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that d(x, Tx) = d(A,B), where d(A,B) is actually the absolute infimum of d(x, Tx)
in this context. Points that satisfy the previous equality are known in the theory
either as absolute optimal approximate solutions or as best proximity points.

The study of the existence of best proximity points have been tackled in the theory
from many different approaches. In this regard, generalizations of best proximity
point theorems from self-maps to non-self-maps have arisen in the past two decades
(see for example [2, 11, 21, 22, 5, 6, 27, 28]). Besides, a relevant research line is
the one that seek best proximity points of cyclic mappings, i.e., self-mappings T
defined on the union of A and B and satisfying that T (A) is contained in B and T (B)
is contained in A. Many publications have arisen by assuming several additional
metric conditions on these cyclic mappings, see for instance [3, 14, 16, 15, 17, 19,
23, 24, 29] and references therein. Our work developed here aims however to find
best proximity points of classical non-self mappings that satisfy certain contractive
conditions.

The present paper is basically motivated by the papers [8] and [9]. These works
include existence, uniqueness and convergence results of best proximity points for
proximal contractions, thereby extending Banach’s contraction principle to the case
of non-self mappings. Most of the results there considered are proved by assuming
some compactness properties under the sets A and B between which a proximal
contraction T is defined. The feeling that these hypothesis are too restrictive in the
context of proximal contractions has encouraged us to go into this topic. In fact,
the results we prove in the sequel come directly from an attempt to improve in this
direction the main results in [8], [9], [10] and [4].

The work is organized as follows: in Section 2 we introduce most of the definitions,
notations and previous results we will need. In Section 3, we find a weaker condition
for a set A than the fact of being approximatively compact with respect to a set B to
guarantee the existence of best proximity point of proximal contractions of the first
and second kind. In this regard, we consider classical completeness assumptions as
the fact of being closed to improve the main results in [8] and [9]. Moreover, we
show that nor is the same compactness condition necessary to prove the existence
of best proximity point for certain general mappings as the generalized proximal
contractions [10] or the proximal generalized contractions [4]. Finally, we include
an appendix where problems studied in Section 3 are considered from a different
approach.

2. Preliminaries

In this section we introduce the main concepts and results we will need throughout
this work. We begin by fixing some notations. Let (X, d) be a metric space and let
A and B be two nonempty subsets of X. Define

d(x,A) = inf{d(x, y) : y ∈ A},
d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B},
A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.
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From now on, B(a, r) will denote the closed ball in the space X centered at a ∈ X
with radius r > 0.

Next, we define a notion of compactness between sets given in [7]. This concept
will play an essential role in this paper.

Definition 2.1. Let A and B be two nonempty subsets of a metric space X. A is
said to be approximatively compact with respect to B if every sequence {xn} of A
satisfying the condition that d(y, xn) → d(y,A) for some y ∈ B has a convergent
subsequence.

It is worth mentioning that if a set A is compact and moreover B is approxima-
tively compact with respect to A, then the sets A0 and B0 are non-empty.

By the end of this paper we consider in several occasions some geodesic spaces.
Next, we include some background concerning these metric spaces. A metric space
(X, d) is said to be a geodesic space if every two points x and y of X are joined
by a geodesic, i.e, a map c : [0, l] ⊆ R → X such that c(0) = x, c(l) = y, and
d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. Moreover, X is called uniquely geodesic
if there is exactly one geodesic joining x and y for each x, y ∈ X. When there is
only one geodesic between two points x and y, the image of this geodesic (called
geodesic segment) is denoted by [x, y]. Thus, any Banach space is a geodesic space
with usual segments as geodesic segments.

A subset A of a uniquely geodesic metric space X is said to be convex if the
geodesic segment joining each pair of points x and y of A is contained in A. For
more about geodesic spaces the reader can check [12, 13, 25].

The notion of strict convexity in geodesic spaces was introduced in [1] for strongly
convex metric spaces [26], a wider family of metric spaces than the one of geodesic
metric spaces. Notice that this notion trivially extends the strict convexity known
in normed spaces to the nonlinear setting.

Definition 2.2. A geodesic metric space X is said to be strictly convex if for every
r > 0, a, x and y ∈ X with d(x, a) ≤ r, d(y, a) ≤ r and x ̸= y, it is the case that
d(a, p) < r, where p is any point between x and y such that p ̸= x and p ̸= y, i.e., p
is any point in the interior of a geodesic segment that joins x and y.

In these spaces, as it happens in strictly convex Banach spaces, if x and y are
any two points on the boundary of a ball then the interior of the segment [x, y] lies
strictly inside the ball. Moreover, it is easy to see that strictly convex metric spaces
are in fact uniquely geodesic.

Example 2.3. Spaces of nonpositive curvature in the sense of Busemann (see [25]
for a detailed study on them) are strictly convex metric spaces. Note that conse-
quently the well-known CAT(0) spaces are strictly convex metric spaces.

In the next section we will also mention the so-called nonempty intersection
property. Notice that this property extends the notion of reflexivity in Banach
spaces to geodesic metric spaces.

Definition 2.4. Let X be a uniquely geodesic metric space. X is said to have the
nonempty intersection property if for any sequence {Cn} of subsets of X such that
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Cn+1 ⊆ Cn ∀n ∈ N and Cn is closed convex bounded and nonempty ∀n ∈ N, it is
the case that

∩
n∈N

Cn ̸= ∅.

A broad family of geodesic spaces that satisfy this property is the one of uniformly
convex metric spaces with either a monotone or lower semicontinuous from the right
modulus of convexity (see Definition 2.1 in [18] and Proposition 2.2 in [24]). This
uniform convexity in metric spaces is the result of assuming uniformity conditions on
the definition of strict convexity given above and generalizes the notion of uniform
convexity in Banach spaces. Thus, any uniformly convex Banach space is uniformly
convex is this sense.

Next we give the definitions of the mappings we will deal with in the following
section. These mappings were introduced in the recent papers [9], [10] and [4]. We
begin with the definition of proximal contraction of the first kind.

Definition 2.5. Let A and B be two nonempty subsets of a metric space X. A map
T : A→ B is a proximal contraction of the first kind if there exists a non-negative
number α < 1 such that

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ d(u, v) ≤ αd(x, y),

for all u, v, x, y ∈ A.

It is immediate to see that these mappings are contractions and so continuous if
we restrict to the case of self-mappings. On the contrary, next example given in [7]
shows that these mappings are not continuous in general.

Example 2.6. Let A = [0, 1] and B = [2, 3] subsets of R endowed with the Eu-
clidean metric. Then the mapping T : A→ B defined as

f(x) =

{
3− x if x is rational
2 + x otherwise

is a proximal contraction of the first kind.

Next we recall the notion of generalized proximal contraction of the first kind
considered in [10].

Definition 2.7. Let A and B be two nonempty subsets of a metric space X. A
map T : A→ B is a generalized proximal contraction of the first kind if there exist
non-negative numbers α, β, γ, δ with α+ β + γ + 2δ < 1 such that

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ d(u, v) ≤ αd(x, y)+βd(x, u)+γd(y, v)+δ[d(x, v)+d(y, u)],

for all u, v, x, y ∈ A.

Let S be the family of the real functions β : (0,∞) → [0, 1) which satisfies that
β(tn) → 1 ⇒ tn → 0. Let Ψ be the set of all increasing continuous functions
ψ : [0,∞) → [0,∞) such that t ≤ ψ(t) for each t ≥ 0 and ψ(0) = 0. In [4], the
concept of proximal generalized contraction was introduced.



BEST PROXIMITY POINTS FOR PROXIMAL CONTRACTIONS 317

Definition 2.8. Let A and B be two nonempty subsets of a metric space X. A
map T : A → B is a proximal generalized contraction if there exists a mapping
β ∈ S such that for all u, v, x, y ∈ A

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ ψ(d(u, v)) ≤ β(d(x, y))ψ(d(x, y))

where ψ ∈ Ψ.

Notice that both mappings of Definition 2.7 and Definition 2.8 trivially contain
proximal contractions of the first kind.

Next we give the definition of proximal contraction of the second kind.

Definition 2.9. Let A and B be two nonempty subsets of a metric space X. A
mapping T : A → B is a proximal contraction of the second kind if there exists a
non-negative number α < 1 such that

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ d(Tu, Tv) ≤ αd(Tx, Ty),

for all u, v, x, y ∈ A.

Notice that unlike proximal contractions of the first kind, these mappings may
not be even continuous when we restrict to the self case. Next we consider the
following wider family of mappings.

Definition 2.10. Let A and B be two nonempty subsets of a metric space X. A
map T : A → B is a generalized proximal contraction of the second kind if there
exist non-negative numbers α, β, γ, δ with α+ β + γ + 2δ < 1 such that

d(u, Tx) = d(A,B) and d(v, Ty) = d(A,B)

implies

d(Tu, Tv) ≤ αd(Tx, Ty) + βd(Tx, Tu) + γd(Ty, Tv) + δ[d(Tx, Tv) + d(Ty, Tu)],

for all u, v, x, y ∈ A.

In the sequel, we also consider the following non-self mappings.

Definition 2.11. Let A and B be two nonempty subsets of a metric space X. Let
g : A → A be an isometry and T : A → B a non-self mapping. The mapping T is
said to preserve isometric distance with respect to g if

d(Tgx, Tgy) = d(Tx, Ty)

for every x and y in A.

A counterpart notion of fixed point in the context of non-self mappings is the
so-called best proximity point.

Definition 2.12. Let T : A → B be a non-self mapping where A and B are two
nonempty subsets of a metric space X. A point x ∈ A is said to be a best proximity
point for T if d(x, Tx) = d(A,B).
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3. Main results and consequences

Our first result is a generalized best proximity point theorem for proximal con-
tractions of the first kind. This theorem extends Theorem 3.1 in [8] to more general
settings by assuming weaker conditions on the sets A and B.

Theorem 3.1. Let A and B be two nonempty subsets of a complete metric space
X, T : A→ B a proximal contraction of the first kind and g : A→ A an isometry.
Suppose that T (A0) ⊆ B0 and A0 ⊆ g(A0). If A0 is nonempty and closed, then
there exists a unique point x ∈ A such that d(gx, Tx) = d(A,B). Moreover, for
every x0 ∈ A0 there exists a sequence {xn} ⊆ A such that d(gxn+1, Txn) = d(A,B)
for every n ≥ 0 and satisfying xn → x.

Proof. Let x0 be a point in A0. Since T (A0) ⊆ B0 and A0 ⊆ g(A0), we can find
a point x1 ∈ A0 such that d(gx1, Tx0) = d(A,B). For this point x1 ∈ A0, we can
proceed similarly so that we get another point x2 ∈ A0 satisfying the condition
d(gx2, Tx1) = d(A,B). By repeating this process, once we have xn ∈ A0, it is
possible to find xn+1 ∈ A0 such that d(gxn+1, Txn) = d(A,B) for every natural
number n.

Since T is a proximal contraction of the first kind,

d(gxn+1, gxn) ≤ αd(xn, xn−1)

for every n ∈ N. The isometric character of g shows that in fact

d(xn+1, xn) ≤ αd(xn, xn−1)

for every n ∈ N. Thus, from this inequality we deduce that {xn} is a Cauchy
sequence. By using the completeness of the space X and the fact that A0 is closed,
we conclude that xn → x ∈ A0.

In addition, the continuity of g implies that gxn → gx. Since gxn ∈ A0 for every
n ∈ N, gx is also in the set A0.

Since x ∈ A0, we have that Tx ∈ B0 and therefore there exists a point z ∈ A0

such that d(Tx, z) = d(A,B). By applying again that T is a proximal contraction,
we obtain that

d(z, gxn+1) ≤ αd(x, xn).

Now, by letting n go to infinity, we have that d(z, gxn+1) → 0 and consequently
z = gx. Thus, we conclude that d(gx, Tx) = d(A,B).

Now the proof follows the same patterns as the proof of [8, Theorem 3.1]. Let x̂
be another point in A0 such that

d(gx̂, T x̂) = d(A,B).

Then, again by using the properties of T and g and reasoning as above, we get that

d(gx, gx̂) = d(x, x̂) ≤ αd(x, x̂).

Consequently, x̂ must be equal to x and thus x is the only point in A0 such that
d(gx, Tx) = d(A,B), which completes the proof. �
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Next, by considering the mapping g as the identity map on A, we get the following
consequence. Notice also that this corollary provides existence and uniqueness of
best proximity points in a general metric space for proximal contractions of the first
kind.

Corollary 3.2. Let A and B be two nonempty subsets of a complete metric space
X and T : A → B a proximal contraction of the first kind. Suppose that T (A0) ⊆
B0. If A0 is nonempty and closed, then there exists a unique best proximity point
x ∈ A. Moreover, for every x0 ∈ A0 there exists a sequence {xn} ⊆ A such that
d(xn+1, Txn) = d(A,B) for every n ≥ 0 and satisfying xn → x.

These two previous results notably improve those given in [8] as Theorem 3.1
and Corollary 3.1. In [8], the set B is assumed to be approximatively compact with
respect to A. This topological property, besides being very restrictive, implies that
the set A0 is closed, which is the property required in the present paper. Next
proposition easily shows this assertion.

Proposition 3.3. Let A and B two nonempty subsets of a metric space X. If A
and B are closed and A is approximatively compact with respect to B, then B0 is
closed.

Proof. Let {yn} ⊆ B0 a convergent sequence and y ∈ X its limit. The fact that B
is closed implies that y ∈ B. On the other hand, since the point yn is in B0, there
exists xn ∈ A0 such that d(yn, xn) = d(A,B) for every n ∈ N. As a consequence,
we get that

d(xn, y) → d(A,B)

when n goes to infinity. Since A is closed and approximatively compact with respect
to B, we also have that there exists a subsequence of {xn} that converges to a point
z ∈ A. Finally, by combining the information we have, we get that d(z, y) = d(A,B),
which implies that y ∈ B0. �

The next example shows that the opposite implication of the previous proposition
is not true. As a consequence of this fact, we get that Theorem 3.1 and Corollary
3.2 are actually strictly more general than the counterpart results in [8].

Example 3.4. Let X denote the Banach space given by the set ℓ2 endowed with
the norm

∥x∥ = max{∥x∥2,
√
2∥x∥∞}.

Notice that this norm is equivalent to ∥ · ∥2 and therefore (X, ∥ · ∥) is also a reflexive
Banach space.

Let A = {x = (xn) ∈ X : x1 = 1 and ∥x∥ ≤
√
2} and B = {z = (2, 0, 0, . . .)}. It is

easy to see that both A and B are closed and convex. Notice that e1 ∈ A, ∥z−e1∥ =√
2 and moreover, if y ∈ A we have that y = (1, y2, y3, . . .) with

∑
n≥2 y

2
n ≤ 1 and

|yn| ≤ 1 for every n ∈ N. As a consequence, we have that ∥z − y∥2 ≤
√
2 and

∥z−y∥∞ = 1 for every y ∈ A and therefore d(A,B) =
√
2 = d(z, y) for every y ∈ A.

Let {un} be the sequence in A given by un = e1 + en. Since this sequence does
not have any convergent subsequence, we conclude that A is not approximatively
compact with respect to B.
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It is worth mentioning that in general the set A0 is closed whenever the metric
space X is a reflexive Banach space and the sets A and B are closed with A convex.
Therefore, Example 3.4 is just a particular case in this respect where A is not
approximatively compact with respect to B and B0 is closed.

The following result extends Corollary 3.2 to mappings of a more general nature
and also improves Theorem 3.1 in [10].

Proposition 3.5. Let A and B be two nonempty subsets of a complete metric space
X and T : A→ B a generalized proximal contraction of the first kind. Suppose that
T (A0) ⊆ B0. If A0 is nonempty and closed, then there exists a unique best proximity
point x ∈ A. Moreover, for every x0 ∈ A0 there exists a sequence {xn} ⊆ A such
that d(xn+1, Txn) = d(A,B) for every n ≥ 0 and satisfying xn → x.

Proof. We omit the proof since it follows similar patterns to those considered to
prove Theorem 3.1 in [10]. The main difference here with the proof in that paper
can be solved by proceeding as in Theorem 3.1.

�
The next result extends Theorem 3.1 to proximal generalized contractions and

improves Theorem 3.1 in [4]. We omit its proof for similar reasons to previous
result.

Proposition 3.6. Let A and B be two nonempty subsets of a complete metric
space X, T : A→ B a proximal generalized contraction and g : A→ A an isometry.
Suppose that T (A0) ⊆ B0 and A0 ⊆ g(A0). If A0 is nonempty and closed, then
there exists a unique point x ∈ A such that d(gx, Tx) = d(A,B). Moreover, for
every x0 ∈ A0 there exists a sequence {xn} ⊆ A such that d(gxn+1, Txn) = d(A,B)
for every n ≥ 0 and satisfying xn → x.

The next result deals with proximal contractions of the second kind. Again, a
compactness assumption is removed, now from Theorem 3.1 in [9], to consider a
completeness hypothesis. Also notice that here we do not impose any continuity
property on T .

Theorem 3.7. Let A and B be two nonempty subsets of a complete metric space
X, T : A → B a proximal contraction of the second kind that preserves isometric
distance with respect to an isometry g : A → A. Suppose that T (A0) ⊆ B0 and
A0 ⊆ g(A0). If T (A0) is nonempty and closed, then there exists a point x ∈ A
such that d(gx, Tx) = d(A,B). Moreover, if x̂ is another point in A for which
d(gx̂, T x̂) = d(A,B), then Tx = T x̂.

Proof. Following similar patterns to those considered in Theorem 3.1, we have that
there exists a sequence {xn} ⊆ A satisfying

(3.1) d(gxn+1, Txn) = d(A,B).

Since T is a proximal contraction of the second kind,

d(Tgxn+1, T gxn) ≤ αd(Txn−1, Txn)

for every n ∈ N. By using the isometric character of g and the fact that T preserves
isometric distance with respect to g, we get

d(Txn+1, Txn) ≤ αd(Txn, Txn−1)
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for every n ∈ N. Thus, as a consequence, we conclude that {Txn} is a Cauchy
sequence. By using the completeness of the space X and the fact that T (A0) is
closed, we obtain that {Txn} converges to some point y in T (A0) ⊆ B0. Hence,
y = Tu for some u ∈ A0. Moreover, we also deduce that there exists z ∈ A0 such
that d(z, Tu) = d(A,B). Since A0 ⊆ g(A0), we have that z = gx for some x ∈ A0.
Then, d(gx, Tu) = d(A,B). By using (3.1) and previous equality, we get

d(Tgx, Tgxn+1) = d(Tx, Txn+1) ≤ αd(Tu, Txn).

Consequently, we obtain that Tx = Tu and hence d(gx, Tx) = d(A,B). The unique-
ness of such a point x follows similar patterns to those considered in [9, Theorem
3.1]. Let x̂ be another point in A0 such that

d(gx̂, T x̂) = d(A,B).

Then, again by using the properties of T and g and reasoning as above, we get that

d(Tgx, Tgx̂) = d(Tx, T x̂) ≤ αd(Tx, T x̂).

Consequently, T x̂ must be equal to Tx, which completes the proof. �
Remark 3.8. Notice that, in general, if a second proximal contraction T is also
continuous and B is approximatively compact with respect to A, then T (A0) is
sequentially closed in B0 for sequences {Txn} ⊆ T (A0) such that d(gxn+1, Txn) =
d(A,B) for every n ∈ N, that is what has essentially been considered in the proof
of previous theorem.

If we consider again the particular case of g equal to the identity map, we obtain
an improvement of Corollary 3.2 of [9] as well as a best proximity point result for
proximal contractions of the second kind.

Corollary 3.9. Let A and B be two nonempty subsets of a complete metric space X
and T : A→ B a proximal contraction of the second kind. Suppose that T (A0) ⊆ B0.
If T (A0) is nonempty and closed, then there exists a best proximity point x ∈ A.
Moreover, if x̂ is another best proximity point in A, then Tx = T x̂.

Finally, we give an extension of previous corollary by considering the family of
generalized proximal contractions of the second kind.

Proposition 3.10. Let A and B be two nonempty subsets of a complete metric
space X and T : A → B a generalized proximal contraction of the second kind.
Suppose that T (A0) ⊆ B0. If T (A0) is nonempty and closed, then there exists a best
proximity point x ∈ A. Moreover, if x̂ is another best proximity point in A, then
Tx = T x̂.

Proof. We omit most of the proof since it follows similar patterns to those considered
to prove Theorem 3.4 in [10]. Let x0 ∈ A0. Then, by proceeding as in the cited
paper, we get a sequence of points xn ∈ A0 with d(xn+1, Txn) = d(A,B) and such
that {Txn} converges to some element y ∈ B. Since T (A0) is closed, we have that
y ∈ T (A0) ⊆ B0. Then there exists u ∈ A0 such that y = Tu. Let z ∈ A0 such that
d(z, Tu) = d(A,B). Since T is a generalized proximal contraction of the second
kind, we have that

d(Txn+1, T z) ≤ αd(Txn, Tu) + βd(Txn, Txn+1) + γd(Tz, Tu)
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+ δ[d(Txn, T z) + d(Txn+1, Tu)]

≤ αd(Txn, Tu) + βd(Txn, Txn+1)

+ γd(Tz, Txn+1) + γd(Txn+1, Tu)

+ δ[d(Txn, Txn+1) + d(Txn+1, T z) + d(Txn+1, Tu)],

and therefore

(1− γ − δ)d(Txn+1, T z) ≤ αd(Txn, Tu) + βd(Txn, Txn+1)

+ γd(Txn+1, Tu) + δ[d(Txn, Txn+1) + d(Txn+1, Tu)],

which, after taking limit, implies that Tz = Tu. The uniqueness of best proximity
point holds as in Theorem 3.4 in [10]. �

4. Appendix: A property that involves the pair (A,B).

One interesting problem that arises when dealing with Section 3 is whether it is
possible to establish or formulate its results by using a completeness property that
involves both set A and B in such a way that we preserve the classical structure
of recent theorems concerning best proximity points (see, apart from the property
of being approximatively compact with respect to another set, the properties UC,
WUC or HW considered when dealing with best proximity points in cyclic mappings
[18, 19, 29]). In this regard, we introduce a useful property involving the sets A and
B.

Definition 4.1. Let A and B be nonempty subsets of a metric space (X, d). The
pair (A,B) is said to satisfy property WAC if for every sequence {xn} in A and
every point p in B such that

lim
n
d(xn, p) = d(A,B),

then it is the case that p ∈ B0.

Next proposition shows that this property is weaker than the approximative com-
pactness considered in Section 3.

Proposition 4.2. Let A and B be nonempty subsets of a metric space (X, d). If A
is approximatively compact with respect to B and A is closed, then the pair (A,B)
has property WAC.

Proof. We omit the proof. �

The following proposition establishes some general situations where we find prop-
erty WAC between sets.

Proposition 4.3. Let A and B be two nonempty subsets of a metric space X.

(1) If X is a reflexive Banach space and the sets A and B are such that A is
closed and convex and B is closed, then (A,B) has property WAC.

(2) If X is a strictly convex metric space with the nonempty intersection property
(see Section 2 for definitions) and the sets A and B are such that A is closed
and convex and B is closed, then (A,B) has property WAC.
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Proof. (1) Let {xn} ⊆ A and p ∈ B such that limn d(xn, p) = d(A,B). Since
{xn} is bounded, we have that xn weakly converges to a point x ∈ A. By using
that fact that the norm in X is weakly lower semicontinuous, we also get that
d(x, p) ≤ lim infn d(xn, p) = d(A,B). Consequently, we conclude that p ∈ B0.

(2) Let {xn} ⊆ A and p ∈ B such that limn d(xn, p) = d(A,B). Let us consider
for every n ∈ N the subsets Cn of A given by Cn = A ∩B(p, d(A,B) + 1/n). Since
balls are convex in the context of strictly convex metric spaces, we may assert that
Cn are closed, convex and bounded. Moreover, it is not difficult to see that for every
n ∈ N there exists m0 ∈ N such that xm ∈ Cn for every m ≥ m0. Consequently we
conclude that Cn is also nonempty for every natural number n. By using the fact
that X has the nonempty intersection property we get that

∩
Cn ̸= ∅. Let x be a

point in this intersection. Since x ∈ B(p, d(A,B) + 1/n) for every n ∈ N, we get
that d(p, x) = d(A,B) and thus p ∈ B0. �

As a consequence of the first statement of this proposition, we deduce that the
pair of sets (A,B) considered in Example 3.4 also have property WAC and therefore
property WAC is strictly weaker than approximative compactness.

Remark 4.4. For those interested in properties UC, WUC or HW, notice that in
general property WUC implies approximative compactness (and thus property UC
too). Then, property WAC is more general than properties WUC and UC. However,
it is possible to find pairs of sets with property HW and without property WAC. For
this aim, it suffices to consider A = {−1/n : n ∈ N} and B = {1+1/n : n ∈ N}∪{1}.

The proposition and the example given below show that property WAC is strictly
stronger than the fact that A0 is closed. For this reason, we have not consider
property WAC in Section 3.

Proposition 4.5. Let A and B be two nonempty subsets of a metric space. If A is
closed and the pair (B,A) has property WAC, then A0 is closed.

Proof. The proof follows similar patterns to those considered in Proposition 3.3. �
Next example shows that the inverse implication of the previous proposition is

not true.

Example 4.6. Let X be the Euclidean plane. Let A = {(x, 1) : x ≥ 1} ∪ {(x, 0) :
x ≥ 1} and B = {(0, y) : y ̸= 0}. Consider the sequence {yn} ⊆ B given by
{yn} = {(0,−1/n)}n∈N and the point q = (1, 0) ∈ A. Notice that A0 = {(1, 1)}, so
it is closed, but however (B,A) does not have property WAC since d(yn, q) → 1 =
d(A,B) but q is not in A0.
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