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T := {z : |z| = 1} such that the family (ft) satisfies the PDE

(1.1)
∂ft(z)

∂t
= zf ′t(z)

1 + k(t)z

1− k(t)z
,

where f ′t(z) stands for the partial derivative of ft(z) w.r.t. z. Actually, (ft) is the
unique solution to this PDE which is defined and univalent as a function of z for
all t ≥ 0 and all z ∈ D. Moreover, for all s ≥ 0,

(1.2) fs = lim
t→+∞

etφs,t,

where φs,t := f−1
t ◦ fs : D → D, 0 ≤ s ≤ t, solves the characteristic ODE

(1.3)
dφs,t(z)

dt
= −φs,t(z)

1 + k(t)φs,t(z)

1− k(t)φs,t(z)
, t ≥ s, φs,s(z) = z, z ∈ D.

He also proved that conversely, given a continuous k : [0,+∞) → T, equation (1.3)
and formula (1.2) define together, in a unique way, a family (ft)t≥0 of holomorphic
univalent functions in D satisfying (1.1) and such that fs(D) ⊂ ft(D) whenever
0 ≤ s ≤ t, although in this case f0 need not be a conformal mapping onto the
complement of a Jordan arc1. The differential equations (1.1) and (1.3) are known
nowadays as the Loewner PDE and the Loewner ODE, respectively.

Later Kufarev [22] and Pommerenke [33, 34] extended Loewner’s results for a
more general class of families (ft) by replacing the Schwarz kernel in the Loewner
differential equations with an arbitrary holomorphic function of positive real part.
In the theory that they constructed, a (classical) Loewner chain is a family (ft)t≥0

of univalent holomorphic functions ft : D → C subject to the inclusion condition
fs(D) ⊂ ft(D) whenever 0 ≤ s ≤ t and the normalization ft(z) = et(z+a2(t)z

2+. . .)
for all t ≥ 0 and all z ∈ D. A driving term or a classical Herglotz function is a function
p : D × [0,+∞) → {z : Re z > 0} such that p(z, ·) is measurable in [0,+∞) for all
z ∈ D and p(·, t) is holomorphic in D with p(0, t) = 1 for all t ≥ 0. It is known that for
any classical Loewner chain (ft) there exists a classical Herglotz function p, unique
up to a null-set on the t-axis, such that ft satisfies the (classical) Loewner –Kufarev
PDE ∂ft(z)/∂t = zf ′tp(z, t). In turn, the functions φs,t := f−1

t ◦fs, 0 ≤ s ≤ t, satisfy
the Loewner –Kufarev ODE (d/dt)φs,t(z) = −φs,t(z)p

(
φs,t(z), t

)
with the initial

condition φs,s = idD, and again as in Loewner’s original theory, the family (ft) can
be reconstructed using (1.2). Conversely, for any classical Herglotz function p there
exists a unique classical Loewner chain (ft) satisfying the Loewner –Kufarev PDE.
This Loewner chain is given by (1.2), where (φs,t) is the unique solution to the
Loewner –Kufarev ODE with the initial condition φs,s = idD.

In modern literature the process described by the Loewner –Kufarev differential
equations is referred to as the radial Loewner evolution. It involves holomorphic
functions normalized at the origin. An analogous process for functions normalized
at a boundary point was studied by Kufarev and his students [25], see also [38].
Consider the upper half-plane H := {z : Im z > 0} with a slit Γ along a Jordan arc.
“Slit” means here that Γ is the image of an injective continuous function γ : [0, T ] →
H∪R, T > 0, such that γ

(
[0, T )

)
⊂ H and γ(T ) ∈ R. For each t ∈ [0, T ] there exists

1The first example of such situation was discovered by Kufarev [24], who found a continuous
function k in (1.3) for which f0 maps D onto a half-plane.



SPECIAL EDIT FOR PROFESSOR SIMEON REICH 271

a unique conformal mapping ft of H onto Ωt := H \ γ
(
[t, T )

)
normalized by its

expansion at ∞, ft(z) = z + c(t)/z + . . ., c(t) < 0. Changing the parametrization
of Γ, one may assume that c(t) = 2(t− T ) for all t ∈ [0, T ]. Similarly, to Loewner’s
original setting, the functions ft satisfy a PDE, and the functions φs,t := f−1

t ◦ fs,
0 ≤ s ≤ t ≤ T , satisfy the corresponding characteristic ODE. Namely,

(1.4)
∂ft(z)

∂t
= −f ′t(z)

2

λ(t)− z
,

(1.5)
dφs,t(z)

dt
=

2

λ(t)− φs,t(z)
, t ∈ [s, T ], φs,s(z) = z, z ∈ H,

where λ : [0, T ] → R is a continuous function determined in a unique way by the
slit Γ. Conversely, for any such function λ there exists a unique family of holomorphic
univalent functions ft : H → H, ft(z) = z − 2(T − t)/z + . . . (as z → ∞), t ∈ [0, T ],
with fs(H) ⊂ ft(H) whenever 0 ≤ s ≤ t ≤ T satisfying PDE (1.4). In turn, the
corresponding family φs,t := f−1

t ◦ fs, 0 ≤ s ≤ t ≤ T , satisfies (1.5). These two
differential equations are known in the modern literature as the chordal Loewner
equations 2. Since fT = idH, formula (1.2) for the radial case is now replaced by the
simpler relation ft = φt,T for all t ∈ [0, T ].

Another approach to the chordal Loewner equation, based on the reduction to the
radial Loewner equation by means of a time-dependent conformal change of variable
can be found in the book [1], which is also a good source for the classical radial
Loewner theory and its application to extremal problems for univalent functions.

Essentially equivalent generalizations of the slit chordal Loewner evolution were
given in [2, 3, 19]. In this case the Cauchy kernel in the right-hand side of (1.4)
and (1.5) is replaced by a function with positive imaginary part, locally integrable
in t and holomorphic in z with a particular regularity and normalization condition
at ∞.

The complete analogy between the radial and chordal slit Loewner evolutions,
described above, is broken by the fact that the former is defined for all t ≥ 0, while
the latter is limited in time to a compact interval. Consider the following simple con-
struction. Reparametrize the slit Γ in H in such a way that γ(0) ∈ R, γ

(
(0, T ]

)
⊂ H,

and the functions ft are normalized by ft(z) = z − 2t/z + . . . This simple trick al-
lows to consider chordal Loewner evolution defined for all t ≥ 0. In this case the
system of domains Ωt := ft(H) is decreasing. Accordingly, the right-hand side of
equations (1.4) and (1.5) change the sign. This version of the chordal Loewner evo-
lution appeared in the well-celebrated paper [37] of 2000 by Odded Schramm3, who
constructed a stochastic version of Loewner evolution (SLE) replacing the control
function λ with the Brownian motion times a positive coefficient. This invention

2Up to our best knowledge these equations are due to P.P.Kufarev, with the chordal Loewner
ODE for the first time mentioned in his paper [23] without the factor 2. This factor is not principal,
but makes the radial and chordal Loewner ODEs to have the same asymptotic behaviour of the
vector field near the pole on the boundary. This is convenient for the study of relationship between
the geometry of the solutions and analytic properties of the control functions k and λ.

3In fact he also considered the radial case of the Loewner evolution, but the chordal case proved
to be more important for applications in the context of SLE.
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by Schramm proved to be very important in connection with its applications in
Statistical Physics, see e.g. [27].

The deterministic chordal Loewner evolution underlying SLE is driven by the
following initial value problem for the Loewner chordal ODE (with the “−” sign)

(1.6)
dw

dt
= − 2

λ(t)− w
, t ≥ 0, w|t=0 = z ∈ H.

The connection between the analogue of the classical Loewner chains in this setting
and the above initial value problem is given by the following assertion, see4, e.g., [27,
Theorem 4.6, p. 93; Remark 4.10, p. 95],

Theorem A. Let λ : [0,+∞) → R be a continuous function. Then the following
assertions hold:

(i) For every z ∈ H, there exists a unique maximal 5 solution w(t) = wz(t) ∈ H to
initial value problem (1.6).

(ii) For every t ≥ 0, the set Ωt of all z ∈ H for which wz is defined at the point t
is a simply connected domain and the function gt : Ωt → H defined by gt(z) :=
wz(t) for all z ∈ Ωt, is the unique conformal mapping of Ωt onto H such that
gt(z)− z → 0 as z → ∞, z ∈ H. Moreover, for each t ≥ 0,

gt(z) = z +
2t

z
+O(1/|z|2) as z → ∞, z ∈ H.

(iii) The family ft := g−1
t : H → Ωt, t ≥ 0, satisfies the following initial value

problem for the chordal Loewner PDE:

∂ft(z)

∂t
=

2

λ(t)− z

∂ft(z)

∂z
, f0 = idH.

Nowadays the chordal Loewner evolution is more often considered in this “de-
creasing” framework rather than in the “increasing” framework used by Kufarev
et al [25], see e.g. [6]. In particular, the geometry of the so-called Loewner hulls
Kt := H \ ft(H) was studied in a series of papers launched by [32, 28]. One of
the basic questions addressed is under which analytical conditions on the control
function λ the hulls Kt are formed by a growing slit along a Jordan arc and what
are the relations between the regularity of λ and that of the slit. A similar question
for the radial Loewner equation was considered, apparently for the first time, by
Kufarev [23] in 1946, who proved that if the control function k in equation (1.3)
has bounded derivative on a segment [0, T ], then for 0 ≤ s ≤ t ≤ T the corre-
sponding functions φs,t map D onto D minus a slit along a C1-smooth Jordan arc.
Without attempting to give the complete list we mention some recent papers on the
topic [29, 36, 30, 21, 39, 35].

4For simplicity we formulate here only the special case of Theorem 4.6 from [27], when the
family of measures µt, defining the vector field in the right-hand side of (a generalization of) the
chordal Loewner equation, is a family of Dirac measures. In this case the equation in [27, Theorem
4.6] reduces to the above chordal Loewner equation (1.6).

5In this case “maximal”, or “non-extendable”, means that there are no solutions [0, T ) ∋ t 7→
w̃z(t) ∈ H to (1.6), with T ∈ (0,+∞], such that wz is the restriction of w̃z to a proper subset
of [0, T ).
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In a similar way the radial Loewner evolution (both associated with the original
“slit” Loewner equation and the more general Loewner –Kufarev equation) can be
considered in the “decreasing” way when the functions ft are self-maps of D with the
image domains ft(D) forming a decreasing family. Another variant, appeared in the
recent publications, is the so-called whole-plane radial Loewner evolution defined
for all t ∈ R, see e.g. [27, §4.3], which however can be reduced to increasing and
decreasing Loewner evolutions.

In addition to the frameworks described above, we would like to mention several
studies [19, 16, 17, 13, 20, 18] devoted to the infinitesimal representation of various
semigroups in Hol(D,D), which fits very well in a general heuristic scheme containing
the increasing radial and chordal Loewner evolutions. Although independent proofs
have been given for different concrete examples, there are common ideas which it is
pertinent to sketch here without going much into details. Let U ⊂ Hol(D,D) be a
semigroup w.r.t. the operation of composition containing the neutral element idD.
Consider a continuous one-parameter subsemigroup (ϕt) ⊂ U , i.e. a family (ϕt)t≥0

in U such that ϕ0 = idD, ϕt ◦ ϕs = ϕt+s for any s, t ≥ 0, and ϕt(z) → z as t → +0
for all z ∈ D. It is known that for each z ∈ D the function t 7→ ϕt(z) is the solution
to the initial value problem

(1.7)
dw

dt
= G(w), w|t=0 = z,

with some holomorphic functionG : D → C called the infinitesimal generator of (ϕt).
Denote the set of all infinitesimal generators of one-parameter semigroups in U by
GU .

In contrast to the theory of finite-dimensional Lie groups, the union of all one-
parameter semigroups in U does not coincide with U in general. That is why one
has to consider a non-autonomous version of equation (1.7) of the form

(1.8) dw/dt = G(w, t),

where the non-autonomous vector field G is subject to the condition G(·, t) ∈ GU
for a.e. t ≥ 0.

Under some reasonable conditions on G, for any s ≥ 0 and z ∈ D there ex-
ists a unique solution [s,+∞) ∋ t 7→ w = wz,s(t) to (1.8) with the initial condi-
tion w(s) = z ∈ D, which is defined for all t ≥ s and depends on z holomorphically.
Equation (1.8) is said to give the infinitesimal representation of the semigroup U
if the union of all evolution families (φs,t) = (z 7→ wz,s(t)), t ≥ s ≥ 0, generated
by (1.8) coincides with U . The simplest and most classical example is the radial
Loewner –Kufarev ODE giving the infinitesimal representation of the semigroup
U0 := {φ ∈ Hol(D,D) : φ(0) = 0, φ′(0) > 0}, for which GU0 is known to be equal to{

z 7→ −zp(z) : p ∈ Hol
(
D, {ζ : Re ζ > 0}

)
, Im p(0) = 0

}
∪
{
G(z) ≡ 0

}
.

Such infinitesimal representations turn out to be very useful, because typically, from
the analytic point of view, the structure of GU is much simpler than that of U . Note
that the infinitesimal representation of U0 given by the Loewner –Kufarev ODE is
the main tool that “captures” the univalence condition in de Branges’ proof of the
Bieberbach conjecture.
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1.2. General approach in Loewner Theory. Recently a general version of
Loewner evolution, which includes the radial and chordal variants as very special
cases, has been introduced by Bracci and the two first authors [7, 8], and studied
further in [5, 9, 10]. Relying partially on the theory of one-parameter semigroups,
which can be regarded as the autonomous version of Loewner theory, they have
given an intrinsic definition of an evolution family in the whole semigroup Hol(D,D)
as follows.

Definition 1.1 ([7]). A family (φs,t)t≥s≥0 of holomorphic self-maps of the unit disc

is an evolution family of order d with d ∈ [1,+∞] (in short, an Ld-evolution family)
if it satisfies the following conditions:

EF1. φs,s = idD for all s ≥ 0,
EF2. φs,t = φu,t ◦ φs,u whenever 0 ≤ s ≤ u ≤ t < +∞,
EF3. for every z ∈ D and every T > 0 there exists a non-negative function

kz,T ∈ Ld([0, T ],R) such that

|φs,u(z)− φs,t(z)| ≤
∫ t

u
kz,T (ξ)dξ

whenever 0 ≤ s ≤ u ≤ t ≤ T.

Condition EF3 is to guarantee that any evolution family can be obtained via
solutions of an ODE which resembles both the radial and chordal Loewner –Kufarev
equations, as well as other versions of the Loewner equation established in [19, 16,
17, 13, 20, 18]. The vector fields that drive this generalized Loewner –Kufarev ODE
are referred to as Herglotz vector fields.

Definition 1.2 ([7]). Let d ∈ [1,+∞]. A weak holomorphic vector field of order d
in the unit disc D is a function G : D× [0,+∞) → C with the following properties:

WHVF1. for all z ∈ D, the function [0,+∞) ∋ t 7→ G(z, t) is measurable,
WHVF2. for all t ∈ [0,+∞), the function D ∋ z 7→ G(z, t) is holomorphic,
WHVF3. for any compact set K ⊂ D and any T > 0 there exists a non-negative

function kK,T ∈ Ld([0, T ],R) such that

|G(z, t)| ≤ kK,T (t)

for all z ∈ K and for almost every t ∈ [0, T ].

We say that G is a (generalized) Herglotz vector field of order d if, in addition to
conditions WHVF1 –WHVF3 above, for almost every t ∈ [0,+∞) the holomor-
phic function G(·, t) is an infinitesimal generator of a one-parameter semigroup in
Hol(D,D).

Remark 1.3. By [7, Theorem 4.8], the class of all Herglotz vector fields of order d
coincides with that of all functions G : D× [0,+∞) → C which can represented in
the form

(1.9) G(z, t) := (τ(t)− z)(1− τ(t)z)p(z, t) for all z ∈ D and a.e. t ≥ 0,

where τ is any measurable function from [0,+∞) to D and p : D × [0,+∞) → C
satisfies the following conditions: (1) p(·, t) is holomorphic in D for every t ≥ 0
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with Re p(z, t) ≥ 0 for all z ∈ D and t ≥ 0; (2) p(z, ·) is in Ld
loc([0,+∞),C) for

every z ∈ D.
The generalized Loewner –Kufarev equation

(1.10)
dw

dt
= G(w, t), t ≥ s, w(s) = z,

resembles the radial Loewner –Kufarev ODE when τ ≡ 0 and p(0, t) ≡ 1. Further-
more, with the help of the Cayley map between D and H, the chordal Loewner
equation appears to be the special case of (1.10) with τ ≡ 1.

In a similar way, different notions of evolution families considered previously in
the literature can be reduced to special cases of Ld-evolution families defined above.

Equation (1.10) establishes a 1-to-1 correspondence between evolution families of
order d and Herglotz vector fields of the same order. Namely, the following theorem
takes place.

Theorem B ([7, Theorem 1.1]). For any evolution family (φs,t) of order d ∈ [1,+∞]
there exists an (essentially) unique Herglotz vector field G(z, t) of order d such that
for every z ∈ D and every s ≥ 0 the function [s,+∞) ∋ t 7→ wz,s(t) := φs,t(z) solves
the initial value problem (1.10).

Conversely, given any Herglotz vector field G(z, t) of order d ∈ [1,+∞], for ev-
ery z ∈ D and every s ≥ 0 there exists a unique solution [s,+∞) ∋ t 7→ wz,s(t)
to the initial value problem (1.10). The formula φs,t(z) := wz,s(t) for all s ≥ 0, all
t ≥ s, and all z ∈ D, defines an evolution family (φs,t) of order d.

Here by essential uniqueness we mean that two Herglotz vector fields G1(z, t) and
G2(z, t) corresponding to the same evolution family must coincide for a.e. t ≥ 0.

The general notion of a Loewner chain has been given6 in [9].

Definition 1.4 ([9]). A family (ft)t≥0 of holomorphic maps of D is called a Loewner
chain of order d with d ∈ [1,+∞] (in short, an Ld-Loewner chain) if it satisfies the
following conditions:

LC1. each function ft : D → C is univalent,
LC2. fs(D) ⊂ ft(D) whenever 0 ≤ s < t < +∞,
LC3. for any compact set K ⊂ D and any T > 0 there exists a non-negative

function kK,T ∈ Ld([0, T ],R) such that

|fs(z)− ft(z)| ≤
∫ t

s
kK,T (ξ)dξ

whenever z ∈ K and 0 ≤ s ≤ t ≤ T .

This definition of (generalized) Loewner chains matches the abstract notion of
evolution family introduced in [7]. In particular the following statement holds.

6See also [5] for a straightforward extension of this notion to complex manifolds. It is worth
mentioning that, in that paper, the construction of an associated Loewner chain for a given evolution
family is based on arguments borrowed from Category theory and so it differs notably from the
one we used in [9, Theorems 1.3 and 1.6].
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Theorem C ([9, Theorem 1.3]). For any Loewner chain (ft) of order d ∈ [1,+∞],
if we define

φs,t := f−1
t ◦ fs whenever 0 ≤ s ≤ t,

then (φs,t) is an evolution family of the same order d. Conversely, for any evolution
family (φs,t) of order d ∈ [1,+∞], there exists a Loewner chain (ft) of the same
order d such that

ft ◦ φs,t = fs whenever 0 ≤ s ≤ t.

In the situation of this theorem we say that the Loewner chain (ft) and the
evolution family (φs,t) are associated with each other. It was proved in [9] that
given an evolution family (φs,t), an associated Loewner chain (ft) is unique up to
conformal maps of ∪t≥0ft(D).

Thus in the framework of the approach described above the essence of Loewner
theory is represented by the essentially 1-to-1 correspondence among Loewner
chains, evolution families, and Herglotz vector fields.

Remark 1.5. Definition 1.1 does not require elements of an evolution family to
be univalent. However, this condition is automatically satisfied. Indeed, by Theo-
rem B, any evolution family (φs,t) can be obtained via solutions to the generalized
Loewner –Kufarev ODE. Hence the univalence of φs,t’s follows from the uniqueness
of solutions to this ODE. For an essentially different direct proof see [8, Proposi-
tion 3].

To conclude the section, we mention that an analogous approach has been sug-
gested for the Loewner theory in the annulus [11, 12]. However, in this paper we
restrict ourselves to the Loewner theory for simply connected domains.

1.3. Aim of the paper and main results. As one can see from what is stated
in Subsect. 1.1, there are essentially two different ways to deal with Loewner evo-
lution, regardless of which specific variant of the theory we consider. One of them
involves conformal maps ft onto an increasing family of simply connected domains
described by (one or another version of) the Loewner equations. in this case, the
Loewner ODE being equipped with an initial condition at the left end-point gen-
erate, a non-autonomous semi-flow consisting of holomorphic self-maps φs,t of the
reference domain (D or H). The other way to study Loewner evolution, which can
be colloquially called “decreasing”, is formally obtained by reversing the direction
of the time parameter t and changing correspondingly the sign in the Loewner
equations. The initial condition for the Loewner ODE is again given at the left end-
point and hence in contrast to the “increasing” case, the solutions do not extend
unrestrictedly in time. The functions generated by such initial value problem map
a decreasing family of simply connected domains conformally onto the reference
domain.

It is clear that locally in time there is no big difference between these two ways of
reasoning: the connection between them is easily established by considering, for an
arbitrary T > 0, the parameter change t 7→ T − t. At the same time the diversity of
settings within which the Loewner evolution has been considered in literature may
cause certain difficulties. The primary aim of this paper is to describe rigorously how
the general approach discussed in the previous subsection can be “translated” to the
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“decreasing” setting. First of all we introduce “decreasing” analogues of Loewner
chains and evolution families.

For a set E ⊂ R we denote by ∆(E) the “upper triangle” {(s, t) : s, t ∈ E, s ≤ t}.

Definition 1.6. Let d ∈ [1,+∞]. A family (ft)t≥0 of holomorphic self-maps of
the unit disk D will be called a decreasing Loewner chain of order d (or, in short,
decreasing Ld-chain) if it satisfies the following conditions:

DC1. each function ft : D → D is univalent,
DC2. f0 = idD and ft(D) ⊂ fs(D) for all (s, t) ∈ ∆

(
[0,+∞)

)
,

DC3. for any compact set K ⊂ D and all T > 0 there exists a non-negative
function kK,T ∈ Ld

(
[0, T ],R

)
such that

|fs(z)− ft(z)| ≤
∫ t

s
kK,T (ξ)dξ

for all z ∈ K and all (s, t) ∈ ∆
(
[0, T ]

)
.

Remark 1.7. Note that the difference of this definition from that of an increasing
Loewner chain resides not only in the opposite inclusion sign in condition DC2. We
also assume that f0 = idD, which we always can do by composing with a conformal
mapping, while in the “increasing” case no such restriction is imposed, because in
general, it may be impossible to employ any conformal mapping except for linear
transformations of C.

Remark 1.8. As we will see in Sect. 3, by means of the Cayley map between D
and H, the notion of chordal Loewner families introduced by Bauer [6] reduces to a
special case of decreasing Loewner chains of order d = +∞.

Now we introduce reverse evolution families, the “decreasing” counterparts of
Ld-evolution families.

Definition 1.9. Let d ∈ [1,+∞]. A family (φs,t)0≤s≤t of holomorphic self-maps of
the unit disk D is a reverse evolution family of order d if the following conditions
are fulfilled:

REF1. φs,s = idD,
REF2. φs,t = φs,u ◦ φu,t for all 0 ≤ s ≤ u ≤ t < +∞,
REF3. for any z ∈ D and any T > 0 there exists a non-negative function kz,T ∈

Ld([0, T ],R) such that

|φs,u(z)− φs,t(z)| ≤
∫ t

u
kz,T (ξ)dξ

for all s, t, u ∈ [0, T ] satisfying inequality s ≤ u ≤ t.

Remark 1.10. Speaking informally, comparing with Definition 1.1, the parameters
s and t switch their roles. That is why condition EF3 is not converted to condition
REF3 under the “time reversing trick”.

Using the results of [7, 9] we deduce relations among decreasing Loewner chains,
reverse evolution families and Herglotz vector fields. In particular, we obtain the
following extension of Theorem A (and its more abstract form in [27, Chapter 4]).
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Theorem 1.11. Let G be a Herglotz vector field of order d ∈ [1,+∞]. Then:

(i) For every z ∈ D, there exists a unique maximal 7 solution w(t) = wz(t) ∈ D to
the following initial value problem

(1.11)
dw

dt
= −G(w, t), w(0) = z .

(ii) For every t ≥ 0, the set Ωt of all z ∈ D for which wz is defined at the point t is a
simply connected domain and the function gt : Ωt → D defined by gt(z) := wz(t)
for all z ∈ Ωt, maps Ωt conformally onto D.

(iii) The functions ft := g−1
t : D → Ωt form a decreasing Loewner chain of or-

der d, which is the unique solution to the following initial value problem for the
Loewner –Kufarev PDE:

(1.12)
∂ft(z)

∂t
=
∂ft(z)

∂z
G(z, t), f0 = idD.

Remark 1.12. The right-hand side of (1.11) and that of (1.10) in Subsect. 1.2 are
not continuous in t. Hence these equations should be understood as Carathéodory
ODEs, see e.g. [15, §I.1], [26, Ch. 18] for the general theory of such equations, or [11,
§2] for the basic results in the case of the right-hand side holomorphic w.r.t. w. As
for PDE (1.12) there does not seem to be any abstract theory that suits completely
well our purposes. We discuss the notion of a solution to (1.12) in Subsect. 2.1.

Some of the statements we get are obtained by careful “translation” of known
results under the change of the time parameter, while other statements, in particular
those involving time regularity of evolution families, require deeper ideas. As an
interesting ‘byproduct” we prove the following assertion.

Denote by ACd(X,Y ), where X ⊂ R and Y ⊂ C, the class of all locally absolutely
continuous functions f : X → Y whose derivative is of class Ld

loc.

Theorem 1.13. Let (ft)t≥0 be a family of holomorphic functions in the unit disc D
satisfying conditions LC1 and LC2. Then (ft) is an Ld-Loewner chain if and only
if

LC3w. For any T > 0 there exist two distinct points ζ1, ζ2 ∈ D such that the map-
pings [0, T ] ∋ t 7→ ft(ζj), j = 1, 2, both belong to ACd([0, T ],D).

Remark 1.14. It follows immediately from Definitions 1.4 and 1.6 that the above
theorem is equivalent to the following statement: a family (ft)t≥0 of holomorphic
functions ft : D → C satisfying conditions DC1 and DC2 is a decreasing Loewner
chain of order d if and only if the above condition LC3w holds.

The rest of the paper is organized as follows. In Section 2 we make precise defini-
tion of what is meant by solutions to the generalized Loewner –Kufarev PDE (1.12)
and prove some auxiliary propositions and lemmas.

In Section 3 we discuss relationship between decreasing Loewner chains and Her-
glotz vector fields. In particular, we prove Theorem 1.11. We also establish a kind
of inverse theorem (Theorem 3.2).

7in this case “maximal”, or “non-extendable”, means that there are no solutions [0, T ) ∋ t 7→
w̃z(t) ∈ D to (1.11), with T ∈ (0,+∞], such that wz is the restriction of w̃z to a proper subset
of [0, T ).
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Section 4 is devoted to the study of the relationship of reversed evolution families
on the one side, and decreasing Loewner chains together with the corresponding
Herglotz vector fields on the other side.

Finally in Section 5 we prove Theorem 1.13.

2. Auxiliary statements

2.1. Solutions to the generalized Loewner –Kufarev PDE. Consider the
(generalized) Loewner –Kufarev PDE

(2.1)
∂F (z, t)

∂t
= ϵ

∂F (z, t)

∂z
G(z, t),

where G is a Herglotz vector field and ϵ is a constant in {−1,+1} whose value
depends on whether we deal with the increasing (ϵ ≡ −1) or decreasing (ϵ ≡ 1)
variant of the theory.

The formulation of Theorems 1.11, 3.2, and 4.2 contains the notion of a solution
to the Loewner –Kufarev PDE, which should be defined more precisely. Similar to
the classical text [34, Chapter 6], we give the definition as follows.

Definition 2.1. By a solution to the Loewner –Kufarev PDE equation (2.1) we
mean a function F : D×E → C, where E ⊂ [0,+∞) is an interval, such that

S1. F is continuous in D× E;

S2. for every t ∈ E the function F (·, t) is holomorphic in D;
S3. for every z ∈ D the function F (z, ·) is locally absolutely continuous in E;

S4. for every z ∈ D equality (2.1) holds a.e. in E.

Remark 2.2. Condition S4 means exactly the following: for each z ∈ D there exists
a null-set Mz ⊂ E such that (2.1) holds for all z ∈ D and all t ∈ E \Mz. Note that
a priori the sets Mz can depend on z. We show below that under conditions S1 – S3
this set can be chosen independently of z.

We complete this subsection with the proof of the following technical statement,
which might appear implicitly, in one or another context, in some works on Loewner
theory.

Proposition 2.3. Let ϵ ∈ {−1,+1} and let G be a Herglotz vector field of some
order d ∈ [1,+∞]. Suppose that a function F : D × E → C satisfies conditions
S1 – S4. Then the following assertions hold:

(i) The function F (z, t) is locally absolutely continuous in t uniformly w.r.t. z on
every compact subset of D, i.e. for any compact set K ⊂ D and any compact
interval I ⊂ E the mapping t 7→ F (·, t) ∈ Hol(D,C) is absolutely continuous
on I w.r.t. the metric dK(f, g) := maxz∈K |f(z)− g(z)|.

(ii) There is a null-set N ⊂ [0,+∞) such that for all z ∈ D and all t ∈ E \ N
the partial derivative ∂F (z, t)/∂t exists and equality (2.1) holds. Moreover, for
each t ∈ E \N ,

(
F (z, t+ h)− F (z, t)

)
/h→ ∂F (z, t)/∂t locally uniformly in D

as h→ 0.

(iii) For any solution t 7→ w(t) ∈ D to the generalized Loewner –Kufarev ODE

(2.2) ẇ = −ϵG(w, t)
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the function t 7→ F
(
w(t), t

)
is constant in the domain of w intersected with E.

Proof. By S3 for any z ∈ D the map F (z, ·) is locally absolutely continuous on E.
Hence by S4, for any z ∈ D and any (s, t) ∈ ∆(E),

(2.3) F (z, t)− F (z, s) =

∫ t

s

∂F (z, ξ)

∂t
dξ = ϵ

∫ t

s

∂F (z, ξ)

∂z
G(z, ξ) dξ.

Fix now any compact interval I ⊂ E and any closed disk K := {z : |z| ≤ r},
with some r ∈ (0, 1). From S1 it follows that

(
F (·, t)

)
t∈I forms a compact subset

in Hol(D,C). Therefore there exists a constant C > 0 such that |∂F (z, t)/∂z| ≤ C
for all z ∈ K and all t ∈ I. Combined with equality (2.3) and condition WHVF3
from Definition 1.2 of a Herglotz vector field, this fact implies that there exists a
non-negative function kI,K ∈ Ld

(
I,R

)
such that

(2.4) |F (z, t)− F (z, s)| ≤ C

∫ t

s
|G(z, ξ)| dξ ≤ C

∫ t

s
kI,K(ξ) dξ

for any z ∈ K and any (s, t) ∈ ∆(I). Assertion (i) follows now immediately.
Applying the above argument to a sequence of closed disks (Kn ⊂ D) and a

sequence of compact intervals (Ik ⊂ E) whose unions cover D and E, respectively,
one can easily construct a sequence of non-negative functions kn ∈ Ld

loc(E,R) such
that for each n ∈ N,

(2.5) |F (z, t)− F (z, s)| ≤
∫ t

s
kn(ξ) dξ

for all (s, t) ∈ ∆(E) and all z ∈ Kn. Choose any t0 ∈ E. Since the functions

Qn(t) :=

∫ t

t0

kn(ξ) dξ, t ∈ E, n ∈ N,

are absolutely continuous, there exists a null-set N0 ⊂ E such that Q′
n(t) exists

finitely for all t ∈ E \ N0 and all n ∈ N. Now from (2.5) it follows that for each
t ∈ E \N0 and some ε > 0 small enough the family

Ft :=

{
F (·, t′)− F (·, t)

t′ − t
: t′ ∈ E, 0 < |t′ − t| < ε

}
is bounded on each of Kn’s. Hence Ft is relatively compact in Hol(D,C) provided
t ∈ E \N0. For each z ∈ D by Mz we denote the null set in E aside which F
satisfies (2.1). Following a standard technique we apply now Vitali’s principle to
the family Ft and the set {zj := 1− 1/(j + 1) : j ∈ N} in order to conclude that if
t ∈ E \N0 and t ̸∈ ∪j∈NMzj , then

F (z, t′)− F (z, t)

t′ − t
→ ϵ

∂F (z, t)

∂z
G(z, t)

locally uniformly in D as t′ → t, t′ ∈ E. This proves (ii) with N := N0∪
(
∪j∈NMzj

)
.

To prove (iii), we note that due to compactness of {F (·, t)}t∈I for any compact
interval I ⊂ E, the limit

(2.6) lim
ζ→z

F (ζ, t)− F (z, t)

ζ − z
=
∂F (z, t)

∂z
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is attained uniformly w.r.t. t ∈ I for any fixed z ∈ D. This justifies the formal
computation

dF (w(t), t)

dt
= ẇ(t)

∂F (z, t)

∂z

∣∣∣∣
z:=w(t)

+
∂F (z, t)

∂t

∣∣∣∣
z:=w(t)

= −ϵG(w(t), t) ∂F (z, t)
∂z

∣∣∣∣
z:=w(t)

+

(
ϵ
∂F (z, t)

∂z
G(z, t)

)∣∣∣∣
z:=w(t)

= 0

for any z ∈ D and a.e. t ∈ E. From (i) and compactness of {F (·, t)}t∈I for compact
intervals I ⊂ E it follows that t 7→ F (w(t), t) is locally absolutely continuous in
its domain. Thus we may conclude that this function is constant. The proof is now
complete. �

2.2. Some lemmas. In what follows we will take advantage of several lemmas
proved in this subsection. We start with a kind of “rigidity” lemma, going back
to the Schwarz lemma and the classical growth estimate for holomorphic functions
with positive real part.

Denote by ρD the pseudohyperbolic distance in D, i.e. let

ρD(z, w) :=

∣∣∣∣ w − z

1− w̄ z

∣∣∣∣ , for all z, w ∈ D.

Lemma 2.4. There exists a universal constant C > 0 such that for any ψ ∈
Hol(D,D) with ψ(0) = 0, any r ∈ (0, 1), and any ζ0 ∈ D \ {0},

(2.7) ρD
(
ψ(ζ), ζ

)
≤ C|ψ(ζ0)− ζ0|

|ζ0|(1− |ζ0|2)(1− r)2

whenever |ζ| ≤ r.

Proof. The proof is based on [11, Lemma 3.8], according to which∣∣ψ(ζ)− ζ
∣∣ ≤ C|ψ(ζ0)− ζ0|

|ζ0|(1− |ζ0|2)(1− r2)
whenever |ζ| ≤ r,

where C > 0 is a universal constant.
From the Schwarz lemma it follows that

∣∣1 − ζ̄ ψ(ζ)
∣∣ ≥ 1 − |ζ|2. Hence to de-

duce (2.7) it remains to notice that 1/(1− r2) ≤ 1/(1− r). �
Corollary 2.5. For any φ ∈ Hol(D,D), any ζ, ζ0 ∈ D \ {0}, and any r ∈ (0, 1),

(2.8) ρD
(
φ(ζ), ζ

)
≤ C

|φ(ζ0)− ζ0|+ 4|φ(0)|
|ζ0|(1− |ζ0|)2(1− r)2

whenever |ζ| ≤ r,

where C is the universal constant from Lemma 2.4.

Proof. Apply Lemma 2.4 for the function ψ := ℓ ◦ φ, where

ℓ(z) :=
z − w0

1− w0z
, w0 := φ(0).

Let us estimate first |ℓ(z)− z|. For any z ∈ D we have

(2.9)
∣∣ℓ(z)− z

∣∣ = ∣∣∣∣w0z
2 − w0

1− w0z

∣∣∣∣ ≤ 2|w0|
1− |z|

=
2|φ(0)|
1− |z|

.
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Similarly, |w − ℓ−1(w)| ≤ 2|φ(0)|/(1 − |w|) for all w ∈ D. Setting w := ψ(ζ0) and
bearing in mind that in this case |w| ≤ |ζ0| by the Schwarz lemma, we therefore
conclude that

(2.10)
∣∣ψ(ζ0)− ζ0

∣∣ ≤ ∣∣φ(ζ0)− ζ0
∣∣+ ∣∣ψ(ζ0)− ℓ−1

(
ψ(ζ0)

)∣∣ ≤ ∣∣φ(ζ0)− ζ0
∣∣+ 2|φ(0)|

1− |ζ0|
.

By the invariance of the pseudohyperbolic distance under automorphisms of D
and by the triangle inequality, for each ζ ∈ D we have

ρD
(
φ(ζ), ζ

)
= ρD

(
ψ(ζ), ℓ(ζ)

)
≤ ρD(ℓ(ζ), ζ) + ρD

(
ψ(ζ), ζ

)
.

Inequality (2.9) implies that ρD
(
ℓ(ζ), ζ

)
≤

∣∣ℓ(ζ)− ζ
∣∣/(1− |ζ|

)
≤ 2|φ(0)|/

(
1− |ζ|

)2
,

while the estimate for ρD
(
ψ(ζ), ζ

)
is obtained from (2.10) and (2.7).

Now (2.8) follows easily. �

Corollary 2.6. For every r,R, ρ ∈ (0, 1) there exists a constant C̃ = C̃(r,R, ρ)
such that for any φ ∈ Hol(D,D),

(2.11) ρD
(
φ(ζ), ζ

)
≤ C̃(r,R, ρ)

(
|φ(ζ1)− ζ1|+ |φ(ζ2)− ζ2|

)
whenever ζ, ζ1, ζ2 ∈ D satisfy the conditions |ζ| ≤ r, |ζj | ≤ R, j = 1, 2, and
ρD(ζ2, ζ1) ≥ ρ.

Proof. The statement of the corollary can be obtained in the following way. Applying
Corollary 2.5 for ℓ−1 ◦ φ ◦ ℓ and ζ0 := ℓ−1(ζ2), where ℓ is an automorphism of D
sending 0 to ζ1, one obtains an estimate for ρD

(
φ(ℓ(ζ)), ℓ(ζ)

)
= ρD

(
(ℓ−1◦φ◦ℓ)(ζ), ζ

)
.

Now substitute ℓ−1(ζ) for ζ in order to deduce (2.11). To carry out these esti-
mates, we also use the fact that |ℓ−1(z)| ≤ (|z|+ |ζ1|)/(1 + |zζ1|) and |(ℓ−1)′(z)| ≤
2/(1 − |ζ1|) for all z ∈ D. Since the concrete expression for the constant C̃(r,R, ρ)
is not important for our purposes, we omit the details. �
Lemma 2.7. Let (ft)t∈[0,T ] be a family of holomorphic univalent functions
ft : D → C, satisfying the following conditions:

(i) {ft : t ∈ [0, T ]} is a normal family in D;
(ii) there exist two points ζ1, ζ2 ∈ D, ζ1 ̸= ζ2, such that the functions [0, T ] ∋

t 7→ ft(ζj) ∈ C are continuous for j = 1, 2.

Then for any compact set K ⊂ D there exists a constant MK > 0 such that

(2.12) |z1 − z2| ≤MK |ft(z1)− ft(z2)|
for any t ∈ [0, T ], any z1 ∈ K and all z2 ∈ D.

Proof. Assume the conclusion is false. Then there exist sequences (z
(1)
n ), (z

(2)
n ), (tn)

and a compact set K ⊂ D such that for all n ∈ N we have:

(a) z
(1)
n ∈ K, z

(2)
n ∈ D and tn ∈ [0, T ];

(b) |z(1)n − z
(2)
n | > n|ftn(z

(1)
n )− ftn(z

(2)
n )|.

Since |z(1)n − z
(2)
n | < 2, from (b) it follows that

(c) |ftn(z
(1)
n )− ftn(z

(2)
n )| → 0 as n→ +∞.

Recall that by (i), (ft) constitutes a normal family in D. Hence using (a) and
passing if necessary to subsequences, we can assume that
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(d) z
(1)
n → z0 and ftn → f locally uniformly in D as n→ +∞

for some z0 ∈ K and some f ∈ Hol(D,C).
By condition (ii) the functions [0, T ] ∋ t 7→ ft(ζj), j = 1, 2, are continuous.

Moreover, ft(ζ1) ̸= ft(ζ2) for all t ∈ [0, T ]. Therefore, |ftn(ζ1) − ftn(ζ2)| > m and
|ftn(ζ1)| < M for all n ∈ N and some constants m > 0 and M > 0 not depending
on n. Hence f is a holomorphic function in D different from a constant. With the
help of the Hurwitz theorem it follows that f is univalent in D.

Now fix any closed disk U centered at w0 := f(z0) and lying in f(D) and let U ′

be a closed disk of smaller radius centered also at w0. Assertions (c) and (d) imply
that there exists n0 such that for all n > n0, n ∈ N we have

(e) ftn(z
(j)
n ) ∈ U ′, j = 1, 2, and U ⊂ ftn(D).

In particular, it follows that (f−1
tn )′ → (f−1)′ uniformly on U ′ as n→ +∞, n > n0.

Therefore there exists a constant C > 0 such that |(f−1
tn )′(w)| < C for all n > n0,

n ∈ N and all w ∈ U ′. Finally, taking into account (e), we get

|z(1)n − z(2)n | < C|ftn(z(1)n )− ftn(z
(2)
n )|

for all n > n0, n ∈ N. This contradicts assumption (b) and hence completes the
proof of (2.12). �

3. Decreasing Loewner chains and Herglotz vector Fields

As we mentioned in the Introduction, while the classical Loewner theory deals
with increasing Loewner chains over [0,+∞), the SLE theory, having recently caused
a burst of interest to Loewner theory, is based on the “decreasing” counterpart of
the classical constructions of [31, 22, 33, 34, 25, 2, 3, 19]. The variant of the Loewner
ODE underlying the chordal SLE is the following equation

(3.1) ẇ =
2

w − λ(t)
, t ≥ 0, w(0) = ζ,

where the initial condition ζ is chosen in the upper half-plane H := {ζ : Im ζ > 0}
and λ : [0,+∞) → R is a continuous control function. The stochastic ODE de-
scribing SLE is obtained by substituting the Brownian motion (Bt) times a positive
factor for λ(t).

Remark 3.1. Amore general (deterministic) form of (3.1) was studied by Bauer [6].

By means of the Cayley mapH(z) := i(1+z)/(1−z) from D onto H equation (3.1)
can be rewritten as ẇ = −Gλ(t)(w), where Gλ(z) := (1/2)(1−z3)

(
1−H−1(λ)

)
/
(
z−

H−1(λ)
)
for all z ∈ D and all λ ∈ R. With λ(t) being continuous, it is easy to see

that D × [0,+∞) ∋ (z, t) 7→ Gλ(t)(z) is a Herglotz vector field of order d = +∞
(see Definition 1.2). More generally, although the definitions given in [2, 3, 4, 19,
6] differ, the authors of these works considered essentially the same class R of
non-autonomous vector fields in H consisting of functions p : H × [0,+∞) → H
measurable in t for each z ∈ H and representable, for a.e. t ≥ 0 fixed, in the
following form

p(ζ, t) =

∫
R

dµt(x)

x− ζ
,
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where µt, for each t ≥ 0, is a probability measure on R. Via the Cayley map, this
class corresponds to the vector fields in D given by Gp(z, t) = p(H(z), t)/H ′(z).
Using the estimate |p(ζ, t)| ≤ 1/Im ζ for all ζ ∈ H, a.e. t ≥ 0 and all p ∈ R (see, e.g.,
[4, Lemma 1]) it is easy to see that the vector fields Gp represent again a particular
case of Herglotz vector fields of order d = +∞.

Thus Theorem 1.11, which we are going to prove in this section, can be regarded
as an extension of Theorem A as well as of its more abstract form in [27, §4.1].

We also will establish a kind of inverse statement for Theorem 1.11.

Theorem 3.2. Suppose (ft) is a decreasing Loewner chain of order d ∈ [1,+∞].
Denote Ωt := ft(D), gt := f−1

t : Ωt → D for all t ≥ 0, and t(z) := sup{t ≥ 0 :
z ∈ Ωt} for all z ∈ D. Then there exists a Herglotz vector field G of order d and a
null-set N ⊂ [0,+∞) such that the following three statements hold.

(i) For every t ∈ [0,+∞) \N the function

z 7→ ∂gt(z)

∂t
:= lim

h→0

gt+h(z)− gt(z)

h

is well defined and holomorphic in Ωt. Moreover, for every z ∈ D the function
[0, t(z)) ∋ t 7→ wz(t) := gt(z) is the maximal solution to the following initial
value problem for the generalized Loewner –Kufarev ODE

(3.2)
dw

dt
= −G(w, t), t ≥ 0, w(0) = z.

Substituting wz(t) for w(t) turns this equation into equality that holds for all
t ∈ [0, t(z)) \N .

(ii) The function F (z, t) := ft(z), t ≥ 0, z ∈ D, is a solution, in the sense of
Definition 2.1, to the following generalized Loewner –Kufarev PDE

(3.3)
∂F (z, t)

∂t
=
∂F (z, t)

∂z
G(z, t)

with the initial condition F (·, 0) = idD. Substituting ft(z) for F (z, t) turns this
equation into equality that holds for all t ∈ [0,+∞) \N and all z ∈ D.

(iii) Given any holomorphic function F0 : D → C, the initial value problem F (·, 0) =
F0 for PDE (3.3) has a unique solution (z, t) 7→ F (z, t) ∈ C, which is defined
for all (z, t) ∈ D × [0,+∞) and is given by the formula F (·, t) = F0 ◦ ft,
t ∈ [0,+∞).

The Herglotz vector field G for which at least one of these statements holds8

is essentially unique, i.e. any two such Herglotz vector fields should agree for all
t ∈ [0,+∞) \M and all z ∈ D, where M ⊂ [0,+∞) is a null-set.

Remark 3.3. In terminology of [6], a Loewner chordal family (Ft)t≥0 is a family of
holomorphic self-maps of H satisfying Ft(H) ⊂ Fs(H) whenever 0 ≤ s ≤ t and such
that for each t ≥ 0,

Ft(ζ) = ζ − t

ζ
+ γt(ζ),

8The null-set N in these statements may of course depend on G.
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where γt : H → C is a holomorphic function with9 ∠ limζ→∞ ζγt(ζ) = 0. It is easy
to see that C1-curves in H ∪ {∞} going to ∞ within a Stolz angle are mapped
by each Ft onto C1-curves, with the angles between them at ∞ being preserved.
Hence for any s ≥ 0, any k > 1 and any k′ > k there exist R,R′ > 0 such
that D(R, k) ⊂ Fs

(
D(R′, k′)

)
, where by D(R, k) we denote the angular domain {ζ :

k Im ζ > |ζ| > R}. Using this fact it is not difficult to show that for any s ≥ 0 and any
t ≥ 0 the holomorphic function Φs,t := F−1

s ◦ Ft : H → H has a similar expansion
Φs,t(ζ) = ζ − (t− s)/ζ + γs,t(ζ) with ∠ limζ→∞ ζγs,t(ζ) = 0. Then |Φs,t(ζ) − ζ| ≤
(t−s)/Im ζ, see, e.g., [2, p. 7–12] or [10, p. 567–568]. Since for each T > 0 the family
{Fs : s ∈ [0, T ]} is locally uniformly bounded (again use |Fs(ζ) − ζ| ≤ s/Im ζ),
this inequality leads to an estimate for |Ft(ζ) − Fs(ζ)| = |Fs(Φs,t(ζ)) − Fs(ζ)| in
terms of t − s, which in turn implies that up to the Cayley map, Loewner chordal
families defined in [6] are a particular case of decreasing Loewner chains of order d,
introduced in this paper. Thus Theorem 3.2(ii) can be regarded as an extension of [6,
Theorem 5.3] to the general case, while Theorem 1.11(iii) represents an extension
of [6, Theorem 5.6].

3.1. Proof of Theorem 3.2. Let us fix any T > 0 and define

hTt :=

{
fT−t, if t ∈ [0, T ],
idD, if t ∈ (T,+∞).

It is easy to see that (hTt )t≥0 is an (increasing) Loewner chains of order d. By
Theorem C there exists an evolution family (φT

s,t) of order d such that hTs = hTt ◦φT
s,t

whenever 0 ≤ s ≤ t. In particular,

(3.4) fT−s = φT
s,T for each s ∈ [0, T ].

Denote by GT the Herglotz vector field of order d that corresponds to the evolution
family (φT

s,t) in the sense of Theorem B. Then by [7, Theorem 6.6], ∂φT
s,T (z)/∂s =

−GT (z, s)(φ
T
s,T )

′(z) for all z ∈ D and a.e. s ∈ [0, T ]. Note that from the very defi-

nition of a decreasing Loewner chain it follows easily that F (z, t) := ft(z) satisfies
conditions S1 – S3. Hence using (3.4), we may conclude, in accordance with Sub-
sect. 2.1, that F |D×[0,T ] is a solution to (3.3) with G(z, t) := GT (z, T − t) for all
z ∈ D and all t ∈ [0, T ]. The vector field G is defined by (ft) via (3.3) uniquely
up to a null-set in [0, T ]. That is why there exists a null-set N0 and a function
G : D× [0,+∞) → C holomorphic in the first (complex) variable and measurable in
the second (real) variable such that for each n ∈ N, we have G(z, t) = Gn(z, n− t)
for all t ∈ [0, n] \N0 and all z ∈ D. Clearly, such a function G is a Herglotz vector
field of order d. In this way F (z, t) = ft(z) becomes a solution to (3.3) on the whole
semiaxis [0,+∞). Bearing in mind Proposition 2.3(ii) and the fact that by definition
f0 = idD, we see that we have proved assertion (ii).

Let us now prove (i). Fix again T > 0. By construction,

(3.5) gs|Ωt = φT
T−t,T−s ◦ gt for all (s, t) ∈ ∆([0, T ]).

Fix any z ∈ D. Choose any t0 ≤ t(z) and let T := [t0] + 1, where [x] stands for
the integer part of x. Then by (3.5), gs(z) = φT

T−t0,T−s

(
gt0

)
for all s ∈ [0, t0]. It is

9Here ∠ lim stands for the angular limit.
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known, see, e.g., [11, Theorem 3.6(iii)], that for each evolution family (i.e., for each
T > 0 in our case) there exists a null-set N(T ) ⊂ [0,+∞) such that for every z ∈ D
and every s ≥ 0, (∂/∂t)φT

s,t(z) exists and equals GT

(
φT
s,t(z), t

)
whenever t ≥ s and

t ̸∈ N(T ). Note that N(T ) depends neither on z, nor on t. Bearing in mind that
(φT

s,t) is locally absolutely continuous in t, we therefore conclude that s 7→ gs(z) is
absolutely continuous on [0, t0] and that (d/ds)gs(z) exists and equals −G(gs(z), s)
for all s ∈ [0, t0] \ (N0 ∪N(T )).

Since t0 can be chosen arbitrarily close to t(z), the above argument proves as-
sertion (i) with N := N0 ∪

(
∪n∈N N(n)

)
, except for the fact that the solution

wz(t) := gt(z) to (3.2) has no extension beyond t = t(z). Assume on the contrary
that t(z) < +∞ and that such an extension w∗

z exists. Denote by Ez its domain
of definition. Then by Proposition 2.3(iii) and assertion (ii) of the theorem we are
proving now, ft(w

∗
z(t)) = z for all t ∈ Ez. In particular, z ∈ ft(D) = Ωt for all t ∈ Ez.

Hence supEz ≤ t(z). This contradiction completes the proof of assertion (i).
It remains to show that assertion (iii) holds. First of all, the fact that F (z, t) :=

F0

(
ft(z)

)
solves the initial value problem F (·, 0) = F0 for (3.3) follows immediately

from (ii). To prove the uniqueness of the solution, we recall that by assertion (i) we
proved above, for any z ∈ D the function [0, t(z)) ∋ z 7→ gt(z) solves (3.2). Therefore
if F is any solution to (3.3) with F (· · · , 0) = F0, then by Proposition 2.3(iii),
F (gt(z), t) = F (g0(z), 0) = F0(z) for any t ≥ 0 and any z ∈ Ωt. The proof of (iii) is
now finished, because gt = f−1

t for all t ≥ 0.
Finally the essential uniqueness of G holds because each of the equations (3.3)

and (3.2) defines G uniquely up to a null-set in [0,+∞). �

3.2. Proof of Theorem 1.11. Statement (i) of this theorem is a standard fact in
the theory of Carathéofory ODEs, see, e.g., [11, Sect. 2], which in particular contains
the proof of a more general statement [11, Theorem 2.3(i)].

In order to prove (ii) we fix an arbitrary T > 0 and consider the following Herglotz
vector field of order d,

GT (z, t) :=

{
G(z, T − t), if t ∈ [0, T ],
0, if t > T .

By Theorem (B), there exists an evolution family (φT
s,t) of order d such that for each

ζ ∈ D and s ≥ 0, the function [s,+∞) ∋ t 7→ wT
ζ,s(t) := φT

s,t(ζ) ∈ D is the unique
solution to the initial value problem

(3.6)
dw

dt
= GT (w, t), t ≥ s, w(s) = ζ.

It follows that for any z ∈ Ω̃T := φT
0,T (D) the unique solution t 7→ wz(t) =: gt(z)

to the initial value problem (1.11) is defined at least for all t ∈ [0, T ] and given

for these t by the formula wz(t) = φT
0,T−t(ζ), where ζ :=

(
φT
0,T

)−1
(z). Therefore,

Ω̃T ⊂ ΩT . On the other hand, the uniqueness of the solution to (3.6) implies that
for any z ∈ ΩT , the restriction wz|[0,T ] coincides with [0, T ] ∋ t 7→ φT

0,T−t(ζ), where

ζ := wz(T ). In particular, for any z ∈ ΩT , we have z = wz(0) = φT
0,T (ζ) ∈ Ω̃T . Thus

Ω̃T = ΩT and gT =
(
φT
0,T

)−1
: Ω̃t → D. Since T > 0 is arbitrary, this proves (ii).
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To prove (iii), fix again an arbitrary T > 0. By the above argument, for each
t ∈ [0, T ],

gt|ΩT
= φT

0,T−t ◦
(
φT
0,T

)−1
= φT

0,T−t ◦
(
φT
T−t,T ◦ φT

0,T−t

)−1
= φ−1

T−t,T |ΩT
,

where we used condition EF2 from Definition 1.1 of an evolution family. By the
uniqueness principle for holomorphic functions this means that ft = g−1

t = φT−t,T

for all t ∈ [0, T ]. Consider the family

hTt :=

{
φt,T , if t ∈ [0, T ],
idD, if t ∈ [0, T ].

Clearly,

(3.7) ft = hTT−t for all t ∈ [0, T ].

Note that by Remark 1.5, each function φT
s,t is univalent in D. Hence for each

t ≥ 0, hTt is univalent in D. Furthermore, φT
s,t = idD whenever t ≥ s ≥ T because

GT (·, t) ≡ 0 for all t ≥ T . Taking into account EF2, we conclude also that φT
s,t = φT

s,T

if 0 ≤ s ≤ T ≤ t. Now using again EF2, it is easy to see that hTt ◦φT
s,t = hs whenever

0 ≤ s ≤ t. By [9, Lemma 3.2], (hTt ) is a Loewner chain of order d. Since T > 0 can
be chosen arbitrarily, in view of (3.7), this implies that (ft) is a decreasing Loewner
chain of order d. As we have already mentioned in the proof of Theorem 3.2, any
(decreasing or increasing) Loewner chain satisfies conditions S1 – S3 in the definition
of a solution to the generalized Loewner –Kufarev PDE, formulated in Subsect. 2.1.

Let us show that S4 is also satisfied. Indeed, according to [7, Theorem 6.6] for
each z ∈ D and for a.e. t ∈ [0, T ],

∂ft(z)

∂t
=
∂φT

T−t,T (z)

∂t
=
∂φT

T−t,T (z)

∂z
GT (z, T − t) =

∂ft(z)

∂z
G(z, t).

Again, since one can choose T > 0 arbitrarily large, S4 holds for the whole semiaxis
E = [0,+∞). Thus D × [0,+∞) ∋ (z, t) 7→ ft(z) is a solution to (1.12). The
uniqueness of the solution is proved in the same way as in Theorem 3.2. This
completes the proof of (iii). �

4. Reverse evolution families versus decreasing Loewner chains and
Herglotz vector fields

In this section we would like to discuss in more detail the notion of a reverse
evolution family, introduced in Subsect. 1.3, see Definition 1.9, and its relationship
with decreasing Loewner chains and Herglotz vector fields.

4.1. Statements of results. The theorem below is an analogue of Theorem C.

Theorem 4.1. For each d ∈ [1,+∞] The formula

(4.1) φs,t := f−1
s ◦ ft, (s, t) ∈ ∆

(
[0,+∞)

)
,

establishes a 1-to-1 correspondence between decreasing Loewner chains (ft) of or-
der d and reverse evolution families (φs,t) of the same order d. Namely, for ev-
ery decreasing Loewner chain (ft) of order d the family (φs,t)(s,t)∈∆([0,+∞)) defined
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by (4.1) is a reverse evolution family of order d. Conversely, for any reverse evolu-
tion family (φs,t) of order d the family

(
ft
)
t≥0

=
(
φ0,t

)
t≥0

is a decreasing Loewner

chain of order d satisfying equality (4.1).

In the situation described in the above theorem we will say that the decreasing
Loewner chain (ft) and the reverse evolution family (φs,t) are associated with each
other.

In Theorem 1.11 we described the solutions to the generalized Loewner –Kufarev
ODE dw/ds = −G(w, s) with the initial condition at s = 0. It appeared that this
initial value problem generate, for a fixed Herglotz vector field G and variable initial
data, the family of the inverse mappings gs := f−1

s of some decreasing Loewner chain
(ft). The following theorem shows that if instead we consider the initial condition
at the right end-point w(t) = z ∈ D, where t > 0 and the solutions are looked for on
the interval s ∈ [0, t], then we obtain the reverse evolution family (φs,t) associated
with (ft). The converse statement is true and it is also included in this theorem,
which can be regarded as a “decreasing” analogue of Theorem B.

Theorem 4.2. Let d ∈ [1,+∞]. The following statements hold:

(i) The generalized Loewner –Kufarev ODE

(4.2)
dw

ds
= −G(w, s), s ∈ [0, t], w(t) = z,

establishes essentially a 1-to-1 correspondence between reverse evolution fami-
lies (φs,t) of order d and Herglotz vector fields G of the same order. Namely,
given a reverse evolution family (φs,t) of order d, there exists an essentially
unique10 Herglotz vector field G of order d such that for each t ≥ 0 and z ∈ D
the function [0, t] ∋ s 7→ w(s) := φs,t(z) solves the initial value problem (4.2).
Conversely, given a Herglotz vector field G of order d, for every t > 0 and ev-
ery z ∈ D the initial value problem (4.2) has a unique solution s 7→ w = wz,t(s)
defined for all s ∈ [0, t] and the formula φs,t(z) := wz,t(s) for all z ∈ D and all
(s, t) ∈ ∆

(
[0,+∞)

)
defines a reverse evolution family (φs,t) of order d.

(ii) Let (φs,t) and G be as in statement (i) above. Then a family (ft)t≥0 of holo-
morphic functions in D is the decreasing Loewner chain associated with (φs,t)
if and only if the function F : D× [0,+∞) → C, defined by F (z, t) := ft(z) for
all t ≥ 0 and all z ∈ D, is a solution to the following initial value problem for
the Loewner –Kufarev PDE

(4.3)
∂F

∂t
=
∂F

∂z
G(z, t), t ≥ 0, F (·, 0) = idD.

In the proofs of the above theorems we will use the following statement of in-
dependent interest, which provides several alternatives for condition REF3 in Def-
inition 1.9 equivalent to REF3 under the assumption that REF1 and REF2 are
satisfied.

Proposition 4.3. Let d ∈ [1,+∞]. Suppose that a family (φs,t)0≤s≤t of holomorphic
self-maps of D satisfies conditions REF1 and REF2 from Definition 1.9. Then the
following conditions are equivalent:

10This means “unique up a null-set on the t-axis”.
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(i) for each T > 0 there exist two distinct points ζj ∈ D, j = 1, 2, and a non-

negative function kT ∈ Ld([0, T ],R) such that for j = 1, 2,

(4.4) |φs,t(ζj)− φs,u(ζj)| ≤
∫ t

u
kT (ξ)dξ

whenever 0 ≤ s ≤ u ≤ t ≤ T .

(ii) (φs,t) satisfies condition REF3, i.e. (φs,t) is a reverse evolution family of or-
der d.

(iii) for any T > 0 and any compact set K ⊂ D there exists a non-negative function
kK,T ∈ Ld([0, T ],R) such that for all z ∈ K,

(4.5) |φs,t(z)− φs,u(z)| ≤
∫ t

u
kK,T (ξ)dξ

whenever 0 ≤ s ≤ u ≤ t ≤ T .

(iv) for any T > 0 there exists an evolution family (φT
s,t) of order d such that

φs,t = φT
T−t,T−s for all (s, t) ∈ ∆

(
[0, T ]

)
.

(v) for any T > 0 and any compact set K ⊂ D there exists a non-negative function
kK,T ∈ Ld([0, T ],R) such that for all z ∈ K,

(4.6) |φs,t(z)− φu,t(z)| ≤
∫ u

s
kK,T (ξ)dξ

whenever 0 ≤ s ≤ u ≤ t ≤ T .

In particular, every element of any reverse evolution family is a univalent function
in D.

Remark 4.4. Before stating the proofs we would like to mention that the families
{B(a, b; ·)}0≤a≤b introduced in [6] and referred there to as semigroups associated with
chordal Loewner families are a special case of reverse evolution families of order d =
+∞. Accordingly, the results we have stated in this section extend Theorems 5.4
and 5.5 from [6].

The equivalence of (i), (iii), and (iv) in Proposition 4.3, being formulated in
the “increasing” context, immediately leads to the following statement of some
independent interest.

Corollary 4.5. Let d ∈ [1,+∞]. Suppose that a family (φs,t)0≤s≤t of holomor-
phic self-maps of D satisfies conditions EF1 and EF2 from Definition 1.1. Then the
following conditions are equivalent:

(i) (φs,t) satisfies condition EF3, i.e. (φs,t) is a evolution family of order d.

(ii) for any T > 0 there exist two distinct points ζj ∈ D, j = 1, 2, and a non-

negative function kT ∈ Ld([0, T ],R) such that for j = 1, 2,

|φs,t(ζj)− φu,t(ζj)| ≤
∫ u

s
kT (ξ)dξ

whenever 0 ≤ s ≤ u ≤ t ≤ T .
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(iii) for any T > 0 and any compact set K ⊂ D there exists a non-negative function
kK,T ∈ Ld([0, T ],R) such that for all z ∈ K,

|φs,t(z)− φu,t(z)| ≤
∫ u

s
kK,T (ξ)dξ

whenever 0 ≤ s ≤ u ≤ t ≤ T .

4.2. Proof of Proposition 4.3. Recall that by ρD(·, ·) we denote the pseudohy-
perbolic distance in D. Note that

|w − z| ≤ ρD(z, w)

for any z, w ∈ D. Hence combining conditions REF1 and REF2, the Schwarz –Pick
lemma, and Corollary 2.6, we deduce that for any compact set K ⊂ D and any two
distinct points ζ1, ζ2 ∈ D there exists M =M(K, ζ1, ζ2) > 0 such that

(4.7)
∣∣φs,t(z)− φs,u(z)

∣∣ ≤ ρD
(
φs,t(z), φs,u(z)

)
= ρD

(
φs,u(φu,t(z)), φs,u(z)

)
≤ ρD

(
φu,t(z), z

)
≤M

(
|φu,t(ζ1)− ζ1|+ |φu,t(ζ2)− ζ2|

)
for all z ∈ K and all s, u, t ≥ 0 such that s ≤ u ≤ t.

Obviously, (iii) =⇒ (ii) =⇒ (i). Moreover, substituting (u, u, t) for (s, u, t) in
REF3 and bearing in mind (4.7), one can easily see that (i) implies (iii).

Let us prove that (iv) =⇒ (iii). Fix any T > 0 and a compact set K ⊂ D. Choose
any two distinct points z1, z2 ∈ D. Denote wj(s) := φs,T (ζj) for all s ∈ [0, T ] and
j = 1, 2. From REF2 it follows that for any (u, t) ∈ ∆

(
[0, T ]

)
and j = 1, 2,

(4.8)
∣∣φu,t

(
wj(t)

)
− wj(t)

∣∣ = ∣∣wj(u)− wj(t)
∣∣.

By (iv) there exists an evolution family (φT
s,t) of order d such that φs,t = φT

T−t,T−s

for all (s, t) ∈ ∆
(
[0, T ]

)
. In particular, wj(s) = φT

0,T−s(zj) for all s ∈ [0, T ] and

j = 1, 2. Hence the functions w1 and w2 are of class ACd on [0, T ]. Moreover,
with all φT

s,t’s being univalent by Remark 1.5, these two functions do not share
common values. In particular, it follows that there exist R ∈ (0, 1) and ρ > 0 such
that |wj(t)| ≤ R, j = 1, 2, and ρD

(
w1(t), w2(t)

)
≥ ρ for all t ∈ [0, T ]. Apply now

Corollary 2.6 with wj(t) substituted for ζj to deduce from (4.8) that there is a
constant M1 =M1(K,T, z1, z2) > 0 such that

(4.9) ρD
(
φu,t(z), z

)
≤M1

(
|w1(t)− w1(u)|+ |w2(t)− w2(u)|

)
for all (u, t) ∈ ∆

(
[0, T ]

)
and all z ∈ K. Inequalities (4.7) and (4.9) imply together

that ∣∣φs,t(z)− φs,u(z)
∣∣ ≤M1

(
|w1(t)− w1(u)|+ |w2(t)− w2(u)|

)
for all (u, t) ∈ ∆

(
[0, T ]

)
and all z ∈ K. Recalling that w1, w2 ∈ ACd

(
[0, T ],D

)
, we

see that assertion (iii) holds with

kK,T (ξ) :=M1

(
|w′

1(ξ)|+ |w′
2(ξ)|

)
.

Now assume (i) and let us prove (v). To this end we again fix any T > 0 and
any compact set K ⊂ D. Let us show first that from (i) it follows that there exists
r ∈ (0, 1) such that

(4.10) φu,t(K) ⊂ rD for all (u, t) ∈ ∆
(
[0, T ]

)
.
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Assume on the contrary that there exists a sequence
(
(un, tn)

)
⊂ ∆

(
[0, T ]

)
such

that supK |φun,tn | → 1 as n→ +∞. Without loss of generality we may also assume
that (un, tn) → (u0, t0) as n→ +∞ for some (u0, t0) ∈ ∆

(
[0, T ]

)
.

Note that by (i),

(4.11) |φu,t(ζj)− ζj | ≤ ω(t− u) for j = 1, 2 and for any (u, t) ∈ ∆
(
[0, T ]

)
,

where ω(·) stands for the modulus of continuity of [0, T ] ∋ t 7→
∫ t
0 kT (ξ)dξ. Hence

from (4.7) it follows that t0 ̸= u0 and φun,tn − φun,t0 → 0 uniformly on K as
n→ +∞. Therefore

(4.12) sup
K

|φun,t0 | → 1 as n→ +∞.

Now choose δ ∈ (0, t0 − u0) in such a way that ω(2δ) < ε0 :=
(
1 − |ζ1|

)
/2, and let

n0 ∈ N be such that |un−u0| < δ for all natural n ≥ n0. Then |φun,u0+δ(ζ1)| < 1−ε0
for all n > n0. Bearing in mind that φun,u0+δ(D) ⊂ D for all n ∈ N, we conclude
that {φun,u0+δ : n > n0} is relatively compact in Hol(D,D). In view of the fact that
by REF2, φun,t0 = φun,u0+δ ◦φu0+δ,t0 for all n > n0, this contradicts (4.12) and thus
proves (4.10) for some r ∈ (0, 1) depending on the compact set K and T > 0.

Now taking advantage of REF2, we get∣∣φs,t(z)− φu,t(z)
∣∣ = |φs,u(ζ)− ζ|, ζ := φu,t(z)

for any z ∈ D and any s, u, t ≥ 0 such that s ≤ u ≤ t. Using (4.10) we apply
Corollary 2.6 to conclude that there exists M2 =M2(T,K, ζ1, ζ2) > 0 such that∣∣φs,t(z)− φu,t(z)

∣∣ ≤M2

(
|φu,t(ζ1)− ζ1|+ |φu,t(ζ2)− ζ2|

)
whenever z ∈ K and 0 ≤ s ≤ u ≤ t ≤ T . Now it follows easily from (4.4) with

(u, u, t) substituted for (s, u, t) that there exists a non-negative function k̂K,T :=

M2kT ∈ Ld
(
[0, T ],R

)
such that for all z ∈ K,

(4.13) |φs,t(z)− φu,t(z)| ≤
∫ u

s
k̂K,T (ξ)dξ

whenever 0 ≤ s ≤ u ≤ t ≤ T .
To complete the proof assume (v) and let us prove (iv). Write

(4.14) φT
s,t :=

 φT−t,T−s, if 0 ≤ s ≤ t ≤ T ,
φ0,T−s, if 0 ≤ s ≤ T ≤ t,
idD, if T ≤ s ≤ t.

In other words, for all s ≥ 0 and all t ≥ s, we have φT
s,t = φτ(t),τ(s), where τ(t)

stands for max{0, T − t}.
It is easy to see that (φT

s,t) satisfies conditions EF1 and EF2 in Definition 1.1.
Moreover, combining (4.13) and (4.14), for all z ∈ D and all s, u, t such that 0 ≤
s ≤ u ≤ t we have∣∣φT

s,t(z)− φT
s,u(z)

∣∣ = ∣∣φτ(t),τ(s)(z)− φτ(u),τ(s)(z)
∣∣ ≤ ∫ t

u
k̃K,T (ξ),

where k̃K,T (ξ) := kK,T (T − ξ) for all ξ ∈ [0, T ] and k̃K,T (ξ) := 0 for all ξ > T . It

follows that (φT
s,t) satisfies EF3. Thus (iv) is true.
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Finally, using the implication (ii) =⇒ (iv) we can easily conclude that all the
elements of any reverse evolution family is a univalent function in D, since by
Remark 1.5 this is the case for elements of evolution families. Now the proof of
Proposition 4.3 is complete. �

4.3. Proof of Theorem 4.1. Assume first that we are given a decreasing Loewner
chain (ft) of order d. Fix any T > 0. Then the family (hTt )t≥0 defined by

(4.15) hTt :=

{
fT−t, if t ∈ [0, T ],
idD, if t ∈ (T,+∞),

is an (increasing) Loewner chain. Hence by Theorem C, the formula φT
s,t := h−1

t ◦hs
for all s ≥ 0 and all t ≥ s defines an evolution family of order d. Note that for
all (s, t) ∈ ∆

(
[0, T ]

)
we have φs,t = φT

T−t,T−s, where (φs,t) is defined by (4.1).
Thus, bearing in mind that T > 0 can be chosen arbitrarily, we conclude that by
Proposition 4.3, (φs,t) is a reverse evolution family of order d.

To prove the converse statement we assume now that (φs,t) is a reverse evolu-
tion family of order d. We have to show that ft := φ0,t is a decreasing Loewner
chain of order d satisfying (4.1). Recall that by Proposition 4.3, the functions φs,t

are univalent in D. It follows that (ft) satisfies LC1. By the same reason, REF2 im-
plies (4.1). Moreover, REF2 implies also that (ft) satisfies LC2. Finally, LC3 follows
immediately from assertion (iii) of Proposition 4.3. The proof is complete. �

4.4. Proof of Theorem 4.2. We start with the proof of (i). Assume at first that
we are given a reverse evolution family (φs,t) of order d and let us prove that there
exists a Herglotz vector field of order d that generate (φs,t) via (4.2). To this end we
fix T > 0 and apply Proposition 4.3, according to which there exists an evolution
family (φT

s,t) of order d such that φs,t = φT
T−t,T−s whenever 0 ≤ s ≤ t ≤ T . In

turn, according to Theorem B there exists a Herglotz vector field GT of order d
such that for any s ≥ 0 and any z ∈ D the function [s,+∞) ∋ t 7→ w(t) := φT

s,t(z)
is the unique solution to the equation dw/dt = GT (w, t), t ≥ s, with the initial
condition w(s) = z. It follows that for each t ∈ (0, T ] and each z ∈ D the function
[0, t] ∋ s 7→ wz,t(s) := φs,t(z) is the unique solution to the initial value problem

(4.16)
dw

ds
= −GT (w, T − s), s ∈ [0, t], w(t) = z.

Since the functions (z, s) 7→ wz,t(s) define GT via (4.16) uniquely up to a null-set
in [0, T ], there exists a function G : D × [0,+∞) → C such that for each n ∈ N,
G(·, t) = Gn(·, n− t) for a.e. t ∈ [0, n]. Clearly, G is the desired Herglotz vector field
of order d.

Now we pass to the converse statement. So assume that we are given a Herglotz
vector field G of order d and let us prove that it generates a reverse evolution family
(φs,t) of order d. Again fix any T > 0. Arguing as in the proof of Theorem 1.11(ii),
one can construct an evolution family (φT

s,t) of order d such that for each z ∈ D and

each t ∈ (0, T ] the function [0, t] ∋ s 7→ wz,t(s) := φT
T−t,T−s(z) is the unique solution

to the initial value problem (4.2). Note that by uniqueness of the solution, wz,t does
not depend on T . Hence there exists a unique family (φs,t)0≤s≤t of holomorphic
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functions φs,t : D → D such that

(4.17) φs,t(z) = wz,t(s) = φT
T−t,T−s(z)

for all z ∈ D, all (s, t) ∈ ∆
(
[0,+∞)

)
, and all T ≥ t.

Take now any u, s, t ≥ 0 such that u ≤ s ≤ t. Choose any T ≥ t. Then combin-
ing (4.17) with conditions EF1 and EF2 for (φT

s,t) we easily obtain REF1 and REF2.
Furthermore, applying now Proposition 4.3 we conclude that REF3 holds as well.
Hence (φs,t) is a reverse evolution family of order d. To complete the proof of (i) it
remains to recall that by (4.17), for each t ≥ 0 and each z ∈ D, [0, t] ∋ s 7→ φs,t(z)
is the unique solution to (4.2).

Now let us prove (ii). First let us assume that F (z, t) := ft(z) solves (4.3). Then
by Theorem 1.11, (ft) is a decreasing Loewner chain of order d, with the functions
wζ(s) := f−1

s (ζ), where ζ ∈ D, being solutions, on their domains of definition, to the
equation dw/ds = G(w, s). For each z ∈ D and each t > 0, set ζ := ζ(z, t) = ft(z).
Then by condition DC2 in Definition 1.6, wζ(z,t) is defined for all s ∈ [0, t]. Moreover,
it satisfies the initial condition wζ(z,t)(t) = z. By the uniqueness of the solution

to (4.2), it follows that wζ(z,t)(s) = φs,t(z) for all z ∈ D and all (s, t) ∈ ∆
(
[0,+∞)

)
.

On the other hand, by construction wζ(z,t)(s) = f−1
s ◦ ft(z) for all such z, s and

t. Thus the decreasing Loewner chain (ft) is associated with the reverse evolution
family (φs,t).

It remains to prove the converse statement. So we assume that (ft) is the de-
creasing Loewner chain of order d associated with (φs,t). We have to show that
F (z, t) := ft(z) solves (4.3). By Theorem 3.2, the function F is a solution to the
generalized Loewner –Kufarev PDE

∂F (z, t)

∂t
=
∂F (z, t)

∂z
G∗(z, t), t ≥ 0, z ∈ D,

for some Herglotz vector field G∗, which a priori can be different from G. We have
to prove that actually G∗ and G coincide aside a null set on the t-axis. To this end
consider the reverse evolution family (φ∗

s,t) generated in the sense of statement (i)
of the theorem we are proving by the Herglotz vector field G∗. By what we have
already showed, (ft) must be the Loewner chain associated with (φ∗

s,t). By the very
definition, this means that (φ∗

s,t) = (φs,t). Now the uniqueness of the Herglotz vector
field in statement (i) implies that G and G∗ essentially coincide. This completes the
proof. �

5. Two-point characterization of Loewner chains

The regularity of the Ld-Loewner chains, both increasing and decreasing, w.r.t.
the time parameter t is described by (literally identical) conditions LC3 and DC3,
requiring that the Loewner chain, considered as a mapping [0,+∞) ∋ t 7→ ft ∈
Hol(D,C), must be locally absolutely continuous. At the same time in the classical
theory, both in chordal and radial variants, the regularity w.r.t. t is achieved by
controlling a unique increasing parameter, such as f ′t(0) in the radial case. Theo-
rem 1.13, which we are going to prove in this section, states that condition LC3 can
be replaced by an a priori weaker condition in the spirit of the classical theory. This
theorem has an immediate consequence for decreasing Loewner chains.
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Corollary 5.1. Let (ft)t≥0 be a family of functions satisfying conditions DC1 and
DC2 from Definition 1.6 and let d ∈ [1,+∞]. Then (ft) is a decreasing Loewner
chain of order d if and only if for every T > 0 there exist two distinct points ζ1, ζ2 ∈
D such that the functions t 7→ wj(t) := ft(ζj) belong to the class ACd

(
[0, T ],C

)
for

j = 1, 2.

Since Corollary 5.1 follows directly from Theorem 1.13 by means of the change
of variable t 7→ T − t, we omit the proof.

Proof of Theorem 1.13. The implication LC3 =⇒ LC3w is obvious. So assume
that (ft) satisfies LC1, LC2, and LC3w and let us prove that (ft) is a Loewner chain
of order d.

Fix any T > 0. For (s, t) ∈ ∆([0, T ]) consider φs,t := f−1
t ◦ fs : D → D. Since

ft(D) ⊂ fT (D) for all t ∈ [0, T ] and the map [0, T ] ∋ t 7→ ft(ζ1) is continuous, the set
{ft : t ∈ [0, T ]} is relatively compact in Hol(D,C). Therefore applying Lemma 2.7
for K := {ζ1, ζ2}, z2 = z2(s, t) := φs,t(z1), z1 := ζj , we get

(5.1) |φs,t(ζj)− ζj | ≤M |ft(ζj)− fs(ζj)|, j = 1, 2,

for all (s, t) ∈ ∆([0, T ]), where M :=M{ζ1,ζ2} > 0 does not depend on s and t.
Combining (5.1) with Corollary 2.6 for φ := φs,t and taking into account that

|w − z| ≤ ρD(w, z)

for all z, w ∈ D, we conclude that for each r ∈ (0, 1),

(5.2)
∣∣φs,t(ζ)− ζ

∣∣ ≤ C̃(r,R0, ρ0)
(
|φs,t(ζ1)− ζ1|+ |φs,t(ζ2)− ζ2|

)
≤ C0

(
|ft(ζ1)− fs(ζ1)|+ |ft(ζ2)− fs(ζ2)|

)
,

whenever |ζ| ≤ r and (s, t) ∈ ∆([0, T ]), where C0 := MC̃(r,R0, ρ0), R0 :=
max{|ζ1|, |ζ2|}, and ρ0 := ρD(ζ2, ζ1).

Since the mappings [0, T ] ∋ t 7→ ft(ζj), j = 1, 2, are continuous, inequality (5.2)
implies that for each r ∈ (0, 1) there exists δ > 0 such that |φs,t(ζ)| ≤ r′ := (1+r)/2
for all ζ with |ζ| ≤ r and all (s, t) ∈ ∆([0, T ]) with t < s + δ. Recall that {ft : t ∈
[0, T ]} is relatively compact in Hol(D,C). It follows that |f ′t(z)| is uniformly bounded
on the disk {z : |z| ≤ r′}. As a result, from (5.2) we get

(5.3)

|ft(ζ) − fs(ζ)| ≤ M1|φs,t(ζ) − ζ| ≤ C(r)
(
|ft(ζ1) − fs(ζ1)| + |ft(ζ2) − fs(ζ2)|

)
,

for any ζ with |ζ| ≤ r and any (s, t) ∈ ∆([0, T ]) with t < s+δ, where C(r) :=M1C0

and M1 =M1(r
′) := sup

{
|f ′t(z)| : |z| ≤ r′, t ∈ [0, T ]

}
.

Let K be any compact set in D. Choose r ∈ (0, 1) in the above argument in such
a way that |ζ| ≤ r for all ζ ∈ K. Set kK,T (ξ) := C(r)

(
k1(ξ)+k2(ξ)

)
for all ξ ∈ [0, T ],

where kj(t) := |dft(ζj)/dt| for j = 1, 2 and all t ∈ [0, T ]. Obviously, kK,T ≥ 0 and

belongs to Ld
loc

(
[0, T ],R

)
. From (5.3) it follows that whenever 0 ≤ s ≤ t ≤ T ,

t < s+ δ, and ζ ∈ K, we will have

(5.4)
∣∣ft(ζ)− fs(ζ)

∣∣ ≤ ∫ t

s
kK,T (ξ)dξ.
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Using the triangle inequality in the right-hand side of (5.4) and the additivity of
the integral in its left-hand side, it is easy to remove the restriction t < s+ δ. Hence
(ft) satisfies LC3 and thus it is Loewner chain of order d. �
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