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Given a mapping f : D → H, the variational inequality defined by f and D is

(2.1) V I(f,D) :

{
find x0 ∈ D such that
⟨f(x0), y − x0⟩ ≥ 0, for all y ∈ D.

We refer the reader to [26], for background material on theory of variational
inequalities.

Given a point x ∈ D recall that the closed convex cone

ND(x) := {ξ ∈ H : ⟨ξ, y − x⟩ ≤ 0, for all y ∈ D},

is called the normal cone of D at the point x ∈ D.
As usual, denote PD : H → D the metric projection operator. For each x ∈ H,

PD(x) is the unique point of D such that

∥x− PD(x)∥ ≤ ∥x− y∥, for all y ∈ D.

The directional derivate of the metric projection operator PD at any point x ∈ D
and at any arbitrary direction v ∈ H exists [31]. We denote

ΠD(x, v) := lim
δ→0+

PD(x+ δv)− x

δ
.

Given the problem V I(f,D), we consider the ordinary differential equation

(2.2)

{
u′(t) = ΠD(u(t);−f(u(t)))
where u : [0,+∞) → H.

The projected dynamical system defined by the mapping f on the setD (PDS(f,D)
for short), is defined as the mapping ϕ : D × R+ → D where ϕ(x, t) = ϕx(t) solves
the following initial value problem associated to Equation (2.2), that is,

(2.3)

{
ϕ′
x(t) = ΠD(ϕx(t);−f(ϕx(t)))

ϕx(0) = x0 ∈ D.

The importance of the notion of PDS for the study of variational inequalities is
related to the following result.

Proposition 2.1 ([23]). A point x0 ∈ D is an equilibrium point of the PDS(f,D),
i.e. ΠD(x0,−f(x0)) = 0 if, and only if, x0 is a solution of the V I(f,D).

In the infinite dimensional case, we must study the existence of solution of Prob-
lem (2.3) and the stability of stationary points of PDS(f,D) using the following
differential inclusion

(2.4) u′(t) +ND(u(t)) ∋ −f(u(t)),

and considering its viable solutions.
Generally, if T is a positive real number or T = +∞ a function u : [0, T ) → D is

said to be a viable solution of (2.4) if u is absolute continuous on compact subsets
of [0, T ) and it satisfies

u′(t) +ND(u(t)) ∋ −f(u(t))

for almost all t ∈ [0, T ).
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Then, the initial value problem (2.3) consists of finding the slow solution ( the
viable solution of minimal norm) to the differential inclusion (2.4) under the initial
condition u(0) = x0.

Proposition 2.2 ([23]). A point x0 ∈ D is a solution of the V I(f,D) if and only
if, x0 is a equilibrium point of the (2.4), that is 0 ∈ −f(x0)−ND(x0).

The study of existence results for the initial value problem (2.3) in infinite dimen-
sional Hilbert spaces has difficulties since ΠD can have discontinuities. However in
[11], the following existence theorem was presented.

Theorem 2.3. Let H be a real Hilbert space, D ⊆ H is a nonempty closed convex
subset and f : D → H is a lipschitzian mapping. Then Eq. (2.3) has a solution on
[0,+∞[.

Let X be a real Banach space and X∗ its topological dual. Let Br(x) := {y ∈ X :
∥x− y∥ ≤ r} and Sr(x) := {y ∈ X : ∥x− y∥ = r}. Denote by C(0, T ;X) the space
of X-valued continuous functions on [0, T ] with the norm ∥u∥∞ = sup{∥u(t)∥ : t ∈
[0, T ]}, and given z ∈ X a set Wr(z) := {u ∈ C(0, T ;X) : ∥u− z∥∞ ≤ r}. Finally,
denote by L1(0, T ;X) the space of X-valued Bochner integrable function on [0, T ]

with the norm ∥u∥1 =
∫ T
0 ∥u(t)∥dt.

If x ∈ X, we shall denote by J(x) the normalized duality mapping at x defined
by J(x) := {j ∈ X∗ : j(x) = ∥x∥2, ∥j∥ = ∥x∥}. We shall often use the mappings
⟨·, ·⟩+, ⟨·, ·⟩− : X × X → R defined by ⟨y, x⟩+ := max{j(y) : j ∈ J(x)} and
⟨y, x⟩− := min{j(y) : j ∈ J(x)}.

Notice that if (H, ⟨·, ·⟩) is a Hilbert space, then ⟨·, ·⟩+ = ⟨·, ·⟩− = ⟨·, ·⟩.

A mapping A : D(A) ⊆ X → 2X will be called an operator on X. The domain
of A is denoted by D(A) and its range by R(A). An operator A on X is said to be
accretive if and only if, ⟨u− v, x− y⟩+ ≥ 0 for every (x, u), (y, v) ∈ A.

If, in addition, R(I + λA), is for one, then for all, λ > 0, precisely X, hence

A is called m-accretive. We say that A satisfies the range condition if D(A) ⊆∩
λ>0R(I + λA). Accretive operators were introduced by F.E. Browder [9] and T.

Kato [24] independently. In this sense, it is interesting to notice that the concept
of m-accretive operator and the concept of maximal monotone operator coincide
on Hilbert spaces (see, for instance [10]). Those accretive operators which have the
range condition play an important role in the study of nonlinear partial differential
equations.

If f ∈ L1(0, T,X) and we consider the Cauchy problem

(2.5)

{
u′(t) +A(u(t)) ∋ f(t), t ∈ (0, T ),

u(0) = x0 ∈ D(A),

where A is accretive with the range condition on X. It is well known that (2.5)
has a unique integral solution in the sense of Bénilan [6] i.e., there exists a unique
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continuous function u : [0, T ] → D(A) such that u(0) = x0, and moreover, for each
(x, y) ∈ A and 0 ≤ s ≤ t ≤ T, we have

(2.6) ∥u(t)− x∥2 − ∥u(s)− x∥2 ≤ 2

∫ t

s
⟨f(τ)− y, u(τ)− x⟩+dτ.

It is also well known that (2.6) yields the inequality

∥u(t)− x∥ ≤ ∥x0 − x∥+
∫ t

0
∥f(s)− y∥ds,

for all (x, y) ∈ A and 0 ≤ t ≤ T.

If u, v are integral solutions of u′(t) + A(u(t)) ∋ f(t) and v′(t) + A(v(t)) ∋ g(t),
respectively, with f, g ∈ L1(0, T,X), then

• ∥u(t)− v(t)∥ ≤ ∥u(0)− v(0)∥+
∫ t
0 ∥f(s)− g(s)∥ds.

• ∥u(t)− v(t)∥ ≤ ∥u(s)− v(s)∥+
∫ t
s ⟨f(τ)− g(τ), u(τ)−v(τ)

∥u(τ)−v(τ)∥⟩+dτ.

A strong solution of Problem (2.5) is a function u ∈ W 1,∞(0, T ;X), i.e., u is a
locally absolutely continuous and differentiable almost everywhere, such that u′(t)+
A(u(t)) ∋ f(t) for almost all t ∈ [0, T ] and u(0) = x0.

Concerning the existence of strong solutions, the following theorem is known (see
[7] and page 133 of [4]).

Theorem 2.4. If X is a Banach space with the Radon-Nikodym property, A :
D(A) ⊆ X → 2X is an m-accretive operator, and f ∈ BV (0, T ;X), i.e., f is a
function of bounded variation on [0, T ], then Problem (2.5) has a unique strong
solution whenever x0 ∈ D(A).

When we work on a Hilbert space the above results can be summarized in the
following theorem:

Corollary 2.5. Let H be a real Hilbert space, A : D(A) ⊆ H → 2H is a maximal
monotone operator, and f ∈ BV (0, T ;X), i.e., f is a function of bounded variation
on [0, T ], then Problem (2.5) has a unique strong solution whenever x0 ∈ D(A).

We refer the reader to [4, 7, 10, 32], for background material on accretivity.

We are also going to work with Bellman’s inequality (see [32]).

Lemma 2.6. If x : [t0, T ] → R is a continuous function, x0 ∈ R, k ∈ L1
loc(t0, T ;R+),

and

x(t) ≤ x0 +

∫ t

t0

k(s)x(s)ds

for each t ∈ [t0, T [, then

x(t) ≤ x0e
∫ t
t0

k(s)ds

for all t ∈ [t0, T [.

We now go to fixed point theory.
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Definition 2.7. Let (X, ∥ · ∥) be a Banach space and B(X) the family of bounded
subsets of X. By a measure of non-compactness on X, we mean a function Φ :
B(X) → R+ satisfying:

(1) Φ(Ω) = 0 if and only if Ω is relatively compact in X
(2) Φ(Ω) = Φ(Ω),

(3) Φ(conv(Ω)) = Φ(Ω), for all bounded subsets Ω ∈ B(X), where conv denotes
the convex hull of Ω

(4) for any subsets Ω1,Ω2 ∈ B(E) we have

Ω1 ⊆ Ω2 =⇒ Φ(Ω1) ≤ Φ(Ω2),

(5) Φ(Ω1 ∪ Ω2) = max{Φ(Ω1),Φ(Ω2)}, Ω1,Ω2 ∈ B(X),

(6) Φ(λΩ) = |λ|Φ(Ω) for all λ ∈ R and Ω ∈ B(X),

(7) Φ(Ω1 +Ω2) ≤ Φ(Ω1) + Φ(Ω2).

The most important examples of measures of noncompactness are the Kuratowski
measure of noncompactness (or set measure of noncompactness)

α(Ω) = inf{r > 0 : Ω may be covered by finitely many sets of diameter ≤ r},
and the Hausdorff measure of noncompactness (or ball measure of noncompactness)

β(Ω) = inf{r > 0 : there exists a finite r-net for Ω in X}.
A detailed account of theory and applications of measures of noncompactness

may be found in the monographs [1, 3] ( see also [2]).

Definition 2.8. Let Φ be a measure of non-compactness on X and let D be a
nonempty subset of X. A mapping T : D → X is said to be a Φ−k-set contraction,
k ∈ (0, 1], if T is continuous and if, for all bounded subsets C of D, Φ(T (C)) ≤
kΦ(C). T is said to be Φ-condensing if T is continuous and Φ(T (A)) < Φ(A) for
every bounded subset A of D with Φ(A) > 0.

The following theorems will be the key in the proof of some of our results. The
first one was proved by Sadowskii [30] in 1967. In 1955 Darbo [12] proved the same
result for Φ−k-set contractions, k < 1. Such mappings are obviously Φ-condensing.
The second one is a sharpening of the first one and it is due to W.V. Petryshyn
[29].

Theorem 2.9 (Darbo-Sadovskii). Suppose M is a nonempty bounded closed and
convex subset of a Banach space X and suppose T : M → M is Φ-condensing. Then
T has a fixed point.

Theorem 2.10 (Petryshyn). Let C be a closed, convex subset of a Banach space
X such that 0 ∈ C. Consider T : C → C a Φ-condensing mapping. If there exists
r > 0 such that Tx ̸= λx for any λ > 1 whenever x ∈ C ∩Sr(0). Then T has a fixed
point in C.

• A mapping T : D(T ) ⊆ X → X is said to be nonexpansive if the inequality
∥T (x)− T (y)∥ ≤ ∥x− y∥ holds for every x, y ∈ D(T ). Recall that a Banach
space X is said to have the fixed point property for nonexpansive mappings
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(FPP for short) if for each nonempty bounded closed and convex subset C
of X, every nonexpansive self-mapping T has a fixed point (see [21, 25]).

• The mapping T is said to be pseudocontractive if for every x, y ∈ D(T ) and
for all r > 0, the inequality

∥x− y∥ ≤ ∥(1 + r)(x− y) + r(Ty − Tx)∥

holds. Pseudocontractive mappings are easily seen to be more general than
nonexpansive ones. The interest in these mappings also stems from the fact
that they are firmly connected to the well known class of accretive mappings.
Specifically, T is pseudocontractive if and only if I − T is accretive, where
I is the identity mapping.

We say that the mapping T : D(T ) → X is weakly inward on D(T ) if

lim
λ→0+

d((1− λ)x+ λT (x), D(T )) = 0,

for all x ∈ D(T ). Such condition is always weaker than the assumption of T mapping
the boundary of D(T ) into D(T ). Recall that if A : D(A) → X is a continuous
accretive mapping, D(A) is convex and closed and I−A is weakly inward on D(A),
then A has the range condition, (see [27]).

3. Fixed point theory on unbounded domains

Let C be a nonempty subset of X and let T : C → X be a mapping. A se-
quence (xn) in C is said to be an almost fixed point sequence for T whenever
limn→∞ ∥T (xn)− xn∥ = 0.

In [19] the authors considered several fixed point results for nonlinear mappings
with unbounded domains in terms of a function G : X×X → R under the following
assumptions:

(g1) G(λx, y) ≤ λG(x, y) for every x, y ∈ X and every λ > 0,

(g2) there exists R > 0 such that G(x, x) > 0 for any x ∈ X with ∥x∥ ≥ R,

(g3) G(x+ y, z) ≤ G(x, z) +G(y, z) for any x, y, z ∈ X,

(g4) for each y ∈ X there exists t > 0 (depending on y) such that if ∥x∥ ≥ t then
|G(y, x)| < G(x, x).

Next, we shall show that assumption (g1) along with (g3) implies the following
property

(g1’) G(λx, y) = λG(x, y) for every x, y ∈ X and every λ > 0.

Lemma 3.1. Let X be a real Banach space and suppose G : X ×X → R satisfies
conditions (g1) and (g3). Then G satisfies the condition (g1’).

Proof. Let x, y ∈ X and λ > 0. First we suppose 0 < λ ≤ 1. We have that

G(x, y) ≤ G(λx, y) +G
(
(1− λ)x, y

)
≤ λG(x, y) + (1− λ)G(x, y) = G(x, y)

and thus G(x, y) = G(λx, y) +G
(
(1− λ)x, y

)
, that is

(3.1) G(λx, y) = G(x, y)−G
(
(1− λ)x, y

)
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On the other hand, since G
(
(1− λ)x, y

)
≤ (1− λ)G(x, y) we obtain that −G

(
(1−

λ)x, y
)
≥ −(1− λ)G(x, y). By this and by (3.1) we get that

G(λx, y) = G(x, y)−G
(
(1− λ)x, y

)
≥ G(x, y)− (1− λ)G(x, y) = λG(x, y).

Consequently we conclude that G(λx, y) = λG(x, y). Now we suppose λ > 1.
Define µ = 1/λ and z = λx. By the above we get that G(µz, y) = µG(z, y), that is,
G(x, y) = (1/λ)G(λx, y) and then λG(x, y) = G

(
λx, y

)
. �

Proposition 3.2. Let C be a closed convex and unbounded subset of a Banach space
X and let T : C → C be an Φ-condensing mapping. Suppose there exist R > 0 and
G : X ×X → R satisfying conditions (g1’) and

(g2’) G(x, x) > 0 for any x ∈ SR(0).

If there exists x0 ∈ C such that G(T (x)− x0, x− x0) ≤ G(x− x0, x− x0) for all
x ∈ C ∩ SR(x0) then T has a fixed point.

Proof. Let F : C ∩BR(x0) → C ∩BR(x0) be the mapping given by

F (x) =

{
T (x), if ∥T (x)− x0∥ ≤ R,

R
∥T (x)−x0∥ T (x) +

(
1− R

∥T (x)−x0∥
)
x0, if ∥T (x)− x0∥ > R.

Clearly F is continuous. Let K be a subset of C ∩ BR(x0) such that Φ(K) > 0.
Define K1 = {x ∈ K : ∥T (x) − x0∥ ≤ R} and K2 = {x ∈ K : ∥T (x) − x0∥ > R}.
It is clear that F (K1) = T (K1) and thus Φ

(
F (K1)

)
= Φ

(
T (K1)

)
. Since for every

x ∈ K2

F (x) =
R

∥T (x)− x0∥
T (x) +

(
1− R

∥T (x)− x0∥

)
x0 ∈ conv

(
T (K2) ∪ {x0}

)
we have F (K2) ⊂ conv

(
T (K2) ∪ {x0}

)
. Hence Φ

(
F (K2)

)
≤ Φ

(
T (K2)

)
and then

Φ
(
F (K)

)
= Φ

(
F (K1) ∪ F (K2)

)
= max

{
Φ
(
F (K1)

)
,Φ

(
F (K2)

)}
≤ max

{
Φ
(
T (K1)

)
,Φ

(
T (K2)

)}
< max

{
Φ(K1),Φ(K2)

}
= Φ(K).

Consequently F is Φ-condensing and thus, by Theorem 2.9, there exists x1 ∈ C ∩
BR(x0) such that F (x1) = x1. Now we will prove that ∥T (x1)− x0∥ ≤ R. Assume
that ∥T (x1)− x0∥ > R. We have that

x1 = F (x1) =
R

∥T (x1)− x0∥
T (x1) +

(
1− R

∥T (x1)− x0∥

)
x0

and then x1−x0 =
R

∥T (x1)−x0∥(T (x1)−x0). Consequently x1 ∈ C ∩SR(x0) and thus

G(x1 − x0, x1 − x0) ≥ G
(
T (x1)− x0, x1 − x0

)
= G

(
∥T (x1)−x0∥

R (x1 − x0), x1 − x0

)
= ∥T (x1)−x0∥

R G(x1 − x0, x1 − x0)
> G(x1 − x0, x1 − x0)

which is not possible. Then ∥T (x1)− x0∥ ≤ R and consequently T (x0) = F (x0) =
x0. �

The relationship between the above result and Theorem 2.10 can be seen in the
following result.
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Lemma 3.3. Let C be a subset of a Banach space X and let T : C → C be a
mapping. The following statements are equivalent:

(a) There exist R > 0, x0 ∈ C and G : X × X → R satisfying conditions
(g1’) and (g2’) such that G(T (x) − x0, x − x0) ≤ G(x − x0, x − x0) for all
x ∈ C ∩ SR(x0).

(b) There exist R > 0 and x0 ∈ C such that T (x)−x0 ̸= λ(x−x0) for all λ > 1
and for all x ∈ C ∩ SR(x0).

Proof. First we will prove (a) ⇒ (b). Let R > 0, x0 and G be as condition (a) and
suppose there exist x ∈ C

∩
SR(x0) and λ > 1 such that T (x) − x0 = λ(x − x0).

Since G satisfies conditions (g1’) and (g2’) we have G
(
T (x)−x0, x−x0

)
= G(λ(x−

x0), x− x0) = λG(x− x0, x− x0) > G(x− x0, x− x0), which is a contradiction. To
prove (b) ⇒ (a) define G : X ×X → R by

G(x, y) =

{
λ, if x = λy for some λ > 0 and y ̸= 0
0, otherwise

It is easy to see that G satisfies conditions (g1’) and (g2’) (in fact G also satisfies
conditions (g1)-g(4)). Clearly for every x ∈ C∩SR(x0) we have thatG

(
T (x)−x0, x−

x0
)
= 0 or G

(
T (x)−x0, x−x0

)
= λ for some λ ≤ 1 and thus G

(
T (x)−x0, x−x0

)
≤

1 = G(x− x0, x− x0) for every x ∈ C ∩ SR(x0). �

Proposition 3.4. Let C be a closed convex and unbounded subset of a Banach
space X and let T : C → X be a weakly inward on C continuous pseudocontractive
mapping. Suppose there exist R > 0 and G : X×X → R satisfying conditions (g1)-
(g4). If G(T (x), x) ≤ G(x, x) for all x ∈ C with ∥x∥ ≥ R then T has a bounded
almost fixed point sequence.

Proof. Let A : C → X be the mapping A = I − T . Since C is convex and closed
and T is a continuous pseudocontractive mapping weakly inward on C, then A
is a continuous accretive with the range condition, that is, C ⊂

∩
λ>0R(I + λA)

(see [27]). Fix ξ0 ∈ C. For each positive integer n there exists xn ∈ C such that
ξ0 = xn+nA(xn). We will prove that (xn) is a bounded sequence. Indeed, otherwise
there exists a subsequence (xnk

) of (xn) such that ∥xnk
∥ → ∞. By (g4) we have

that there exists t > 0 such that if ∥x∥ ≥ t then |G(ξ0, x)| < G(x, x). Without loss
of generality we may assume that ∥xnk

∥ ≥ max{R, t} for all positive integer k. It
is easy to see that

xnk
=

nk

nk + 1

(
xnk

−A(xnk
)
)
+

1

nk + 1
ξ0

and then

0 < G(xnk
, xnk

) = G( nk
nk+1

(
xnk

−A(xnk
)
)
+ 1

nk+1ξ0, xnk
)

≤ nk
nk+1G

(
xnk

−A(xnk
), xnk

)
+ 1

nk+1G(ξ0, xnk
)

= nk
nk+1G

(
T (xnk

), xnk

)
+ 1

nk+1G(ξ0, xnk
)

< nk
nk+1G

(
xnk

, xnk

)
+ 1

nk+1G(xnk
, xnk

) = G(xnk
, xnk

).

This is a contradiction which proves our claim. Finally, since A(xn) =
1
n(ξ0−xn)

we get that ∥A(xn)∥ → 0, that is, ∥xn − T (xn)∥ → 0 as n → ∞. �
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Proposition 3.5. Let C be a closed convex and unbounded subset of a Banach
space X and let T : C → X be a weakly inward on C continuous pseudocontractive
mapping. Suppose there exist R > 0, x0 ∈ C and G : X × X → R satisfying
conditions (g1) and (g2’) such that G(T (x)− x0, x− x0) ≤ G(x− x0, x− x0) for all
x ∈ C ∩ SR(x0). Then T has a bounded almost fixed point sequence.

Proof. Let A = I − T as in Proposition 3.4 and for each λ > 0 let xλ ∈ C be such
that x0 = xλ + λA(xλ). Denoting the resolvent of A by Jλ := (I + λA)−1 we will
prove that {Jλ(x0) : λ > 0} is bounded. Indeed, otherwise there exists λ1 > 0
such that ∥Jλ1(x0) − x0∥ > R. Since for every x ∈

∩
λ>0R(I + λA) the mapping

λ → Jλx is continuous we have that the mapping f : [0,+∞[→ [0,+∞[ given by
f(λ) = ∥Jλ(x0)− x0∥ is continuous. Since f(0) = 0 and f(λ1) > R we obtain that
there exists λ2 ∈ [0,+∞[ such that ∥Jλ2(x0) − x0∥ = R, that is, ∥xλ2 − x0∥ = R.

Since xλ2 = λ2
λ2+1

(
xλ2 −A(xλ2)

)
+ 1

λ2+1x0 we get that

0 < G(xλ2 − x0, xλ2 − x0) = G
(

λ2
λ2+1

(
xλ2 −A(xλ2)− x0

)
, xλ2 − x0

)
≤ λ2

λ2+1G
(
T (xλ2)− x0, xλ2 − x0

)
≤ λ2

λ2+1G
(
xλ2 − x0, xλ2 − x0

)
< G(xλ2 − x0, xλ2 − x0).

This is a contradiction which proves our claim. Since xn = Jn(x0) for each positive
integer n, we obtain by the above that (xn) is a bounded sequence. Finally, since
A(xn) = 1

n(x0 − xn) we get that ∥A(xn)∥ → 0, that is, ∥xn − T (xn)∥ → 0 as
n → ∞. �
Lemma 3.6. Let (wn) be a bounded sequence in a Banach space X. Let G : X ×
X → R be the mapping defined by G(x, y) = lim supn⟨x, y − wn⟩+ for x, y ∈ X.
Then G satisfies conditions (g1)-(g4).

Proof. It is clear that G satisfies conditions (g1) and (g3). Let x ∈ X. For each
positive integer n there exists jn ∈ J(x−wn) such that ⟨x, x−wn⟩+ = jn(x). Since
jn(−wn) ≤ ∥jn∥∥wn∥ = ∥x− wn∥∥wn∥ we have that

⟨x, x− wn⟩+ = jn(x) = jn(x− wn) + jn(wn) ≥ ∥x− wn∥2 − ∥x− wn∥∥wn∥.
Let M > 0 be such that ∥wn∥ ≤ M . We have for every n that ∥x−wn∥(∥x−wn∥−
∥wn∥) ≥ (∥x∥ − M)(∥x∥ − 2M). Let R > 2M . We obtain that ⟨x, x − wn⟩+ ≥
(R−M)(R− 2M) > 0 for every x ∈ X with ∥x∥ ≥ R and consequently G satisfies
(g2). Now we will prove (g4). Let y ∈ X and define t = ∥y∥+ 2M . Since for each
positive integer n we have that ∥x−wn∥−∥wn∥ ≥ ∥x∥−2M ≥ ∥y∥ for every x ∈ X
with ∥x∥ ≥ t, we get that

|⟨y, x− wn⟩+| ≤ ∥y∥∥x− wn∥ ≤ (∥x− wn∥ − ∥wn∥)∥x− wn∥ ≤ ⟨x, x− wn⟩+
and thus |G(y, x)| ≤ G(x, x) for every x ∈ X with ∥x∥ ≥ t. �
Definition 3.7. We say that a mapping T : D(T ) → X is strong pseudocontractive
if for all x, y ∈ C we have that

⟨ (I − T )(x)− (I − T )(y), x− y ⟩− ≥ 0.

It is clear that every nonexpansive mapping is strong pseudocontractive and every
strong pseudocontractive mapping is pseudocontractive. If X is a smooth Banach
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space then ⟨·, ·⟩+ = ⟨·, ·⟩− and consequently strong pseudocontractive mappings and
pseudocontractive mappings defined in X coincide.

Proposition 3.8. Let C be a closed convex and unbounded subset of a Banach
space X and let T : C → X be a strong pseudocontractive mapping with a bounded
almost fixed point sequence (xn) in C. Then for each x0 ∈ C there exist R > 0
and a mapping G : X ×X → R satisfying conditions (g1)-(g4) such that G(T (x)−
x0, x− x0) ≤ G(x− x0, x− x0) for all x ∈ C.

Proof. Let x0 ∈ C and define G : X×X → R by G(x, y) = lim supn⟨x, y+x0−xn⟩+
for x, y ∈ X. Taking wn = xn−x0 in Lemma 3.6 we have that G satisfies conditions
(g1)-(g4). Let x ∈ C. For each positive integer n there exists jn ∈ J(x − xn) such
that ⟨T (x)− x0, x− xn⟩+ = jn

(
T (x)− x0

)
. We have that

⟨T (x)− x0, x− xn⟩+ = jn
(
T (x)− x0

)
= jn

(
T (x)− T (xn)

)
+ jn

(
T (xn)− x0

)
≤ jn(x− xn) + jn

(
T (xn)− x0

)
= jn

(
T (xn)− xn

)
+ jn(x− x0)

≤ ∥jn∥∥T (xn)− xn∥+ ⟨x− x0, x− xn⟩+
= ∥x− xn∥∥T (xn)− xn∥+ ⟨x− x0, x− xn⟩+

and then

G
(
T (x)− x0, x− x0

)
= lim supn⟨T (x)− x0, x− xn⟩+
≤ lim supn⟨x− x0, x− xn⟩+
= G(x− x0, x− x0).

�
Summarizing the above results on pseudocontractive mappings, we have.

Theorem 3.9. Let C be a closed convex and unbounded subset of a Banach space
X and let T : C → X be a continuous strong pseudocontractive mapping weakly
inward on C. The following statements are equivalent:

(i) There exists a bounded almost fixed point sequence for T in C.

(ii) For each x0 ∈ C there exist R > 0 and a mapping G : X×X → R satisfying
conditions (g1)-(g4) such that G(T (x)− x0, x− x0) ≤ G(x− x0, x− x0) for
all x ∈ C.

(iii) There exist x0 ∈ C, R > 0 and a mapping G : X × X → R satisfying
conditions (g1’) and (g2’) such that G(T (x)−x0, x−x0) ≤ G(x−x0, x−x0)
for all x ∈ C ∩ SR(x0).

(iv) There exist x0 ∈ C and R > 0 such that T (x)−x0 ̸= λ(x−x0) for all λ > 1
and for all x ∈ C ∩ SR(x0).

Remark 3.10. At this point it is interesting to notice that Theorem 3.9 says that,
in some sense, Leray-Schauder’s condition is the best one to guarantee the existence
of a bounded almost fixed point sequence, among those which come defined by a
function G satisfying either (g1)–(g4) or (g1’)–(g2’).

On the other hand, if X is a Banach space with the (FPP) then [17, Theorem
4.3] guarantees that if C is a nonempty closed convex subset of X and T : C → X
is a continuous pseudocontractive mapping weakly inward on C and T admits a
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bounded almost fixed point sequence then T has a fixed point in C. This comment
along with Theorem 3.9 allows us to obtain the relationship between the results
showed here and those given in [19]( for instance see [19, Theorem 4.1]).

4. Existence

Let D be a nonempty closed convex subset of real Hilbert space H. The function
ID : H → [0,+∞] defined by

ID(x) :=

{
0, if x ∈ D,
+∞ if x ∈ H \D,

is called the indicator function of D. In [5], it is really seen that ID is proper convex
lower semi continuous function and its subdifferential ∂ID : H → 2H given by

∂ID(x) = {ξ ∈ H : ⟨ξ, y − x⟩ ≤ ID(y)− ID(x), for all y ∈ H},
is clearly a maximal monotone operator onH where its effective domain isD(∂ID) =
D. Moreover, it is easy to see that

∂ID(x) = ND(x) for every x ∈ D.

The above argument shows that differential inclusion (2.4) can be seen as follows:

(4.1)

{
u′(t) + ∂ID(u(t)) ∋ −f(u(t)), t ∈ (0, T ),
u(0) = x0 ∈ D,

Theorem 4.1. Problem 4.1 has a unique strong solution whenever f : D → H is a
Lipschitzian mapping.

Proof. It is well known that Problem 4.1 has a unique integral solution (see [20,
Lemma 3.1]). This fact along with [8, Theorem 3.6] yields that the integral solution
obtained is a strong solution since given a function u ∈ C(0, T ;D) it is clear that
f(u(.)) ∈ L2(0, T ;H). �
Theorem 4.2. Under the following assumptions:

(1) For any l > 0 there exists a number kl ∈ R+ such that ∥f(x) − f(y)∥ ≤
kl∥x− y∥ for every x, y ∈ Bl(0),

(2) There exist z ∈ D and r > ∥x0 − z∥ such that ⟨f(x), x − z⟩ ≥ 0, for each
x ∈ D ∩ Sr(z).

Equation (4.1) has a unique strong solution.

Proof. Let r > 0 be as in assumption (2). Let us introduce the following function

ρ(x) =

{
x, if ∥x− z∥ ≤ r

r
∥x−z∥x+ (1− r

∥x−z∥)z, if ∥x− z∥ ≥ r

By assumption (1) it is not difficult to see that the function f(ρ(.)) is 2kv-
lipschitzian, where v := r + ∥z∥.

Therefore, by Theorem 4.1, the equation

(4.2)

{
u′(t) + ∂ID(u(t)) ∋ f(ρ(u(t))), t ∈ (0, T )
u(0) = x0,

has a unique strong solution u. Let us see that u lies in Wr(z).
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If u /∈ Wr(z) since u is a continuous function and u(0) = x0, there exists 0 ≤ t0 <
T such that ∥u(t)− z∥ > r for every t ∈ (t0, t0 + δ) and ∥u(t0)− z∥ ≤ r.

Since z ∈ D, and 0 ∈ ∂ID(z) we have that for t ∈ (t0, t0 + δ)

r2 < ∥u(t)− z∥2 ≤ ∥u(t0)− z∥2 + 2
∫ t
t0
⟨−f(ρ(u(τ))− 0, u(τ)− z⟩dτ

≤ ∥u(t0)− z∥2 − 2
∫ t
t0

∥u(τ)−z∥
r ⟨f(ρ(u(τ)), ρ(u(τ))− z⟩dτ

≤ ∥u(t0)− z∥2
≤ r2

,

which is a contradiction, thus u ∈ Wr(z) and therefore ρ(u(t)) = u(t) for all t ∈
[0, T ]. This means that u is, in fact, a strong solution of Eq. (4.1).

Finally, let us see the uniqueness. Suppose that u, v are two integral solutions
of Eq.(4.1). Since both functions are continuous there exists σ > 0 such that
u, v ∈ Wσ(0). Therefore,

∥u(t)− v(t)∥ ≤
∫ t

0
∥f(u(τ))− f(v(τ))∥dτ ≤

∫ t

0
kσ∥u(τ)− v(τ)∥dτ,

Now, in order to obtain the uniqueness it is enough to apply Bellman’s inequality.
�

Remark 4.3. In Theorems 4.1 and 4.2 has been proved that Eq.(4.1) admits a
unique strong solution. It is not difficult to see that such solution can be extended
to [0,+∞). On the other hand, if in Theorem 4.2 we assume that there exist z ∈ D
and r > 0 such that ⟨f(x), x − z⟩ ≥ 0, for each x ∈ D with ∥x − z∥ ≥ r, then
Problem (4.1) admits a unique strong solution for any intial date x0 ∈ D.

Theorem 4.4. Equation (4.1) has a unique strong solution whenever f : D → H
is a monotone mapping with the range condition.

Proof. Since ∂ID is an m-accretive operator on H, it is clear that A := ∂ID + f
is an accretive operator. Let us see that A satisfies the range condition. Indeed,
let x ∈ D, since f : D → H has the range condition, there exists y ∈ D such that
x = y + f(y). Moreover, since 0 ∈ ∂ID(y)then we infer that x ∈ (I + A)(y). Now
we can rewritten the Eq. (4.1) as follows:

(4.3)

{
u′(t) +A(u(t)) ∋ 0, t ∈ (0, T ),
u(0) = x0 ∈ D,

Finally, since A is accretive with the range condition and we are working in a
Hilbert space H, it is clear that the above problem admits a unique strong solution
for t ∈ (0,+∞). �

Next, we will study under what conditions the Problem V I(f,D) has a solution.

Theorem 4.5. The variational inequality V I(f,D) has a solution whenever f :
D → H is monotone mapping with the range condition and there exist R > 0 and
z ∈ D such that ⟨f(x), x− z⟩ ≥ 0 for all x ∈ D ∩ SR(z).
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Proof. By Proposition 2.2 it is enough to see that 0 ∈ R(∂ID + f). In the proof
of Theorem 4.4 we have seen that A := ∂ID + f is an accretive operator with the
range condition on the Hilbert space H.

First, we will see that

(4.4) sup
y∈A(x)

⟨x− y, x− z⟩ ≤ ⟨x, x− z⟩ whenever x ∈ D ∩ SR(z),

holds.
In order to show Inequality (4.4), consider x ∈ D ∩ SR(z) and let ξ ∈ ∂ID(x)

such that y = ξ + f(x). Then,

⟨x− y, x− z⟩ = ⟨x− ξ − f(x), x− z⟩,
Since z ∈ D and ξ ∈ ∂ID(x) we have that ⟨ξ, z−x⟩ ≤ 0. Moreover, by hypothesis

we know that ⟨f(x), x− z⟩ ≥ 0 for all x ∈ D ∩ SR(z). Consequently,

⟨x− y, x− z⟩ = ⟨x, x− z⟩+ ⟨ξ, z − x⟩ − ⟨f(x), x− z⟩ ≤ ⟨x, x− z⟩,
this allows us to obtain our claim.

Second, since A is an accretive operator with the range condition, we know that
g := (I+A)−1 : D → D is a nonexpansive mapping. Let us see that g has an almost
fixed point sequence. Indeed,

Since z ∈ D, for each λ > 0 there exists xλ ∈ D and yλ ∈ A(xλ) such that

z = xλ + λyλ.

Hence, z = (1 + λ)xλ + λ(yλ − xλ). Consequently,

xλ − yλ =
λ+ 1

λ
xλ − 1

λ
z.

We claim that {xλ : λ > 0} is a bounded set. Otherwise, we can assume that
there exists λ1 such that ∥xλ1 − z∥ > R. Since the function λ → (I + λA)−1z = xλ
is continuous, there exists λ0 ∈ (0, λ1) such that ∥xλ0 − z∥ = R. Therefore, we have

(4.5)
⟨xλ0 , xλ0 − z⟩ = ⟨ λ0

1+λ0
(xλ0 − yλ0) +

1
1+λ0

z, xλ0 − z⟩
≤ λ0

1+λ0
⟨xλ0 − yλ0 , xλ0 − z⟩+ 1

λ0+1⟨z, xλ0 − z⟩.

On the other hand, since R2 = ⟨xλ0 − z, xλ0 − z⟩, we obtain that ⟨z, xλ0 − z⟩ <
⟨xλ0 , xλ0 − z⟩. Consequently
(4.6)

⟨xλ0 , xλ0 − z⟩ <
(

λ0

1 + λ0
⟨xλ0 , xλ0 − z⟩+ 1

λ0 + 1
⟨xλ0 , xλ0 − z⟩

)
= ⟨xλ0 , xλ0 − z⟩

This is a contradiction which proves our claim.
Now, consider λ = n ∈ N, then the sequence (xn) is a bounded sequence, it is

clear that (yn) goes to 0 as n goes to infinity. Consider for each positive integer n,
wn = xn + yn. It is easy to see that g(wn) = xn because yn ∈ A(xn). In this case
we obtain that

wn − g(wn) = yn → 0

This means that (wn) is an almost fixed point sequence for g.
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Finally, we may apply Remark 3.10 in order to conclude that g has a fixed point,
which implies that 0 ∈ R(A). �

Remark 4.6. If f : H → H is a continuous monotone mapping, by [4, Theorem
3.2] we have that A := ∂ID + f is m-accretive on H. and thus, A has the range
condition. Therefore, by theorem 4.4, we may conclude that Eq. (4.1) has also
a unique strong solution and applying Theorem 4.5 that the variational inequality
V I(f,D) has a solution.

Definition 4.7. Let ϕ : H → [0,+∞) be a continuous function such that ϕ(0) = 0,
ϕ(x) > 0 if x ̸= 0 and which satisfies the following condition: For every sequence
(xn) in H such that (∥xn∥) is decreasing and ϕ(xn) → 0 as n → ∞ then ∥xn∥ → 0.

• An accretive operator A : D(A) ⊆ H → 2H is said to be ϕ-accretive when-
ever there exists z ∈ D(A) such that the inequality

⟨u, x− z⟩ ≥ ϕ(x− z), for all (x, u) ∈ A holds.

Remark 4.8. In [18] was introduced the concept of operator ϕ-accretive at zero as
follows: an accretive operator A is ϕ-accretive at zero if it satisfies the conditions
of the above definition and 0 ∈ Az. Using this concept in [18] was proved that if H
is a Hilbert space and A : D(A) ⊆ H → 2H is ϕ-accretive at zero with the range

condition, then for each x ∈ D(A) the solution ux of the problem{
u′(t) +A(u(t)) ∋ 0, t ∈ (0,∞),

u(0) = x ∈ D(A),

converges strongly to z as t → ∞.

Theorem 4.9. If f becomes ϕ-accretive with the range condition, then each strong
solution of Problem 4.1 converges strongly as t → +∞ to the solution of V I(f,D).

Proof. Let z be the element inD such that ⟨f(x), x−z⟩ ≥ ϕ(x−z), for all (x, f(x)) ∈
G(f). Let us see that 0 ∈ ∂ID(z)+f(z). Since we are under the assumption of The-
orem 4.5, there exists w ∈ D such that 0 ∈ ∂ID(w) + f(w).

First, we infer that w = z. Otherwise, since −f(w) ∈ ∂ID(w), we have

0 < ϕ(w − z)
≤ ⟨f(w), w − z⟩
= ⟨−f(w), z − w⟩
≤ 0.

Which is a contradiction and therefore z is the unique element in D such that
0 ∈ ∂ID(z) + f(z).

Second, we show that ∂ID + f is ϕ-accretive at zero. Indeed,
Consider (x, u) ∈ ∂ID + f , this means that there exists ξ ∈ ∂ID(x) such that

u = ξ + f(x). Hence

⟨u, x− z⟩ = ⟨ξ + f(x), x− z⟩
= ⟨ξ, x− z⟩+ ⟨f(x), x− z⟩
≥ ⟨f(x), x− z⟩
≥ ϕ(x− z).
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Finally, since we know, by Theorem 4.4, that given a x ∈ D there exists a unique
strong solution ux : [0,+∞) → D of Problem 4.1. The above argument shows that
∂ID + f is ϕ-accretive at zero and thus we can apply [18, Theorem 8]. �

5. Periodic orbits

Consider Problem 4.1, when it admits a unique strong solution ux0(·) : [0,+∞[→
D. For T > 0 we can define the mapping QT : D → D by QT (x) := ux(T ). Here,
our stated goal, that of finding periodic orbits of a PDS, that is, to showing that
QT has a fixed point for some T > 0.

Proposition 5.1. Under condition of Theorem 4.2 the mapping QT : D → D is
continuous.

Proof. Let (xk) be a sequence of elements of D such that xk → x as k → ∞. Since
D is closed, then x ∈ D. Consider, s := max{∥xn∥, ∥x∥, r}. Proof of Theorem 4.2
shows that if uxn and ux are the solution of Problem 4.1 with initial datum xn and
x respectively, then ∥uxn(t)∥ ∨ ∥ux(t)∥ ≤ s for all t ∈ [0, T ]. Then

∥uxn(T )− ux(T )∥ ≤ ∥xn − x∥+
∫ T

0
∥f(uxn(τ))− f(ux(τ))∥dτ.

Since f is locally lipschitzian, the above inequality yields

∥QT (xn)−QT (x)∥ = ∥uxn(T )− ux(T )∥ ≤ ∥xn − x∥+ ks

∫ T

0
∥uxn(τ)− ux(τ)∥dτ

Bellman’s inequality deals

∥QT (xn)−QT (x)∥ ≤ ∥xn − x∥eTks ,

which means that QT is a continuous mapping. �

Theorem 5.2. Under condition of Theorem 4.2, if there exists T > 0 such that
the mapping QT : D → D is Φ-condensing for some Φ measure of noncompactness,
then QT has a fixed point.

Proof. By hypothesis there exists T > 0 such that QT is Φ-condensing. We achieve
the proof applying Proposition 3.2 and Lemma 3.3. Indeed, let us see that

(5.1) QT (x)− z ̸= λ(x− z) for all λ > 1 and x ∈ D ∩ SR(z).

Suppose that there exists x ∈ D ∩ SR(z) such that Eq. (5.1) does not hold. In
this case, there exists λ > 1 such that ux(T ) − z = λ(x − z), which means, among
other things, that ∥ux(T )− z∥ > R.

Since ux(·) is a continuous function and ∥ux(0) − z∥ = R, we infer that there
exists δ > 0 such that 0 ≤ T − δ and ∥u(t) − z∥ > R for every t ∈ (T − δ, T ] and
∥u(T − δ)− z∥ ≤ R.

Consequently

∥ux(T )− z∥2 ≤ ∥ux(T − δ)− z∥2 − 2

∫ T

T−δ
⟨f(ux(τ)), ux(τ)− z⟩dτ,

which implies that ∥ux(T )− z∥ ≤ R, and this is a contradiction. �
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Remark 5.3. In Theorem 5.2 we give a sufficient condition for the existence of a
periodic orbit of the Projected Dynamical System. This condition yields, of course,
the existence of an almost periodic orbit in the sense of [22, Theorem 6]. Moreover,
the assumptions of Theorem 5.2 are weaker than those given in [22, Theorem 6].

If we assume that H is a finite dimension Hilbert space we have the following
result.

Corollary 5.4. Under condition of Theorem 4.2 the mapping QT : D → D has a
fixed point.

Proof. Since the dimension of H is finite and by Proposition 5.1 QT is a continuous
mapping, then QT is completely continuous (and hence Φ-condensing for any mea-
sure of noncompactness Φ). Thus, we obtain the result applying Theorem 5.2. �
Remark 5.5. In [11] the following open question is posed: Do periodic cycles for
PDS exist in absence of monotony conditions? From the above two results we obtain
an affirmative answer (also see [22]).

Theorem 5.6. Let H be a real Hilbert space, D ⊂ H a nonempty closed and
convex subset and f : D → H a monotone mapping with range condition. If there
exit r > 0, T > 0 and z ∈ D such that QT (x) − z ̸= λ(x − z) for every λ > 1 and
x ∈ D ∩ Sr(z), then exists a point in x0 ∈ D ∩Br(z) such that QT (x0) = x0.

Proof. First, we see that for every T > 0, the mapping QT : D → D is nonexpansive.
Indeed, by proof of Theorem 4.4 we have that given x, y ∈ D there exist ux, uy strong
solution of problem

u′(t) + ∂ID(u(t)) + f(u(t)) ∋ 0, t ∈ (0, T ),

with initial datum x, y respectively. Therefore,

∥QT (x)−QT (y)∥ = ∥ux(T )− uy(T )∥ ≤ ∥x− y∥+
∫ T

0
0dτ,

which means that QT is nonexpansive.
Second, if there exist T > 0 and r > 0 as in the hypothesis, by Theorem 3.9

we obtain that QT has a bounded almost fixed point sequence and thus invoking
Remark 3.10 we achieve the conclusion. �
Theorem 5.7. Let H be a real Hilbert space, D ⊂ H a nonempty closed and convex
subset and f : D → H a monotone mapping and lipschitz continuous. If there exit
r > 0, T > 0 and z ∈ D such that QT (x) − z ̸= λ(x − z) for every λ > 1 and for
every x ∈ D ∩ Sr(z), then exists a point in x0 ∈ D ∩Br(z) such that QT (x0) = x0.

Proof. [11, Theorem 3.1] shows that QT : D → D is a continuous pseudocontractive
mapping. This means that, if T > 0 is like in the hypothesis, then QT satisfies
the assumptions of Theorem 3.9 and therefore the conclusion follows from Remark
3.10. �
Remark 5.8. In [11] is defined the following open question: Do the periodic cycles
for PDS exist over constraint sets that do not satisfy the condition 0 ∈ int(D)?
From The above two results we obtain an affirmative answer.
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6. Formulation of a time-continuous migration model

6.1. Formulation. Next, we are going to develop the model on human migration
which was introduced in [28]. Let there be N discrete locations in space.

Let f(t) = (f12(t), . . . , f1N (t), f21(t), . . . , fN(N−1)(t)) denote the vector flows of
the population between locations, where fij(t) represents the flow of population
from location i to location j at time t. Let p(t) = (p1(t), .., pN (t)) denote the vector
of population distribution at time t, where pi(t) is the population at location i at
time t.

It is assumed that there is no population growth and consequently,

(6.1)

N∑
i=1

pi(t) = C, for all t,

where C > 0 is a constant.
Also, let u(p(t)) = (u1(p(t)), u2(p(t)), . . . , uN (p(t))) denote the vector of utility

functions, where ui(x) is the utility of locating in location i for a population dis-
tribution x := (x1, . . . , xN ). Finally, c(f(t)) = (cij(f(t)); i, j = 1, . . . , N, i ̸= j)
represents the vector of migration or transaction cost associated with migrating
between locations, with cij(y) denoting the cost associated with migrating between
locations i and j for a flow y.

It is assumed that the rate of flow is directly related to the difference between
the utility values minus the migration cost. More specifically, mathematically, the
rate of change of migration flows may be expressed as:

(6.2)
df(t)

dt
= ΠK(f(t),−F (p(t), f(t)))

where ΠK(f(t),−F (p(t), f(t))) is the projection of the net gains in utility−F (p(t), f(t))
on K := {f(t) ≥ 0} at f(t) ∈ K, with component Fij defined by

(6.3) −Fij(p(t), f(t)) = uj(p(t))− ui(p(t))− cij(f(t)).

Next, we must determine the relationship between the population distribution,
p(t), and migration flows, f(t). The rate of change of the population at a location
i must be equal to the difference between the inflow and outflow of that location.
Moreover, the vector of population distribution must be nonnegative and, bounded
by the no growth condition. Thus, the vector force field should be projected on the
set K1 := {p(t) = (p1(t), . . . , pN (t)) : pi(t) ≥ 0,

∑N
i=1 pi(t) = C}, that is,

(6.4)
dp(t)

dt
= ΠK1(p(t),−G(f(t)))

where −G(f(t)) = (
∑N

j=1(−fij(t) + fji(t)); i = 1, . . . , N, i ̸= j).

By the above sections we know that (6.2 and 6.4) may be rewritten for determin-
ing p(t) and f(t) ≥ 0 such that

(6.5)
d(p(t), f(t))

dt
+ ∂IK1×K((p(t), f(t))) ∋ −(G(f(t)), F (p(t), f(t))).

The initial condition for the problem may be specified by the initial population
distribution and the rate of migration.
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6.2. Development. Consider the Hilbert spaceH := RN×RN(N−1). The elements
of H will be represent by (x, y) where x = (x1, . . . , xN ) ∈ RN and y = (yij : i, j =

1, 2, . . . , N i ̸= j) ∈ RN(N−1). Let D be the subset of H defined by D := K1 ×K,

where K1 := {x = (x1, . . . , xN ) ∈ RN : xi ≥ 0,
∑N

i=1 xi = C} and K := {y =

(yij : i ̸= j) ∈ RN(N−1) : yij ≥ 0}.
Now, consider G : D → RN defined by G(x, y) = (

∑N
j=1(yij−yji); i = 1, 2, . . . , N,

j ̸= i) and F : D → RN(N−1) defined by F (x, y) = (Fij(x, y) : i, j = 1, . . . , N, i ̸= j)
with Fij(x, y) = ui(x)− uj(x) + cij(y). This allows us to introduce the function

w : D → H as w(x, y) = (G(x, y), F (x, y)).
Finally, consider v : [0, T ] → H defined by v(t) := (p(t), f(t)). With the above

comments the description of the model can be written as follows:

(6.6) v′(t) + ∂ID(v(t)) ∋ −w(v(t)).

Theorem 6.1. If u : RN → RN is an R-Lipschitzian mapping and c : RN(N−1) →
RN(N−1) is a continuous monotone operator. Then Equation (6.6) has a unique
strong solution for each initial data in the domain.

Proof. As in the above paragraph, consider w : H → H defined by w(x, y) =
(G(x, y), F (x, y)). It is easy to see that G : H → RN is a linear operator and then
there exists M > 0 such that ∥G(x, y)∥ ≤ M∥(x, y)∥.

On the other hand, we are assuming that u : RN → RN is an R-lipschitzian
mapping, hence for any x1, x2 ∈ RN we have that ∥u(x1)− u(x2)∥ ≤ R∥x1 − x2∥.

Now, Let (x1, y1), (x2, y2) ∈ H. Then

⟨w(x1, y1)− w(x2, y2), (x1 − x2, y1 − y2)⟩ = ⟨G(x1, y1)−G(x2, y2), x1 − x2⟩
+⟨F (x1, y1)− F (x2, y2), y1 − y2⟩

≥ −M∥(x1 − x2, y1 − y2)∥∥x1 − x2∥
−2R∥x1 − x2∥∥y1 − y2∥
+⟨c(y1)− c(y2), y1 − y2⟩

Having in mind that that c is a monotone operator, we obtain that
(6.7)

⟨w(x1, y1)− w(x2, y2), (x1 − x2, y1 − y2)⟩ ≥ −M∥(x1 − x2, y1 − y2)∥2
−2R∥x1 − x2∥∥y1 − y2∥

≥ −(M +R)∥(x1 − x2, y1 − y2)∥2
.

Inequality (6.7) yields that w : H → H becomes (M +R)-accretive.
Since w : H → H is a continuous mapping, we infer, by [10, Theorem 4.12], that

w is (M +R)-m-accretive operator on H.
Finally, it is clear (see [5, Theorem 2.6]), that A = ∂ID + w is a (M + R)-

m-accretive operator on H and consequently by [5, Theorem 4.5] the differential
inclusion

v′(t) + ∂ID(v(t)) ∋ −w(v(t))

admits a unique strong solution for each initial data in D. �
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València, Spain

E-mail address: omar.muniz@uv.es


