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300 T. DOMÍNGUEZ BENAVIDES AND P. LORENZO RAMÍREZ

Definition 1.1. LetM be a metric space. A mapping T :M →M is said to satisfy
condition (C) if

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

A more general notion is defined in [14]:

Definition 1.2. LetM be a metric space. A mapping T :M →M is said to satisfy
condition (Cλ) if for some λ ∈ (0, 1)

λd(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

Some fixed point results for these classes of mappings have been proved in the
above cited papers and some more recent papers (see [1], [7], [8], [12], [20]). In order
to prove the existence of fixed points for mappings satisfying these conditions, the
authors use that there exists a sequence of approximated fixed points. This fact is
proved in [27] (Theorem 2) and [14] (Theorem 4) when the mapping T is defined
in a convex bounded set of a Banach space by checking that µT + (1 − µ)I is an
asymptotically regular mapping (for µ ∈ [1/2, 1) in the case of mappings satisfying
condition (C) and µ ∈ [λ, 1) in the case of mappings satisfying condition (Cλ)). In
this paper we will consider a more general class of mappings and we use a quite
different approach to prove the existence of an approximated fixed point sequence.
In section 2 we introduce this more general class of mappings which will be called
mappings of Suzuki type and we prove that the minimal displacement for mappings
of this class when defined on bounded convex sets is equal to zero. Section 3 is
devoted to state fixed point results both for singlevalued and multivalued mappings
of Suzuki type. Finally, in section 4 we include some examples and, in particular,
an example of a mapping of Suzuki type which does not satisfy condition (Cλ) for
any λ ∈ (0, 1).

2. Preliminaries and previous lemmas

Let (X, d) be a metric space. In this paper we consider the following family of
sets:

P (X) = {Y ⊆ X : Y is nonempty} ,
Pcl,b(X) = {Y ⊆ X : Y is nonempty, closed and bounded} ,
Pcp(X) = {Y ⊆ X : Y is nonempty and compact} ,
Pcp,cv(X) = {Y ⊆ X : Y is nonempty, compact and convex} .

On Pcl,b(X) we have the Hausdorff metric H given by

H(A,B) := max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
, A,B ∈ Pcl,b(X),

where for x ∈ X and Y ⊂ X, d(x, Y ) := inf{d(x, y) : y ∈ Y } is the distance from
the point x to the set Y .

A mapping T : X → Pcl,b(X) is said to be continuous on x ∈ X (with respect to
the Hausdorff metric H) if H(Txn, Tx) → 0X whenever xn → x.
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Let K ∈ Pcl,b(X) and {Tn} a sequence of mappings Tn : K → Pcl,b(X) such that
for each n ∈ N, Tn(K) is a bounded set. We say that {Tn} converges uniformly to
another mapping T0 : K → Pcl,b(X) if

lim
n

sup{H(Tnx, T0x) : x ∈ K} = 0.

For a given mapping T : K → P (X), a sequence {xn} in K is called an ap-
proximated fixed point sequence (a.f.p.s., in short) provided limn d(xn, Txn) = 0.

Let K be a nonempty bounded closed subset of a Banach space X and {xn}
a bounded sequence in X. We denote r(K, {xn}) and A(K, {xn}) the asymptotic
radius and the asymptotic center of {xn} relative to K, respectively, i.e.,

r(K, {xn}) = inf{lim sup
n

∥xn − x∥ : x ∈ K};

A(K, {xn}) = {x ∈ K : lim sup
n

∥xn − x∥ = r(K, {xn})}.

It is well known that A(K, {xn}) is a nonempty weakly compact and convex set as
K is, and consists of exactly one point whenever the space is uniformly convex in
every direction (UCED).

The sequence {xn} is said to be regular with respect to K if each of its sub-
sequences has the same asymptotic radius in K, and asymptotically uniform with
respect to K if each of its subsequence has the same asymptotic center in K. It is
well known (see lemma 15.2 in [16]) that any sequence in K contains a regular sub-
sequence. Note that in a UCED Banach space every regular sequence with respect
to a set is asymptotically uniform.

We now recall some properties of Banach spaces that will appear in the remainder
of this paper:

- A Banach space X is said to have the Opial property if for every sequence
{xn} in X weakly convergent to x ∈ X one has that

lim inf
n

∥xn − x∥ < lim inf
n

∥xn − y∥

for every y ∈ X, y ̸= x.
- A Banach space X is said to have normal structure if for each bounded,
convex subset K of X with diam(K) > 0, there exists a nondiametral point
p ∈ K, that is a point p ∈ K such that

sup{∥p− x∥ : x ∈ K} < diam(K).

Next we introduce a new class of generalized nonexpansive mappings.

Definition 2.1. Let (X, d) be a metric space and K ⊂ X. We say that mapping
T : K → X is of Suzuki type if there exists a nondecreasing function ψ : (0,∞) →
(0,∞) such that

d(x, Tx)− ψ(d(x, Tx)) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ K.
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It is clear that a mapping of Suzuki type becomes a mapping satisfying condition
(C) if ψ(t) = t/2 and condition (Cλ) if ψ(t) = (1− λ)t.

This definition can be adapted for multivalued mappings in the following way.

Definition 2.2. Let (X, d) be a metric space and K ⊂ X. A mapping T : K →
P (X) is of Suzuki type if there exists a nondecreasing function ψ : (0,∞) → (0,∞),
such that for each x, y ∈ K and u ∈ Tx with

d(x, u)− ψ(d(x, u)) ≤ d(x, y),

there exits v ∈ Ty such that

d(u, v) ≤ d(x, y).

Condition (C) and condition (Cλ) were extended to the multivalued case (in
different ways) by some authors and studied, among other papers, in [1], [12], [20]
and [24]. It is in [12] and [24] where the multivalued version of (Cλ) coincides with
the definition above for ψ(t) = (1− λ)t. Obviously, every nonexpansive mapping is
of Suzuki type.

The class of mappings of Suzuki type on a closed, bounded and convex subset K
of X shares with the class of nonexpansive mappings the existence of approximated
fixed point sequences. Before stating this fact we shall need the lemma below.
Although this lemma should be known, we include its proof by completeness.

Lemma 2.3. Let X be a metric space, K ∈ Pcl,b(X) and {Tn} a sequence of
mappings from K into Pb(X) such that for each n ∈ N, Tn(K) is a bounded set.
Suppose that {Tn} converges uniformly to another mapping T0 : K → Pb(X) and
denote

δn = inf{d(x, Tnx) : x ∈ K}, n ≥ 0.

Then, δ0 = limn δn.

Proof. For every n ∈ N choose xn ∈ M such that d(xn, Tnxn) ≤ δn + 1/n and let
ϵn = sup{H(Tnx, T0x) : x ∈ K}. We have

δ0 ≤ d(xn, T0xn) ≤ d(xn, Tnxn) +H(Tnxn, T0xn) ≤ δn + 1/n+ ϵn.

Thus δ0 ≤ lim infn δn.
Conversely, for an arbitrary ϵ > 0 choose x0 ∈M such that d(x0, T0x0) ≤ δ0 + ϵ.

We note

H(Tnx0, T0x0) ≤
1

n

for sufficiently large n ∈ N. Hence

δn ≤ d(x0, Tnx0) ≤ d(x0, T0x0) +H(T0x0, Tnx0) ≤ δ0 + ϵ+ 1/n

which implies lim sup δn ≤ δ0 + ϵ. Since ϵ is arbitrary we obtain the required
equality. �

Lemma 2.4. Let K be a closed, bounded and convex subset of a linear normed space
X and T : K → P (K) a mapping of Suzuki type. Then, inf{d(x, Tx) : x ∈ K} = 0
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Proof. By translation we can assume that 0 ∈ K. DenoteM = diamK. Assume, by
contradiction, that d = inf{d(x, Tx) : x ∈ K} > 0. By Lemma 2.3, there exists λ,
1−ψ(d)/M < λ < 1, such that dλ = inf{d(x, λTx) : x ∈ K} > 0. For ϵ < dλ(1−λ)
choose x0 ∈ K such that d(x0, λTx0) < dλ + ϵ.

Let y0 ∈ Tx0. We have

∥x0 − λy0∥ ≥ ∥x0 − y0∥ − (1− λ)M

= (I − ψ)(∥x0 − y0∥) + ψ(∥x0 − y0∥)− (1− λ)M

≥ (I − ψ)(∥x0 − y0∥) + ψ(d)− (1− λ)M

≥ (I − ψ)(∥x0 − y0∥).
Then, there exists v ∈ T (λy0) such that ∥y0 − v∥ ≤ ∥x0 − λy0∥.

From above we have,

dλ ≤ d(λy0, λT (λy0) ≤ ∥λy0 − λv∥ = λ∥y0 − v∥ ≤ λ∥x0 − λy0∥.
Since y0 ∈ Tx0 is arbitrary, we obtain the contradiction

dλ ≤ λd(x0, λTx0) < λ(dλ + ϵ) < dλ.

�
It is worth pointing out that the corresponding result to Lemma 2.3 for mappings

which satisfy condition (Cλ) was proved in [14] and in [12] for multivalued mappings
satisfying condition (C), but in a very different approach. In fact, they obtain an
a.f.p.s for T by means of the Mann iteration scheme. However, this scheme cannot
be used for mappings of Suzuki type.

In order to obtain some fixed point theorems for the class of mappings of Suzuki
type we will need to assume that the graph of I − T is strongly demiclosedness at
0X .

Definition 2.5. Given a mapping T : K → Pcl,b(X), it is said that the graph of
I − T is strongly demiclosedness at 0X if for every sequence {xn} in K strongly
convergent to x ∈ K such that limn d(xn, Txn) = 0 one has that x ∈ Tx.

Clearly the graph of I − T is strongly demiclosedness at 0X if the graph of I − T
is closed (in particular, if T is continuous) and from Lemma 7 in [27] it also holds if
T is singlevalued and satisfies condition (C). For multivalued mappings satisfying
condition (C) the same fact follows from Lemma 3.2 in [12].

3. Fixed point theorems for mappings of Suzuki type

3.1. Singlevalued mappings. The existence of an a.f.p.s. allows to use the method
of asymptotic center for mappings of Suzuki type in order to prove some fixed point
results which are similar to those which are known for mappings satisfying condi-
tions (C) or (Cλ). For instance, it is easy to check that the proof of Theorem 4.7
in [23] also works for mappings of Suzuki type and so we can state:

Theorem 3.1. Let K be a closed, convex, bounded subset of a Banach space X.
Assume that T : K → K is a mapping of Suzuki type such that the graph of I − T
is strongly demiclosedness at 0X . Then, at least one of the following statements is
true:
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(1) T has a fixed point,
(2) For any a.f.p.s. {xn} for T in K and each x ∈ K we have lim supn ∥xn −

Tx∥ ≤ lim supn ∥xn − x∥.
To prove a fixed point result for singlevalued mappings we need the following

result in [23]:

Theorem 3.2. Let X be a Banach space with normal structure, K a weakly compact
and convex subset of X and T : K → K a mapping which satisfies the following two
conditions:

(1) If D is a nonempty, closed, convex and T -invariant subset of K, then there
exists an a.f.p.s. for T in D.

(2) For any a.f.p.s. {yn} of T in K and each x ∈ K there is a subsequence {xn}
of {yn} such that lim supn ∥xn − Tx∥ ≤ lim supn ∥xn − x∥.

Then, T has a fixed point.

From this theorem we easily obtain:

Theorem 3.3. Let K be a weakly compact convex subset of a Banach space X with
normal structure. If T : K → K is a mapping of Suzuki type such that the graph of
I − T is strongly demiclosedness at 0X . Then, T has a fixed point.

Proof. If T were fixed point free, then T would satisfy the condition (2) in Theorem
3.1. But, in this case Theorem 3.2 would imply that T has a fixed point. �

The assumption of the strongly demiclosedness of the graph of I−T at 0X cannot
be removed. Indeed, consider the following example in [14]:

Example 3.4. Put X = R and K = [−1/4, 1]. Define a mapping T : K → K by

Tx =

 1 if x = 0
−(1/3)x if x ∈ [−1/4, 0) ∪ (0, 3/4]
1− x if x ∈ [3/4, 1]

As proved in [14], this mapping is of Suzuki type for ψ(t) = (1− λ)t and λ ∈ (34 , 1)
but it is fixed point free.

We recall that a Banach space is said to satisfy condition (D) if there exists
λ ∈ (0, 1) such that for any nonempty weakly compact convex subset E of X,
any sequence {xn} ∈ E which is regular relative to E, and any sequence {yn} in
A(E, {xn}), which is regular relative to E we have

r(E, {yn}) ≤ λr(E, {xn}).
In [7] the following result is proved:

Theorem 3.5. Let X be a Banach space satisfying property (D) and let E be a
weakly compact convex subset of X. If T : E → E is a mapping satisfying condition
(C), then T has a fixed point.

Since every Banach space with property (D) has weak normal structure (see
Theorem 3.3 in [6]), the above result (and all results which are cited in [7] as
extended by the above theorem) is a consequence of Theorem 3.3 above.
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3.2. Multivalued mappings. The following result is an extension of Lemma 1 of
[14] to the class of multivalued mappings of Suzuki type.

Lemma 3.6. Let K be a subset of a Banach space X and T : K → Pcp(X) a
mapping of Suzuki type. Let {xn} be a bounded a.f.p.s. for T . Then, for all x ∈ K
such that lim infn ∥xn − x∥ > 0 there exist a subsequence {zn} of {xn} and u ∈ Tx
such that

lim sup
n

∥zn − u∥ ≤ lim sup
n

∥zn − x∥.

Proof. Since limn d(xn, Txn) = 0 and T is compact valued, we can find yn ∈ Txn
such that limn ∥xn − yn∥ = 0. Fix x ∈ K such that lim infn ∥xn − x∥ > 0, and put
ϵ := (12) lim infn ∥xn − x∥. Then we have

(I − ψ)(∥xn − yn∥) ≤ ∥xn − yn∥ < ϵ < ∥xn − x∥

for sufficiently large n ∈ N. Since T is a Suzuki type mapping, there exists un ∈ Tx
such that ∥yn−un∥ ≤ ∥xn−x∥. Let {unk

} be a subsequence of {un} that converges
to some u ∈ Tx. Then for each k ∈ N

∥xnk
− unk

∥ ≤ ∥xnk
− ynk

∥+ ∥ynk
− unk

∥ ≤ ∥xnk
− ynk

∥+ ∥xnk
− x∥.

Taking the superior limit as k → ∞ we obtain

lim sup
k

∥xnk
− u∥ ≤ lim sup

k
∥xnk

− x∥

If we denote by {zn} the sequence {xnk
} we have the desired result. �

We will appeal to the above lemma in order to give some fixed point results for
multivalued mappings. As in the singlevalued case we have to assume that the
graph of I − T is strongly demiclosedness at 0X .

Theorem 3.7. Let K be a nonempty weakly compact convex subset of a Banach
space X. Assume that T : K → Pcp(K) is a mapping of Suzuki type such that
the graph of I − T is strongly demiclosedness at 0X . Suppose one of the following
assumptions is satisfied

a) (X, ∥ · ∥) has the Opial property.
b) X is UCED.

Then, T has a fixed point.

Proof. From Lemma 2.4 there exists an a.f.p.s {xn} for T in K.
Case a): Without loss of generality, we may suppose that xn ⇀ x ∈ K. If {xn}

admits a subsequence strongly convergent to x , it follows that x ∈ Tx. Otherwise,
by Lemma 3.6 there exist a subsequence {zn} of {xn} and a point u ∈ Tx such that

lim sup
n

∥zn − u∥ ≤ lim sup
n

∥zn − x∥.

Since zn ⇀ x, it follows from the Opial condition that u = x ∈ Tx and the proof is
complete.

Case b): Without loss of generality, we may assume that {xn} is regular with
respect to K. Let x the unique point in the asymptotic center of {xn} in K. Follow-
ing the same argument as above if {xn} admits a subsequence strongly convergent
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to x, then x ∈ Tx. Otherwise there exist a subsequence {zn} of {xn} and a point
u ∈ Tx such that

lim sup
n

∥zn − u∥ ≤ lim sup
n

∥zn − x∥.

Taking into account that the asymptotic center of {zn} is precisely x, we obtain
u = x ∈ Tx. �

Our next fixed point result for multivalued mappings of Suzuki type relies on the
following proposition.

Proposition 3.8. Let K be a nonempty closed, bounded and separable subset of a
Banach space X. Assume that T : K → Pcp(X) is a mapping of Suzuki type such
that the graph of I−T is strongly demiclosedness at 0X . Suppose that each sequence
in K has a nonempty asymptotic center relative to K. Let {xn} be an a.f.p.s. for
T . Then, there exists a subsequence {zn}n∈N of {xn}n∈N such that

T (x) ∩A ̸= ∅, for all x ∈ A := A(K, (zn)).

Proof. Since K is separable we can get a subsequence (zn)n∈N of (xn)n∈N which is
regular and asymptotically uniform with respect to K (see [16, p. 168]). Denote
r(K, (zn)) by r and take any x ∈ A := A(K, (zn)). If {xn} admits a subsequence
strongly convergent to x , it follows that x ∈ Tx ∩ A. Otherwise, by Lemma 3.6,
we obtain a subsequence {znk

} of {zn} and u ∈ Tx such that

lim sup
k

∥znk
− u∥ ≤ lim sup

k
∥znk

− x∥ = r.

This shows that u ∈ A, and so T (x) ∩A ̸= ∅. �

Now we are able to prove an analog of the Kirk-Massa theorem [22] for mappings
of Suzuki type.

Theorem 3.9. Let K be a closed, bounded, and convex subset of a Banach space
X and T : K → Pcp,cv(K) be a continuous mapping of Suzuki type. Suppose that
each sequence in K has a nonempty and compact asymptotic center relative to K.
Then T has a fixed point.

Proof. Since T is a self-mapping we can construct a closed convex subset of K which
is separable and invariant under T (see [16, p. 168]). Then, we can suppose that K
is separable. According to Lemma 2.4 and the previous proposition we can take a
sequence (xn)n∈N in K such that

T (x) ∩A ̸= ∅, for all x ∈ A := A(K, (xn)).

Now we define the mapping T̃ : A → Pcp,cv(A) by T̃ (x) = T (x) ∩ A. Since T

is continuous, from Proposition 2.45 in [19] we know that the mapping T̃ is upper
semi-continuous. Since T (x)∩A is a compact convex set we can apply the Kakutani-
Bohnenblust-Karlin theorem (see [16], Theorem 18.12) to obtain a fixed point for

T̃ and hence for T . �
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Remark 3.10. When T is a single valued mapping satisfying condition (C), Dhom-
pongsa et al. [7] have proved that the asymptotic center in K of an approximate
fixed sequence for T is a T -invariant set. In Proposition 3.8 we can find an adapta-
tion of this fact to the multivalued case (see also [12, Proposition 4.7]). Nevertheless,
the T invariance of the asymptotic center does not hold even for multivalued non-
expansive mappings. This can be justified via the following example in [13].

Example 3.11. Let (X, ∥ · ∥) be the Banach space (R2, ∥ · ∥∞) where ∥ · ∥∞ is the
sup norm. If

K := { (x1, x2) ∈ R2 : |x1|+ |x2| ≤ 1},
let T : K → Pcp,cv(K) be the mapping given by

T ((x1, x2)) := {x1} × [|x1| − 1, 1− |x1|].
Let H∞ be the Hausdorff metric associated to the sup metric d∞(x, y) = ∥x− y∥∞.
Then T is H∞-nonexpansive and the set of fixed points of T is K. Taking the
a.f.p.s. sequence {xn} ≡ {0R2} we obtain that A(K, {xn}) = {(0, 0)} which is not a
T -invariant set.

Remark 3.12. Another natural extension of the Suzuki’s condition (Cλ) for a
multivalued mapping T : K → P (X) is the following: for all x, y ∈ K

λd(x, T (x)) ≤ ∥x− y∥ =⇒ H(T (x), T (y)) ≤ ∥x− y∥.
It is not clear if a mapping satisfying this condition above also satisfies (Cλ) in our
sense. However, if T takes compact values it is easy to see that this new condition
implies condition (Cλ). This condition has been considered in [1] and [20] in order
to extend some classic fixed point theorems for multivalued nonexpansive mappings
to mappings satisfying condition (C) or (Cλ). In such results T is assumed to be
compact valued and therefore our theorems are also generalizations of those ap-
peared in [1] and [20]. Even more, our Theorem 3.9 improves and extends Theorem
4.8 in [12] and Theorem 3.5 in [20], where the uniform continuity of the mapping T
is imposed.

Remark 3.13. Although some classical results of the fixed point theory for single-
valued mappings have been extended to multivalued mappings, many problems on
the existence of fixed points remain unsolved in this setting. One of those problems
was raised by Reich in 1983 [25]: Given a weakly compact convex subset K of a
Banach space X satisfying the fixed point property for (singlevalued) nonexpansive
mappings, does every nonexpansive mapping T : K → Pcp(K) have a fixed point?
According to Kirk’s theorem ([21]) a Banach space X with weak normal structure
has the fixed point property for singlevalued nonexpansive mappings, so a particu-
lar case of Reich’s question is: if K has normal structure, does every nonexpansive
mapping T : K → Pcp(K) have a fixed point?.

It was proved in [6] that a nonexpansive mapping T : K → Pcp,cv(K) has a
fixed point whenever the space X satisfies property (D). Since every Banach space
with property (D) has weak normal structure (as we noted in Section 3.1), then a
possible approach to the aforementioned problem is to study if properties implying
weak normal structure also imply property (D). It should be mentioned that nor-
mal structure does not imply property (D), hence the problem of extending Kirk’s
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theorem cannot be fully solved by this approach. The interested reader can find in
[10] an exposition of the main results and current research directions in this subject.

It is shown in many cases that under suitable geometric properties of a Banach
space the fixed point property for multivalued nonexpansive mappings actually im-
plies the fixed point property for a strictly larger family of multivalued mappings
(see [13] and references therein). For instance, in [13] the authors introduce some
classes of multivalued nonexpansive type related to mappings of Suzuki type for
which either Kirk-Massa Theorem or Kirk’s Theorem are valid. However, it is a
open problem if Kirk-Massa theorem holds for a mapping satisfying condition (C)
without assuming the continuity of the mapping (see Theorem 4.8 in [12]).

4. Some examples

We will show in Example 4.2 a mapping of Suzuki type which does not satisfy any
condition (Cλ) for λ ∈ (0, 1), but we need before the computations which appear in
the following example:

Example 4.1. For t ∈ [1/2, 1) define a mapping Tt : [0, 1] → [0, 1] by

Ttx =

{
tx if x ∈ [0, 1)
f(t) =: 1

2−t − (1− t)3 if x = 1

We will show that Tt is of Suzuki type for ψ(s) = s2 but it does not satisfy the
(Cλ)-condition for t = 10+2λ

11+λ . We denote ϕ(s) = s − ψ(s) = s − s2. It is easy to

check that ϕ(s + s3) > s − s2 for every s ∈ (0, 1/3] and ϕ is nondecreasing on this
interval. Easy computations prove the following facts:

Fact 1. |Tt(x)− Tt(y)| ≤ |x− y| for every x, y ∈ [0, 1).

Fact 2. |Tt(x)− Tt(1)| ≤ |x− 1| if and only if x ∈
[
0, 1

2−t + (1− t)2
]
.

The following claims will prove that Tt is a mapping of Suzuki type.

Claim 1. ϕ(|x− Ttx|) > 1− x if x ∈ [ 1
2−t + (1− t)2, 1).

Claim 2. ϕ(|1− Tt(1)|) > 1− x if x ∈ [ 1
2−t + (1− t)2, 1).

Indeed, denote s = 1−t
2−t . (Note that s ∈ (0, 1/3]). We have

ϕ(|x− Ttx|) = ϕ((1− t)x) ≥ ϕ

(
1− t

2− t
+ (1− t)3

)
= ϕ

(
s+

s3

(1− s)3

)
≥ ϕ(s+ s3) > s− s2 ≥ s− s2

(1− s)2

=
1− t

2− t
− (1− t)2 ≥ 1− x.

and so we have proved claim 1. The same argument proves claim 2.
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Finally we will prove that T does not satisfy the (Cλ)-condition for t = 10+2λ
11+λ .

Indeed, denote again s = 1−t
2−t =

1−λ
12 . Note that

s2

(1− s)3
+

s

(1− s)2
< 8s2 + 4s < 12s = 1− λ

because s < 1/2. Thus

s3

(1− s)3
+

s2

(1− s)2
< s− λs

which implies

λs+
s3

(1− s)3
< s− s2

(1− s)2

and so

λ

(
s+

s3

(1− s)3

)
< s− s2

(1− s)2
.

Choose x = 1
2−t + (1− t)2. We have

1− x =
1− t

2− t
− (1− t)2 = s2 − s2

(1− s)2

and

|x− Ttx| = (1− t)x =
1− t

2− t
+ (1− t)3 = s+

s3

(1− s)3
.

Thus, λ|x− Ttx| < |1− x|. Since Tt is continuous on [0, 1) there exists x′ > x such
that the above inequality still holds, that is λ|x′−Ttx′| < |1−x′|. However, by Fact
2 we have |Tt(1)− Tt(x

′)| > |1− x′| and Tt does not satisfy the condition (Cλ).

Example 4.2. Put X = c0 and K = {(xn) ∈ c0 : 0 ≤ xn ≤ 1;
∑∞

n=1 xn ≤ 1}.
For f(t) defined as in example 4.1 and a sequence {λn} ∈ [1/2, 1) convergent to 1,
define a mapping T : K → K by

T ((xn)) =

 f(λk)ek if x = ek

(λnxn) if ∥(xn)∥ < 1

We will show that T is of Suzuki type and it does not satisfy any condition (Cλ) for
λ ∈ (0, 1). For short, we will write Tk =: Tλk

where Tλk
is the mapping considered

in Example 4.1, and bk =: 1
2−λk

+ (1− λk)
2. It is clear that ∥Tx− Ty∥ ≤ ∥x− y∥ if

∥x∥ < 1 and ∥y∥ < 1. It is also clear that ∥Tek − Tej∥ < ∥ek − ej∥ for every k ̸= j.
Next, we study the case ∥x∥ < 1 and ∥y∥ = 1. In this case we will prove that T is
of Suzuki type for ψ(s) = s2.

1. Assume that xn ≤ bn for all n ∈ N. Then, ∥T ((xn)) − T (ek)∥ ≤ ∥(xn) − ek∥
for every k ∈ N.

Indeed, since xk ≤ bk, by Fact 2 in Example 4.1 we have

∥T ((xn))− T (ek)∥ = max
n̸=k

{λnxn, Tk(1)− Tk(xk)}
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≤ max
n̸=k

{xn, 1− xk} = ∥(xn)− ek∥.

2. Assume that there is a j ∈ N such that xj > bj (note that this index j must
be unique because bn > 1/2 for every n). Denote ϕ(s) = s− ψ(s) = s− s2. In this
case, since xn + xj ≤ 1 for every n ̸= j we have

ϕ(∥Tej − ej∥) = ϕ(1− Tj(1)) > 1− xj = max{1− xj , xn} = ∥ej − x∥
and

ϕ(∥Tx− x∥) = ϕ(max
n

{(1− λn)xn}) ≥ ϕ((1− λj)xj) > 1− xj = ∥ej − x∥

because ϕ(s) is a nondecreasing function when s ≤ 1/2 and by Claim 1 in Example
4.1, we have ϕ(xj − Tj(xj)) > 1− xj when xj > bj .

Finally for k ̸= j, having in mind that xk < bk, from Fact 2 in example 4.1, we
obtain

∥Tek − Tx∥ = max
n ̸=k

{λnxn, Tk(1)− Tk(xk)} ≤ max
n ̸=k

{xn, 1− xk} = ∥x− ek∥.

We conclude the example showing that T does not satisfy any condition (Cλ) for

λ ∈ (0, 1). Indeed, for a given λ ∈ (0, 1), choose λk ≥ λ and t = 10+2λk
11+λk

. From

Example 4.1 we know that Tk does not satisfy condition (Cλk
). Since T restricted

to co{ek, 0} becomes the mapping Tk : [0, 1] → [0, 1], it is clear that T fails to satisfy
condition (Cλk

) and so condition (Cλ).
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