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For example, see Masad and Reich [24], Censor, Gibali and Reich [12], and Byrne,
Censor, Gibali and Reich [6] and the references therein.

In a recent paper, Li et. al. [21] introduced the Nonlinear Multiple-Sets Split
Feasibility Problem (NLMSSFP), where a general vector valued function F : Rn →
Rm is taken instead of A. Again, for simplicity we consider the Nonlinear Multiple-
Sets Split Feasibility Problem with two sets in each space, that is

(1.2) find a point x∗ ∈ C and F (x∗) ∈ Q.

In order to establish an algorithm for solving (1.2), the authors [21] followed a
similar technique as in [11, 9]. This idea is based on the introduction of a proximity
function

(1.3) p(x) =
1

2
∥PQ(F (x))− F (x)∥2 .

Then (1.2) is considered as the following minimization problem.

(1.4) min
x∈C

1/2 ∥PQ(F (x))− F (x)∥2 .

Assuming that F is continuously differentiable, we get that

(1.5) ∇p(x) = (∇F (x))t (F (x)− PQ(F (x)))

where ∇F (x) : Rm → Rn is the Jacobian of F at a point x ∈ Rn and t denotes its
transpose. It was proven in [21, Lemma 2.4] that when F and ∇F are Lipschitz
continuous the operator ∇p is also Lipschitz. In the linear case where F = A,
it is shown in [9] that p is convex and therefore by the Baillon-Haddad Theorem
[1, Corollaire 10] ∇p is inverse strongly monotone (ISM). Then, using the Dolidze
Theorem [13] their projected gradient method (see Goldstein [16] and Levitin and
Polyak [20]) converges to the solution of the SFP. The classical convergence result
for the projected gradient method establishes that cluster points of (if any) are
stationary points, i.e., they satisfy the first order optimality conditions, but in
general neither existence nor uniqueness of cluster points is guaranteed. In case the
objective function is convex a local optimum is also a global optimum.

For the non-linear case, i.e., NLSFP, convexity of p is not guaranteed and there-
fore iterates of the projected gradient method might converge to a stationary point
which is only a local minimizer. Therefore, convexity of p is assumed in [21] and the
algorithm converges to the solution of the NLSFP. Since this assumption is quite
strong and might be too hard to verify in practice, we suggest here an algorithm
which does not require convexity of p, therefore only local convergence is guaranteed.
The method we use here ([27]) is based on the Successive Linear Programing Ap-
proach (see e.g., [3, Subsection 10.3] and [25]) also known as the projected gradient
trust-region method [22].

Remark 1.1. Consider the Nonlinear Multiple-Sets Split Feasibility Problem
(NMSSFP), which is formulated as follows. Given non-empty, closed and convex
subsets Ci ⊆ Rn, Qj ⊆ Rm for i = 1, 2, . . . , p and j = 1, 2, . . . , r, respectively, and a
mapping F : Rn → Rm the NMSSFP is formulated as follows:

(1.6) find a point x∗ ∈ C := ∩p
i=1Ci such that F (x∗) ∈ Q := ∩r

i=1Qj .
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Define the proximity function

(1.7) p̃(x) =
1

2

p∑
i=1

αi ∥PCi(x)− x∥2 + 1

2

r∑
j=1

βj
∥∥PQj (F (x))− F (x)

∥∥2
and then apply the suggested method with p̃(x).

The paper is organized as follows. In Section 2 we list several known facts about
functions, operators and mappings that we need in the sequel. In Section 3 we
present Toint’s [27] projected gradient trust-region method for solving (1.2). Finally,
in Section 4 we discuss further research directions and propose a generalization of
the NLSFP, which is the Nonlinear Split Variational Inequality Problem (NLSVIP).

2. Preliminaries

In this section we present several definitions and notations that play a central
role in the sequel.

We recall several definitions and properties of operators.

Definition 2.1. Let f : Rn → Rn be an operator and let D ⊆ Rn.
(i) f is called α-inverse strongly monotone (α-ISM) on D if

(2.1) ⟨f(x)− f(y), x− y⟩ ≥ α∥f(x)− f(y)∥2 for all x, y ∈ D

this property is also known as the Dunn property or cocoercivity.

(ii) f is called Lipschitz continuous on D ⊆ Rn if there exists a constant κ > 0
such that

(2.2) ∥f(x)− f(y)∥ ≤ κ∥x− y∥ for all x, y ∈ D.

(iii) f is called monotone on D ⊆ Rn if

(2.3) ⟨f(x)− f(y), x− y⟩ ≥ 0 for all x, y ∈ D.

Definition 2.2. Given an operator f : Rn → Rn, denote by Fix(f) the fixed point
set of f, i.e.,

(2.4) Fix(f) := {x ∈ H | f(x) = x}.

The following theorem is known as Baillon-Haddad Theorem [1, Corollary 10].

Theorem 2.3. Let h : Rn → R be convex, continuously differentiable on Rn, and
such that ∇h is β-Lipschitz continuous for some β ∈ (0,∞). Then ∇h is 1/β-ISM.

Let D be a non-empty, closed and convex subset of Rn. For every point x ∈ Rn,
there exists a unique nearest point in D, denoted by PD(x). This point satisfies

(2.5) ∥x− PD (x)∥ ≤ ∥x− y∥ for all y ∈ D.

The mapping PD is called the metric projection of Rn onto D. We know that PD

is a nonexpansive operator of Rn onto D, i.e.,

(2.6) ∥PD (x)− PD (y)∥ ≤ ∥x− y∥ for all x, y ∈ Rn.

The metric projection PD is characterized by the following two properties (see, e.g.,
Goebel and Reich [15, Section 3]):

(2.7) PD(x) ∈ D
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and

(2.8) ⟨x− PD (x) , PD (x)− y⟩ ≥ 0 for all x ∈ Rn, y ∈ D.

If D is a hyperplane, then (2.8) becomes an equality. It also follows that

(2.9) ∥x− y∥2 ≥ ∥x− PD (x)∥2 + ∥y − PD (x)∥2 for all x ∈ Rn, y ∈ D.

Definition 2.4 ([4, Proposition 2.1.2, p. 194]). Given a continuously differentiable
function h : Rn → R and a set D ⊆ Rn, a vector x∗ that satisfies the condition

(2.10) ⟨∇h(x∗), x− x∗⟩ ≥ 0 for all x ∈ D,

is called a stationary point of h over D. Condition (2.10) is an optimality

condition. It is a necessary condition for x∗ to be a local minimum of h over D,
and if h is convex over D then it is also sufficient (see, e.g., [4, Proposition 2.1.1, p.
193]).

Remark 2.5. Following (2.8), one can see that x∗ is stationary point of h over D
if and only if x∗ = PD(x

∗ − t∇h(x∗)) for all t ≥ 0, that is x∗ ∈ Fix(PD(I − t∇h)).

The theorem of Dolidze [13], as presented and proven in Byrne [5, Theorem 2.3],
can also be found in [17] and is as follows.

Theorem 2.6. Let f : Rn → Rn be α-ISM and let γ ∈ (0, 2α). Then, for any
x ∈ Rn, the sequence {(PΩ(I−γf))xk}∞k=0 converges to a point x∗ which is a solution
(whenever a solution exists) of the following variational inequality problem.

(2.11) ⟨f(x∗), x− x∗⟩ ≥ 0 for all x ∈ Ω.

3. The algorithm

In this section we formulate (1.2) as a minimization problem and show how
an algorithm which is based on Toint’s [27] trust region method can be applied.
Although several improvements have been presented (see e.g., Zhu [28] and Jia and
Zhu [22]), our goal here is to present a general scheme for which can be applied for
solving (1.2).

Consider the problem (1.2); we define the operator G(x) := PQ(F (x)) − F (x).
Then one can verify that (1.2) reduces to the problem of finding a zero of G which
is also in C, i.e.,

(3.1) find a point x∗ ∈ C such that G(x∗) = 0.

So, the function p in (1.3) is actually

(3.2) p(x) =
1

2
∥G (x)∥2 = 1

2
∥PQ(F (x))− F (x)∥2 .

Our goal is to solve the following optimization problem.

(3.3) min
x∈C

p(x).

The function p is continuously differentiable and by [4, Proposition 2.1.2, p. 194],
a stationary point x∗ ∈ C satisfies the condition

(3.4) ⟨∇p(x∗), x− x∗⟩ ≥ 0 for all x ∈ C.
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The projected gradient trust-region method is based on the idea that at each iter-
ate xk, an approximation model of the objective function is constructed, denoted by
mk in a trust-region of xk, where this approximation is an adequate approximation
of the objective. The model mk satisfies mk(x

k) = p(xk) and there exist nonneg-
ative constants k1 and k2 such that

∥∥∇mk(x
k)−∇p(xk)

∥∥ ≤ min{k1△k, k2} for all
k. This provides some assurance that the first-order information on the objective
is reasonably accurate.

In addition, a step sk is taken which guarantees a “sufficient” decrease of the
approximation inside the intersection of this trust-region and the feasible set.

In order to describe the algorithm in detail we introduce several notations and
definitions following Toint [27]. At the k-th iterate the trust-region is the closed
ball

(3.5) B(xk,△k) := {y |
∥∥∥y − xk

∥∥∥ ≤ △k}.

For t ∈ R, define the arc

(3.6) dk(t) := PC(x
k − t∇mk(x

k))− xk.

Now the technique of choosing the step sk is presented. Following [27], this choice
is divided to two procedures, the first ensures “sufficient” decrease and the second
improvement.

Algorithm 3.1. Step determination
1: Find tAk ∈ R such that

(3.7) mk(x
k + dk(t

A
k )) ≤ p(xk) + µ1

⟨
∇mk(x

k), dk(t
A
k )

⟩
and

∥∥dk(tAk )∥∥ ≤ ν1△k, and tAk ≥ ν2t
B
k or tAk ≥ min{ν3△k/

∥∥∇mk(x
k)
∥∥ , ν4}, where

tBk (if required) satisfies

(3.8) mk(x
k + dk(t

B
k )) ≥ p(xk) + µ2

⟨
∇mk(x

k), dk(t
B
k )

⟩
.

2: Choose sk such that

(3.9) p(xk)−mk(x
k + sk) ≥ µ3

(
p(xk)−mk(x

k + dk(t
A
k ))

)
with

∥∥sk∥∥ ≤ ν5△k, and xk + sk ∈ C.

The constants should satisfy 0 < µ1 < µ2 < 1, µ3 ∈ (0, 1], 0 < ν3 < ν1 ≤ ν5,
ν2 ∈ (0, 1] and ν4 > 0. Now assume that the constants η1, η2, γ1, γ2 and γ3 are
given and satisfy 0 < η1 < η2 < 1 and 0 < γ1 ≤ γ2 < 1 ≤ γ3. Next is the second
procedure to guarantee decrease of the objective function.

Algorithm 3.2. Minimization
Initialization: Choose a starting point x0 ∈ C, a trust-region radius △0 and set

k = 0.

Iterative step: Given the current iterate xk

(i) compute the step sk by using Algorithm 3.1 above.
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(ii) Compute the ratio

(3.10) ρk =
p(xk)− p(xk + sk)

p(xk)−mk(xk + sk)
.

(iii) If ρk > η1, set x
k+1 = xk + sk and

(3.11) △k+1 ∈
{

[△k, γ3△k] if ρk ≥ η2,
[γ2△k,△k] if ρk < η2,

otherwise, set xk+1 = xk and △k+1 ∈ [γ1△k, γ2△k].

(iv) Define mk+1 in the neighborhood of xk+1 and go to (i).

For the convergence of the algorithm see [27, Sections 3 and 4]. Toint’s proposed
method is quite general since it allows different choices of the model mk, for example
the objective function itself or the linear model, that is

(3.12) mk(x
k + s) = p(xk) +

⟨
∇p(xk), s

⟩
.

In case where mk is chosen as the first-order approximation of the objective this is
also called Successive Linear Programing Approach.

Remark 3.3. 1. Observe that if mk(x
k + s) = p(xk + s) then ρk > η1 for all k. In

this case the step search of the algorithm is identical to the one in [7].

2. If sk = dk(t
A
k ) then the classical projected gradient method is obtained.

3. In practice if p happens to be convex then we are able to obtain a global
optimum.

4. Summary and further discussion

In this paper we follow similar techniques as in [11] for solving the Nonlinear Split
Feasibility Problem (NLSFP). Due to the absence of convexity of the proximity
function we apply Toint’s [27] scheme which leads to a projected gradient trust-
region method. In the linear case if the model mk is chosen as the first-order
approximation of the objective this reduces to the method established in [11] (for
two sets also known as Byrne’s CQ algorithm [5]).

As explained in the introduction, moving from linear to non-linear SFP does not
preserve the convexity property of the proximity function and therefore without
this assumption, only local minima is guaranteed. Since the projected gradient
trust-region method can be seen as a sequential linearization method, it can also
be considered as a sequence of operators with “good” properties that eventually
converge to a solution. Since in the linear case Censor et. al. [12] and Byrne
et. al. [6] prove convergence by applying the classical Krasnosel’skĭı-Mann-Opial
[19, 23, 26] and Baillon, Bruck and Reich [2] Theorems, our goal is to generate a
sequence of operators that converges eventually to the desired solution. This idea
is inspired by the recent work of Cegielski and Censor [8].

Following the Nonlinear Split Feasibility Problem (NLSFP) we could also phrase
next the Nonlinear Split Variational inequality Problem (NLSVIP).



THE NON-LINEAR SPLIT FEASIBILITY PROBLEM 351

4.1. The Split Variational Inequality Problem. Let us recall a generalization
of the SFP, that is the Split Variational Inequality Problem (SVIP) introduced by
Censor et. al. in [12]. This problem allows, for example, to formulate the split
minimization problem as a special case. Consider the Euclidean spaces Rn and Rm.
Given operators f : Rn → Rn and g : Rm → Rm, an m × n matrix A, and non-
empty, closed and convex subsets C ⊆ Rn and Q ⊆ Rm, the SVIP is formulated as
follows:

find a point x∗ ∈ C such that ⟨f(x∗), x− x∗⟩ ≥ 0 for all x ∈ C(4.1)

and such that

the point y∗ = Ax∗ ∈ Q and solves ⟨g(y∗), y − y∗⟩ ≥ 0 for all y ∈ Q.(4.2)

When viewed separately, (4.1) is the classical Variational Inequality Problem (VIP)
introduced by Hartman and Stampacchia [18]; we denote the solution set of (4.1)
by SOL(f, C). Based on the well-known result due to Eaves [14] for any λ ≥ 0

(4.3) x∗ ∈ SOL(f, C) ⇔ x∗ = PC(x
∗ − λf(x∗)).

With this idea, the SVIP can be written as the following minimization problem.

(4.4) min
x∈SOL(f,C)

1

2
∥PQ(I − λg)A(x)−A(x)∥2 .

Using the abbreviations T := PQ(I − λg) and U := PC(I − λf), the proposed algo-
rithm, which is close to the projected gradient method is introduced [12, Algorithm
6.1].

Algorithm 4.1.
Initialization: Let λ > 0 and select an arbitrary starting point x0 ∈ Rn.
Iterative step: Given the current iterate xk, compute

(4.5) xk+1 = U(xk + γAt(T − I)(Axk)),

where γ ∈ (0, 1/L), L is the spectral radius of the operator AtA, and At is the
transpose of A.

Convergence of the algorithm is guaranteed if f and g are α1-ISM and α2-ISM
operators on Rn and Rm, respectively, the solution set of (4.1)-(4.2) is non-empty,
γ ∈ (0, 1/L) and λ ∈ [0, 2α] where α := min{α1, α2}.
Remark 4.2. 1. A multiple set split variational inequality problem is also consid-
ered in [12], and it is shown how to transform it to (4.1)-(4.2) using a product space
formulation.

2. Observe that by setting f ≡ g ≡ 0 in (4.1)–(4.2) we obtain the Split Feasibility
Problem (SFP). This problem was used in the area of intensity-modulated radiation
therapy (IMRT) treatment planning; see [11, 9].

3. The convergence of Algorithm 4.1 is based on the classical Krasnosel’skĭı-
Mann-Opial Theorem [19, 23, 26] and it is related to the projected gradient method,
therefore, we believe that similar techniques to the ones presented here can be
applied for solving the Nonlinear Split Variational Inequality Problem (NLSVIP)
((4.1)–(4.2) where A is replaced by a general vector valued function F : Rn → Rm).
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