holds

(3.3) ρk(y) ≤ dk

for all k ∈ N. Indeed, in this case

2c+ 2ε1 ≥ lim sup
m

lim sup
n

|xn − ym|ρ ≥ lim sup
m

lim sup
n

ρk(xn − ym)

≥ lim sup
m

δ−1
k

(
lim sup

n
ρk(xn) + ρk(ym)

)
(by (I))

≥ δ−1
k lim sup

n
ρk(xn) + δ−2

k

(
lim sup

m
ρk(ym − y) + ρk(y)

)
(by (I))

≥ δ−1
k αk lim sup

n
|xn|ρ + δ−2

k

(
αk lim sup

m
|ym − y|ρ + ρk(y)

)
(by (II))

≥ δ−1
k αkc+ δ−2

k (αkc+ ρk(y)) ,

which implies that ρk(y) ≤ dk for all k ∈ N.
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Define r by

r := inf

{
lim sup

n
|yn − y|ρ : {yn} ∈ A(K), yn

T→ y

}
.

From definition of r we have

(3.4) c ≤ r ≤ lim sup
n

|xn|ρ < c+ ε1

In what follows we will prove the existence of a T -convergent sequence {yn} ⊂ K
which is an a.f.p.s. and

r({yn},K) < 2r

which is a contradiction with Lemma 3.3.
By (III) there exists some x0 ∈ co|·|ρ({xn}) ⊂ K such that

(3.5) lim sup
k

ρk(x0) ≤
lim supn |xn|ρ

α
<

c+ ε1
α

From (3.1) we can choose k0 such that

(3.6) dk + ρk(x0) < m

for all k ≥ k0.
Since the set K is bounded, and so is the sequence dk defined in (3.2), there is a

constant P > 0 such that

(3.7) ρk(x0 − y) ≤ P

whenever y is the T -limit of any a.f.p.s. in K.
Define β0 := max{βk : k = 1, . . . , k0} which is strictly less than 1.
Take some λ ∈ (0, 1) such that

β0(2− λ)r + λP < 2r,

what is possible because limλ→0+ β0(2− λ)r + λP = 2β0r < 2r.
Moreover

(2− λ)r + λm = 2r − λ(r −m) < 2r

since m < c ≤ r.
Therefore, we can find ε2 > 0 such that

β0(2− λ)(r + ε2) + λP < 2r.(3.8)

(2− λ)(r + ε2) + λm < 2r,(3.9)

Set
M := max{(2− λ)(r + ε2) + λm, β0(2− λ)(r + ε2) + λP},

which is strictly less than 2r.

Take (yn) ⊂ K an a.f.p.s. such that yn
T→ y and

(3.10) lim sup
n

|yn − y|ρ < r + ε2.

Take N0 ∈ N such that |yn − y|ρ < r + ε2 for all n ≥ N0.
Moreover, using (II), we have

lim sup
n

ρk(yn − y) < β0(r + ε2), for k ∈ {1, . . . , k0}.
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Therefore we can find N1 ≥ N0 such that

(3.11) ρk(yn − y) ≤ β0(r + ε2)

for all n ≥ N1 and k = 1, . . . , k0.
Define the vector

z = λx0 + (1− λ)yN1

which belongs to K, because K is convex.
We are going to prove that lim supn |yn − z|ρ ≤ M . In order to do this, we will

check that for all k ∈ N and all n ≥ N1 we have

ρk(yn − z) ≤ M.

Notice that

yn − z = yn − y − (1− λ)(yN1 − y)− λ(x0 − y).

Fix n ≥ N1. We split the proof into two cases:
Case 1: k > k0.

ρk(yn − z) ≤ ρk(yn − y) + (1− λ)ρk(yN1 − y) + λ [ρk(x0) + ρk(y)]

≤ |yn − y|ρ + (1− λ)|yN1 − y|ρ + λ [ρk(x0) + ρk(y)]

(by definition of | · |ρ)
< (2− λ)(r + ε2) + λ [ρk(x0) + dk] (by 3.10 and 3.3)

< (2− λ)(r + ε2) + λm (from 3.6)

< 2r (from 3.9)

Case 2: k ≤ k0.

ρk(yn − z) ≤ ρk(yn − y) + (1− λ)ρk(yN1 − y) + λρk(x0 − y)

≤ β0(2− λ)(r + ε2) + λρk(x0 − y) (from 3.11)

≤ β0(2− λ)(r + ε2) + λP (by 3.7)

< 2r (by 3.8)

Then ρk(yn−z) ≤ M for all k ∈ N and for all n ≥ N1. This implies that |yn−z|ρ ≤
M for all n ≥ N1. Therefore

lim sup
n

|yn − z|ρ ≤ M < 2r,

which is a contradiction with Lemma 3.3 and this finishes the proof. �

First notice that Theorem 3.1 is an strict improvement of of Theorem 1 in [15] if
we define the family of seminorms by ρk(x) := γkRk(x) in the notation introduced
in [15]. Conditions (I), (II), (III) introduced in this manuscript are less restrictive
than conditions included in [15]. Therefore, all the equivalent norms with the FPP
for some nonreflexive Banach spaces studied in [15] are included in the framework of
Theorem 3.1. Moreover, in the next section we will obtain new families of equivalent
norms with the FPP that can not be derived from [15]. Theorem 3.1 also let us
include previous examples obtained by P.K. Lin in [25] as a consequence of a new
theorem with sufficient conditions so that a renorming in ℓ1 has a FPP. We will
explain the details in the next section.
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Also, Theorem 3.1 lets extend the fixed point results for nonexpansive mappings
in the above articles to the setting of mappings with the (L) condition.

In the remaining of this section we will prove another technical result which will
let us obtain new scopes of Theorem 3.1 which are not included in [15].

We introduce the following definition:

Definition 3.4. Let X be a Banach space endowed with a topology T . Let p ∈
P(X). We say that the norm p has the T (∗) condition if the following equality is
satisfied:

lim sup
n

p(xn + x) = lim sup
n

p(xn) + p(x)

for every T -null (norm)-bounded sequence {xn} and for all x ∈ X.

The condition T (∗) and the following theorem will be the key tool to generate
open rays with the FPP in the following two sections.

Theorem 3.5. Let X be a Banach space endowed with an equivalent norm given by
|x|ρ = supk ρk(x) where {ρk(·)}k is a sequence of seminorms satisfying conditions
(I), (II), (III) with respect to a topology T introduced previously. Let p ∈ P(X)
satisfying the T (∗) condition. If λ is any positive constant, the equivalent norm

p(·) + λ| · |ρ.
can be defined through a family of seminorms which again verify conditions (I), (II)
and (III).

Proof. Without loss of generality, we can assume that λ = 1. Notice that for all
x ∈ X we can write

p(x) + |x|ρ = p(x) + sup
k

ρk(x) = sup
k
(p(x) + ρk(x))

Define the family of seminorms ρ′ = {ρ′k(·)}k given by

ρ′k(x) := p(x) + ρk(x)

for all x ∈ X and for all k ∈ N. Using the notation introduced in the previous
section we can write

| · |ρ′ = sup
k

ρ′k(·) = p(·) + | · |ρ.

Since | · |ρ satisfies (I), (II) and (III) of Section 3, there exist some constants δk,
αk, βk, α according to the notation of the above properties. We will use the corre-
sponding symbols δ′k, α

′
k, β

′
k, α

′ for the new seminorms ρ′k(·).
Let us check that the family {ρ′k(·)}k again verifies condition (I), (II) and (III).

(I): It is easy to check that condition (I) holds for δ′k = δk.
(II): Fix k ∈ N and take {xn} a T -null sequence. We can extract a subsequence

{xns}s such that lims |xns |ρ′ = lim supn |xn|ρ′ and lims p(xns), lims |xns |ρ,
lims ρk(xns) exist. Hence

lim sup
n

ρ′k(xn) ≥ lim sup
s

ρ′k(xns) = lim
s

p(xns) + lim
s

ρk(xns)

≥ lim
s

p(xns) + αk lim
s

ρk(xns)
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≥ αk

[
lim
s

p(xns) + lim
s

|xns |ρ
]

= αk lim
s

|xns |ρ′ = αk lim sup
n

|xn|ρ′ .

On the other hand, define a = inf{|x|ρ : p(x) = 1} which is strictly
greater than zero because both norms are equivalent. This implies that
ap(x) ≤ |x|ρ and p(x) ≤ 1

1+a |x|ρ′ for all x ∈ X. Let {xn} be a T -null

sequence and {xns} a subsequence such that lim supn ρ
′
k(xn) = lims ρ

′
k(xns)

and lims p(xns), lims ρk(xns), lims |xns |ρ exist. Therefore

lim sup
n

ρ′k(xn) = lim
s

ρ′k(xns) = lim
s

p(xns) + lim
s

ρk(xns)

≤ lim
s

p(xns) + βk lim
s

|xns |ρ

= βk

[
lim
s

p(xns) + lim
s

|xns |ρ
]
+ (1− βk) lim

s
p(xns)

≤ βk lim
s

|xns |ρ′ + (1− βk)
1

1 + a
lim
s

|xns |ρ′

≤
[
βk + (1− βk)

1

1 + a

]
lim sup

n
|xn|ρ′

We can take α′
k = αk, β

′
k = βk + (1 − βk)

1
1+a < 1 for all k ∈ N and

condition (II) holds.
(III): Let {xn}n be a T -null sequence. Take the constant a as above and consider

ϵ > 0 with [
1

α
+

[
(1 + ϵ)− 1

α

]
1

1 + a

]
< 1.

Choose a subsequence {xns} such that lims p(xns) and lims |xns |ρ exist.
Let s0 be such that p(xns) ≤ (1 + ϵ) lims p(xns) for all s ≥ s0. For

the sequence {xns}s≥s0 take x0 ∈ co|·|ρ({xns}s≥s0) ⊂ co|·|ρ({xn}) satisfying
condition (III) for the family of seminorms {ρk(·)}k. Then

lim sup
k

ρ′k(x0) = p(x0) + lim sup
k

ρk(x0)

≤ (1 + ϵ) lim
s

p(xns) +
lims |xns |ρ

α

=
1

α
lim
s

|xns |ρ′ +
[
(1 + ϵ)− 1

α

]
lim
s

p(xns)

≤ 1

α
lim sup

n
|xn|ρ′ +

[
(1 + ϵ)− 1

α

]
lim sup

n
p(xn)

≤
[
1

α
+

[
(1 + ϵ)− 1

α

]
1

1 + a

]
lim sup

n
|xn|ρ′

From the above, there exists some α′ > 1 satisfying condition (III) for
{ρ′k(·)}k and the proof is complete.

�
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4. Applications: Equivalent norms and rays of equivalent norms with
the fixed point property

In this section we will apply the fixed point theorems obtained in Section 3 for
(L)-type mappings to several classes of nonreflexive Banach spaces. Firstly we
introduce some notation and obtain some general results.

If X is endowed with a topology T we denote by

PT (∗)(X) := {p ∈ P(X) : (X, p) verifies the T (∗) condition}

Since nonexpansive mappings are the classical examples of mappings satisfying
condition (L), we will state the following theorems and examples for such class of
mappings although they are valid in the more general context.

Set

PFPP (X) := {p ∈ P(X) : (X, p) has the FPP}.
Notice that PT (∗)(X) could be empty. Also the set PFPP (X) could be empty. The

last happens for ℓ∞, ℓ1(Γ) and c0(Γ) for Γ uncountable, that is, these spaces cannot
be renormed to satisfy the FPP because it can be proved that every equivalent
norm contains either an asymptotically isometric copy of ℓ1 or c0 [21](Chapter 9).
However, whenever X is a reflexive Banach space, it is known that PFPP (X) is
nonempty [5] and dense in P(X) for the topology induced by the above metric (in
fact, it is of the second category) [8].

We emphasize the following remarkable fact:

Lemma 4.1. For every Banach space, PFPP (X) ∩ PT (∗)(X) = ∅.

Proof. The proof of the above assertion cames from Proposition 1 in [11], where it
is shown that if a Banach space (X, ∥ · ∥) contains a normalized sequence {xn} such
that

lim sup
n

∥xn + y∥ = lim sup
n

∥xn∥+ ∥y∥

for every y belonging to the span{xn : n ∈ N}, and the span{xn : n ∈ N} is
infinite dimensional, then the sequence {xn} contains a subsequence which spans
an asymptotically isometric copy of ℓ1 and therefore (X, ∥ · ∥) fails the FPP [21]
(Chapter 9). �

In the following statement we summarize two important consequences of the
results obtained in the previous sections.

Corollary 4.2. Let X be a Banach space which can be endowed with a topology T
and an equivalent norm | · |ρ given by a family of seminorms ρ = {ρk(·)}k satisfying
conditions (I), (II) and (III) introduced in Section 3. Assume that every (norm)
bounded sequence has a T -convergent subsequence. Then every p ∈ PT (∗)(X) is the
initial point of an open ray of equivalent norms contained in PFPP (X).

Proof. The proof is direct by using Theorem 3.1 and Theorem 3.5, since for every
p ∈ PT (∗)(X) and for every λ > 0 the family of equivalent norms

p(·) + λ| · |ρ
has the FPP for every λ > 0. �
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Next we give some examples of different classes of nonreflexive Banach spaces
where Corollary 4.2 can be applied. We will use Theorem 3.1 and Theorem 3.5 to
obtain new equivalent norms with the FPP.

We will start by considering the sequence Banach space ℓ1. Next we will study
Banach spaces which can be written as a one direct sum of finite dimensional Banach
spaces. Examples of such spaces are the Fourier-Stieltjes algebras for separable
compact groups and the preduals of a finite atomic von Neumann algebras. Also
some subspaces of L1[0, 1] will be considered.

We denote by ∥ · ∥1 the usual norm in ℓ1. It is a classical result that (ℓ1, ∥ · ∥1)
fails to satisfy the FPP. In ℓ1 we can consider the topology T as the weak∗ topology
σ(ℓ1, c0). The unit ball of ℓ1 is T -sequentially compact so every (norm) bounded
sequence has a weak⋆-convergent subsequence.

Example 4.3. In 2008, P.K. Lin proved that there is an equivalent norm in ℓ1
which satisfies the FPP [24]. This norm can be defined as follows:

Take any sequence (γk)k ⊂ (0, 1) with limk γk = 1 and for x = {x(n)}n ∈ ℓ1
define

|||x||| := sup
k

γk

∞∑
n=k

|x(n)|.

Notice that the ||| · |||-norm belongs to P(ℓ1) and satisfies conditions of Theorem
3.1 if we define a family of the seminorms given by

ρk(x) := γk

∞∑
n=k

|x(n)|.

In this case, taking δk = 1, αk = βk = γk for all k ∈ N, conditions (I) and (II)
are satisfied. Moreover, the constant α > 1 in condition (III) can be chosen as any
positive constant, since limk ρk(x) = 0 for all x ∈ ℓ1. Therefore (ℓ1, ||| · |||) is a
renorming of ℓ1 which has the fixed point property for nonexpansive mappings and,
more generally, for (L)-type mappings (see also [27]).

In what follows we set P0(x) := 0 and Pk(x) =
∑k

n=1 x(n)en if x = {x(n)}n for
x ∈ ℓ1. The following equivalent norms in ℓ1 are inspired in the examples introduced
in [25], where the author shows that they satisfy the FPP.

Example 4.4. Consider a sequence of norms vk(·) on the finite dimensional space
Rk for k ∈ N. Define

ρk(x) := γk

[ ∞∑
n=k

|x(n)|+ vk−1(Pk−1(x))

]
.

Set

ck := sup{vk(Pk(x)) : ∥Pk(x)∥1 = 1}

which implies that vk(Pk(x)) ≤ ck∥Pk(x)∥1 for all x ∈ ℓ1. Consider c0 = lim supk ck
and assume that c0 < γ1. Then the corresponding | · |ρ norms belong to P(ℓ1) and
satisfy the conditions of Theorem 3.1.
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Proof. Indeed, notice that if {xn} is a weak⋆ null sequence and k ∈ N, then
lim sup

n
vk−1(Pk−1(xn)) = 0

which implies that (I) holds. Moreover,

lim sup
n

ρk(xn) = γk lim sup ∥xn∥1 = lim sup |xn|ρ

so property (II) is satisfied with αk = βk = γk for all k ∈ N. Let us check that
property (III) also holds.

Notice that for any x ∈ ℓ1,

lim sup
k

ρk(x) = lim sup
k

vk(Pk(x)) ≤ lim sup
k

ck∥Pk(x)∥1 = c0∥x∥1

With this notation

lim sup
k

ρk(x) ≤ lim sup
k

ck
γ1

γ1∥x∥1 ≤
c0
γ1

|x|ρ

Take ϵ > 0 such that (1 + ϵ) c0γ1 < 1 and let {xn} be a weak⋆ null sequence. Take n0

such that |xn0 |ρ ≤ (1 + ϵ) lim supn |xn|ρ. Therefore for such n0,

lim sup
k

ρk(xn0) ≤
c0
γ1

|xn0 |ρ ≤ (1 + ϵ)
c0
γ1

lim sup
n

|xn|ρ

as we wanted to check. �
Adapting the notation of the examples included in [25] to our setting, we can

check that they are particular cases of the above family of equivalent norms in
P(ℓ1).

We can enlarge the set of equivalent norms in ℓ1 which are in the conditions of
Theorem 3.1 considering the norms introduced in the following example:

Example 4.5. Take (qk)k ⊂ (1,+∞) with limk qk = 1 and (γk)k ⊂ (0, 1) with
limk γk = 1. Define the seminorms

ρk(x) = γk [∥(I − Pk)(x)∥qk1 + ∥Pk(cx)∥qk1 ]
1/qk

for some c < 1 and for all k ∈ N, where by I we denote the identity operator and
Pk(·) was defined previously. If we define as usual

|x|ρ := sup
k

ρk(x),

the norm | · |ρ belongs to P(ℓ1) and satisfies the conditions in Theorem 3.1.

Proof. Indeed, it is not difficult to check that (I) is satisfied taking δk = 2
qk−1

qk . On
the other hand, if {xn} is weakly∗ null, then lim supn ρk(xk) = γk lim supn ∥xn∥1
and lim supn |xn|ρ = lim supn ∥xn∥1 so (II) holds with αk = βk = γk for all k ∈ N.

Take ϵ > 0 with c(1 + ϵ) < 1. Consider {xn} a weak⋆ null sequence and n0 such
that

∥xn0∥1 ≤ (1 + ϵ) lim sup
n

∥xn∥1 = (1 + ϵ) lim sup
k

|xn|ρ.

Therefore
lim sup

k
ρk(xn0) = c∥xn0∥1 ≤ c(1 + ϵ) lim sup

k
|xn|ρ

and (III) holds. �
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More examples of equivalent norms in ℓ1 given by seminorms verifying Theorem
3 with δk ̸= 1 in condition (I) can be found in [2]

Now, as a consequence of Lemma 4.1 and Corollary 4.2 we can deduce that the
set of equivalent norms in ℓ1 satisfying the FPP contains rays whose initial points
are renomings which fail to have the FPP:

Corollary 4.6. Let p(·) be any equivalent norm in ℓ1 satisfying the w⋆(∗) condition,
that is

lim sup
n

p(xn + x) = lim sup
n

p(xn) + p(x)

for every weak⋆-null sequence {xn} and for all x ∈ ℓ1. Then (X, p) fails to have the
FPP. However, p is the initial point of several open rays of equivalent norms with
the FPP.

Typical examples of norms in ℓ1 which satisfy the w⋆(∗) condition are the usual
∥ · ∥1-norm and every equivalent norm which separates disjoint supports. They fail
to have the FPP themselves, but it is remarkable that they provide different families
of open rays composed of equivalent norms with the FPP.

Notice that Theorem 2.1 in [18] is a very particular case of the above result by
using P.K. Lin’s norm introduced in Example 4.3. Also in [18] the reader can find
more examples of equivalent norms in ℓ1 satisfying the w⋆(∗) condition and which
do not separate disjoint supports.

Next, let us check how Theorem 3.1 and Theorem 3.5 can be applied to more
general classes of nonreflexive Banach spaces.

Corollary 4.7. Let (Xn) be a sequence of finite dimensional Banach spaces. Define
the one-direct sum of (Xn) as

X = ⊕1

∑
n

Xn :=

{
x = (xn) : xn ∈ Xn, ∥x∥ =

∑
n

∥xn∥Xn < +∞

}
.

Let T be the the weak⋆ topology generated by the predual

X∗ =

{
x = (xn) : xn ∈ X, lim

n
∥xn∥Xn = 0, ∥x∥ = sup

n
∥x∥Xn

}
.

Then every equivalent norm satisfying the T (∗) condition fails the FPP and it is
the initial point of different families of open rays composed of equivalent norms with
the FPP.

Proof. Notice that the original norm in X verifies the T (∗) condition.
Consider (γk)k any sequence in (0, 1) with limk γk = 1 and define |x|ρ := supk ρk(x),

where

ρk(x) = γk

∞∑
n=k

∥xn∥Xn

if x = (xn) with xn ∈ Xn for all n ∈ N. Now it is easy to check that {ρk(·)}k
verifies Theorem 3.1. Then (X, | · |ρ) has the FPP and p + λ| · |ρ ∈ PFPP (X) for
every p ∈ PT (∗)(X) and λ > 0. Similar rays can be constructed following the ideas
in Examples 4.4 and 4.5. �
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Example 4.8. Fix any p > 1. We can apply the above corollary to the Banach
space X = ⊕1

∑
n ℓ

n
p .

It is worth mentioning that the above space is a nonreflexive Banach space which
is not isomorphic to any subspace of ℓ1 (this can be checked by comparing the type
and cotype of both Banach spaces).

Example 4.9. Let G be a separable compact group and B(G) its Fourier-Stieltjes
algebra. Then the set of equivalent norms which satisfy the FPP for (L)-type
mappings contains rays.

Proof. Using the arguments in the proof of [23, Lemma 3.1] and [14, Corollary 6.9]
we deduce that B(G) can be written as

B(G) = ⊕1

∞∑
n=1

T (Hn),

whereHn is a finite dimensional Hilbert space and T (Hn) is the trace class operators
on Hn. �

Notice that the Fourier-Stieltjes algebra B(G) endowed with its original norm
fails to have the FPP unless that G is a finite group [22].

Example 4.10 ([16]). Let M be any finite atomic von Neumann algebra. Then
its predual L1(M) can be endowed with rays of norms with the FPP for (L)-type
mappings.

Proof. The proof is again based on the fact that L1(M) is isomorphic to a one-
direct sum of finite dimensional Banach spaces whenever M is a finite atomic von
Neumann algebra (see Proposition 2.2 in [33]). �

We now consider some closed subspaces of L1(µ)-spaces which we know that can
be renormed to have the FPP:

Let (Σ,Ω, µ) be a σ-finite measure. Let ∥ · ∥1 the usual norm in L1(µ)C given by
∥x∥1 =

∫
Ω |x| dµ. It is well-known that (L1(µ), ∥ · ∥1) fails the FPP. In fact, it is an

open question whether there is some equivalent L1(µ) which satisfies the FPP.

Corollary 4.11. Let (Σ,Ω, µ) be a σ-finite measure space and X a closed subspace
of L1(µ). If the unit ball of X is relatively compact for the topology of the local
convergence in measure, then the set PFPP (X) contains rays. In particular, the
usual ∥ · ∥1 norm in X in the initial point of different open rays in PFPP (X).

Proof. In Section 5 of [15] it is proved that L1(µ) can be endowed with a family of
seminorms that verify conditions (I), (II) and (III) of Theorem 3.1. If we restrict
these seminorms to the subspace X and define the corresponding | · |ρ norm, the
space (X, | · |ρ) verifies the FPP since Theorem 3.1 holds for the topology T of
the local convergence in measure. Since ∥ · ∥1 verifies the T (∗) condition for this
topology, according to Theorem 3.5, ∥ ·∥1 is the initial point of some open rays with
the FPP. We can modify the semimorns introduced in [15] and obtain different open
rays of norms in PFPP (X) with initial point the ∥ · ∥1 norm. �
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Example 4.12. Let D denote the open unit disc. The Bergman space La(D) is the
subspace of L1(D) of all analytic functions on D. J. Lindenstrauss and A. Pelczynski
[26] proved that the Bergman space and the sequence space ℓ1 are isomorphic, which
implies that La(D) is FPP-renormable by P.K. Lin’s result [24]. However, these
authors did not give an explicit definition of the above isomorphism. In fact, it
turns out to be a difficult problem to find a system of functions which is a basis in
La(D) equivalent to the unit vector basis in ℓ1 (see Notes and Remarks in Chapter
III.A of [35] and the references therein). This makes specially difficult to give an
specific renorming in the Bergman space with the FPP through P.K. Lin’s norm.

On the other hand, the Bergman space is a dual Banach space and for bounded
sequences weak* convergence is equivalent to uniform convergence on compact sets
[30]. This shows that the weak* topology is finer than the topology of convergence
in measure on the unit ball of La(D) and consequently these two topologies coincide
on BLa(D). Therefore, by the family of seminorms introduced in Section 5 of [15] and
Theorem 3.5, for every sequences (γk)k, (δk)k ⊂ (0, 1) with limk γk = 1, limk δk = 0,
the norms ∫

D
|x| dm+ λ sup

k
γk sup

{∫
E
|x| dm : m(E) < δk

}
gives an open ray of equivalent norms with the FPP.

In Example 6 of [15] and the references therein, we can find new subspaces of
L1(µ) that are not isomorphic to any subspace of ℓ1, and for which we can construct
rays of equivalent norms verifying the FPP following the same seminorms as above.

5. Rays of equivalent norms with the fixed point property for affine
mappings

The above arguments to find equivalent norms with the fixed point property
fail in case of the Banach space L1[0, 1] or more generally in case of L1(µ) when
(Ω,Σ, µ) is any σ-finite measure space. In L1(µ) we can consider the topology T
as the topology of the local convergence in measure (clm), or the topology of the
convergence in measure (cm) in case that the measure is finite. The usual ∥ · ∥1
norm satisfies the T (∗) condition and a family of seminorms with properties (I), (II)
and (III) introduced in Section 3 can be given [15]. The problem arises when we
try to find T -convergent approximate fixed point sequences, since the unit ball of
L1(µ) is not T -sequentially compact. We can overcome this situation if we assume
that the mapping T is affine. Recall that a mapping T defined from a convex subset
into itself is affine if

T (λx+ (1− λ)y) = λT (x) + (1− λ)T (y)

for all x, y ∈ C and λ ∈ [0, 1]. Affine mappings play an important role in fixed
point theory. For instance, they let characterize weakly compactness in Banach
spaces through fixed point results. In [7] it is proved that a convex bounded subset
C of a Banach space is weakly compact if and only if for every closed convex
subset K ⊂ C and for every affine continuous mapping T : K → K, there exists a
fixed point. In fact, the continuity condition can be replaced by nonexpansiveness
whenever X = L1[0, 1] or more generally whenever X is an L-embedded Banach
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space [7], [9]. Notice that the affine condition in the previous characterization of
weakly compactness can not be omitted [1].

A Banach space is said to have the affine fixed point property (A-FPP) if every
affine nonexpansive mapping defined from a closed convex bounded subset into
itself has a fixed point. It is well-known that L1(µ) fails the A-FPP and the same
holds for every Banach space which contains an asymptotically isometric copy of ℓ1
[21] (Chapter 9). It is proved in [17] that for the function space L1(µ) and more
generally, for the the predual of any finite von Neumann algebra L1(M), there
exists an equivalent norm with the A-FPP. In this section we will check that we can
extend these renormings and obtain rays of equivalent norms with the affine fixed
point property. Notice that all the fixed point results obtained in this section also
hold for affine mappings which verify the (L) condition.

Let M be a finite von Neumann algebra on a separable Hilbert space and let
τ be a finite normal faithful trace on M. Let L1(M) be the corresponding non-
commutative L1-space with its usual norm ∥x∥1 = τ(|x|), where by |x| we denote
the absolute value of the operator x ∈ L1(M). For definition and examples of
non-commutative L1-spaces, the reader can consult [32], [16] and the references
therein. Since every commutative von Neumann algebra is finite, the function spaces
L1(µ) for (Ω,Σ, µ) any σ-finite measure are particular cases of non-commutative
L1 Banach spaces associated to a finite von Neumann algebra. Another example of
such space is L1(R), R being the hyperfinite II1 factor. Notice that L1(R) contains
strictly L1[0, 1] as an isometric subspace [33].

In [16] and [17] the following family of seminorms is considered:

ρ1(x) = γ1∥x∥1 = γ1τ(|x|)

and for k ≥ 2

ρk(x) = γk sup

{
∥xp∥1 : p ∈ P(M), τ(p) <

1

k

}
,

where (γk) is any sequence in (0, 1) with limk γk = 1 and P(M) here denotes the
collection of all orthogonal projections in M. These seminorms verify properties
(I), (II) and (III) of Theorem 3.1 (see [16]) when we consider the topology T as the
measure topology in L1(M) which has, as a fundamental system of neighborhoods
of zero, the following sets:

N(ε, δ) =
{
x ∈ M : ∃p ∈ P(M) such that ∥xp∥∞ ≤ ε and τ(p⊥) ≤ δ

}
,

where ε and δ are positive real numbers [29].
We consider the following extension of Komlós Theorem due to N. Randrianan-

toanina [31] (Proposition 3.11).

Theorem 5.1. Let (M, τ) be a finite von Neumann algebra and suppose that {xn}
is a bounded sequence in L1(M). Then there exists a subsequence {gn} ⊂ {xn} and
a vector x ∈ L1(M) such that for every further subsequence {hn} ⊂ {gn},

1

n

n∑
i=1

hi →n x with respect to the measure topology.



374 C. A. HERNÁNDEZ-LINARES AND M. A. JAPÓN

If the mapping T is affine, it is easy to check that the sequence formed by the
arithmetic means of an approximate fixed point sequence {xn} is again an approx-
imate fixed point sequence. Hence, the hypotheses of Theorem 3.1 are satisfied
when the mapping T is an affine nonexpansive mapping, or more generally an affine
(L)-type mapping. Therefore, similar statements can be deduced.

Since every renorming which contains an asymptotically isometric copy of ℓ1 also
fails the A-FPP, we can deduce that every equivalent norm in L1(M) with the T (∗)
condition fails the A-FPP, whereas it provides a ray of equivalent norms with the
A-FPP. This assures that the set of equivalent norms verifying the A-FPP is dense
in the set of equivalent norms with the T (∗) condition.

Corollary 5.2. Let M be a finite von Neumann algebra and L1(M) its predual.
Let (γk)k ⊂ (0, 1) with limk γk = 1. Then for every equivalent norm ∥ · ∥ verifying
the T (∗) condition, in particular for the usual ∥ · ∥1 norm, the equivalent norms
defined by

∥ · ∥+ λ sup
k

γk sup

{
∥xp∥1 : p ∈ P(M), τ(p) <

1

k

}
for λ > 0 form an open ray of equivalent norms with the A-FPP, and more generally
with the fixed point property for affine (L)-type mappings.

In particular for function spaces we obtain

Corollary 5.3. For every σ-finite measure space (Ω,Σ, µ), the function space L1(µ)
can be renormed to have the A-FPP and every norm satisfying the clm(∗) condition
fails to have the A-FPP but it is the initial point of an open ray formed by equivalent
norms with the A-FPP.

When the measure space is finite and nonatomic, the previous renorming can be
rewritten by using maximal functions. Indeed,

sup{
∫
A |f |dµ : µ(A) < 1/k} = sup{

∫
A |f |dµ : µ(A) = 1/k}

=
∫ 1/k
0 f∗(s)ds = 1

kf
∗∗ ( 1

k

)
,

where f∗ denotes the decreasing rearrangement of the function f and f∗∗ is the

maximal function defined by f∗∗(t) =
1

t

∫ t

0
f∗(s)ds for t > 0 (see [3, Chapter 2],

Lemma 2.5.). In particular, in L1[0, 1], taking γk = 1 − 1/2k for every k ≥ 1, the
equivalent norms

||f ||1 + λ sup
k≥1

(
1− 1

2k

)
1

k
f∗∗

(
1

k

)
.

forms an open ray of equivalent norms in L1[0, 1] with the fixed point property for
affine (L)-type mappings (and the same holds if we replace the sequence {1/k} by
any sequence tending to zero).

Concluding remarks and some open problems:

In the last years new results have been published which interrelate Metric Fixed
Point Theory for nonexpansive mappings with Renorming Theory in Banach spaces.
We would like to point out some open problems in this line of research:
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1. We do not know if the affine condition can be dropped from the statement
of Corollary 5.2. In fact it is an open problem if there exists some equivalent
norm in L1[0, 1] with the fixed point property for nonexpansive mappings.
Notice that we can not argue as in the nonseparable case ℓ1(Γ) where it is
proved that every renorming in ℓ1(Γ) contains an asymptotically isometric
copy of ℓ1. Since L1[0, 1] and more generally L1(M) are separable Banach
spaces, we know that there exist some equivalent norms without asymptot-
ically isometric copy of ℓ1. In fact it can be proved that for all separable
Banach spaces, the subset of all equivalent norms which fail to have an
asymptotically isometric copy ℓ1 is of the second category in P(X) and that
always there exists an equivalent norm without asymptotically isometric
copies of both c0 and ℓ1 [19].

2. Notice that as “close” as we like from the usual ∥ · ∥1 norm in ℓ1 we can find
a renorming with the FPP (take γ1 close to one in the P.K. Lin’s norm).
Also as close as we like from a norm verifying the FPP in ℓ1 we can find
an equivalent norm failing to have such property [6]. This implies that
the subset PFPP (ℓ1) is neither open nor closed in P(ℓ1) with respect to
the topology induced by the above metric. Actually not much is known
about the topological structure of PFPP (ℓ1). In [6] it is proved that the
complementary of PFPP (ℓ1), that is, the subset of all equivalent norms
which fail to have the FPP, is dense in P(ℓ1). We do not know whether
PFPP (ℓ1) is dense in the set of all equivalen norms in ℓ1. The same question
could be raised for every separable nonreflexive Banach space.

More generally, is every norm in P(ℓ1) the initial point of an open ray of
equivalent norms with the FPP? This is true is we consider rays of norms
failing to have an asymptotically isometric copy of ℓ1, that is, every norm
in P(ℓ1) is the initial point of an open ray of norms in P(ℓ1) which fail to
have an asymptotically isometric copy of ℓ1 [19] so we still could have some
chance in proving that this ray is composed of norms satisfying the FPP.

References

[1] D. E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), 423–
424.

[2] A. Barrera-Cuevas and M. Japon. Equivalent norms in ℓ1 failing to have asymptotically isomet-
ric copies of ℓ1: Generating equivalent norms in ℓ1 with the fixed point property. In preparation.

[3] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.
[4] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci.

USA 54 (1965), 1041–1044.
[5] T. Domı́nguez Benavides, A renorming of some nonseparable Banach spaces with the fixed

point property, J. Math. Anal. Appl. 350 (2009), 525–530.
[6] T. Domı́nguez Benavides, Distortion and stability of the fixed point property for non-expansive

mappings, Nonlinear Anal. 75 (2012), 3229–3234.
[7] T. Domı́nguez-Benavides, M. A. Japón-Pineda and S. Prus, Weak compactness and fixed point

property for affine mappings, J. Funct. Anal. 209 (2004), 1–15.
[8] T. Domı́nguez Benavides and S. Phothi. Genericity of the fixed point property for reflexive

spaces under renormings in Nonlinear Analysis and Optimization I. Nonlinear analysis, Con-
temp. Math., 513, Amer. Math. Soc., Providence, RI, 2010, pp. 143155.
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