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where λk > 0 is a regularizing parameter. If the sequence {λk}∞k=1 is bounded from
above, then the resulting sequence {xk}∞k=1 of proximal point iterates converges
weakly to a solution of (1.1), provided that a solution exists (Rockafellar [10]).

Rockafellar then posed the following question:

Q1. Does the proximal point algorithm always converge strongly?

This question was resolved in the negative by Güler [2] who produced a proper
closed convex function g in the infinite dimensional Hilbert space l2 for which the
proximal point algorithm converges weakly but not strongly. This naturally raised
the following question:

Q2. Can the proximal point algorithm be modified to guarantee strong convergence?

It is clear that the proximal point algorithm (1.2), even if it converges strongly, is
not at all convenient to use. This is because at each step of the iteration process,

one has to compute
(
I + 1

λk
A
)−1

(xk) and this is certainly not convenient. Con-

sequently, Chidume and Djitte [1] posed the following question, which perhaps, is
more important than Q2.

Q3. Can an iteration process be developed which will not involve the computation

of
(
I + 1

λk
A
)−1

(xk) at each step of the iteration process and which will guarantee

strong convergence to a solution of (1.1)?

With respect to Q2, Solodov and Svaiter [12] were the first to propose a modifica-
tion of the proximal point algorithm which guarantees strong convergence in a real
Hilbert space. Their algorithm is as follows:

Algorithm. Choose any x0 ∈ H and σ ∈ [0, 1). At iteration k, having xk, choose
µk > 0, and find (yk, vk) an inexact solution of 0 ∈ Tx+ µk(x− xk), with tolerance
σ. Define

Ck := {z ∈ H | ⟨z − yk, vk⟩ ≤ 0},

and

Qk := {z ∈ H | ⟨z − xk, x0 − xk⟩ ≤ 0}.

Take

xk+1 = PCk∩Qk
(x0).

The authors themselves noted ([12], p.195) that`̀... at each iteration, there are two
subproblems to be solved... ´́ : (i) find an inexact solution of the proximal point
algorithm, and (ii) find the projection of x0 onto Ck ∩ Qk, the intersection of the
two halfspaces.
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Kamimura and Takahashi [3], extended the work of Solodov and Svaiter [12] to the
framwork of Banach spaces that are both uniformly convex and uniformly smooth.

Xu [14] noted that`̀ ... Solodov and Svaiter’s algorithm, though strongly convergent,
does need more computing time due to the projection in the second
subproblem... ´́

Xu [13] then proposed and studied the following algorithm:

(1.3) xn+1 = αnx0 + (1− αn)
(
I + cnT

)−1
(xn) + en, n ≥ 0.

He proved that (1.3) converges strongly provided that the sequences {αn} and {cn}
of real numbers and the sequence {en} of errors are chosen appropriately. He argued

that once un :=
(
I + cnT

)−1
(xn) + en has been calculated, the calculation of the

mean αnx0 + (1 − αn)un is much easier than the projection of x0 onto Cn ∩ Qn

mentioned earlier, and so his algorithm seems simpler than that of Solodov and
Svaiter [12].

Lehdili and Moudafi [4] considered the technique of the proximal map and the
Tikhonov regularization to introduce the so-called Prox-Tikhonov method which
generates the sequence {xn} by the algorithm:

(1.4) xn+1 = JTn
λn

xn, n ≥ 0,

where Tn := µnT + T , µn > 0 is viewed as a Tikhonov regularization of T and
JTn
λn

:= (I+λnTn)
−1. Using the notation of variational distance, Lehdili and Moudafi

[4] proved strong convergence theorems for the algorithm (1.4) and its perturbed
version, under appropriate conditions on the sequences {λn} and {µn}.

Xu [14] studied the algorithm (1.4). He used the technique of nonexpansive map-
pings to get convergence theorems for the perturbed version of the algorithm (1.4),
under much relaxed conditions on the sequences {λn} and {µn}.

Another modification of the proximal point algorithm, perhaps the most significant,
which yields strong convergence, is implicitly contained in the following theorem of
Reich.

Theorem 1.1 (Reich, [9]). Let E be a real uniformly smooth Banach space and
A : D(A) ⊆ E → E be an accretive mapping with cl(D(A)) convex. Suppose A
satisfies the range condition D ⊆ R(I + sA), ∀ s > 0. Suppose that 0 ∈ R(A), then
for each x ∈ D, the strong limit lim JA

s x exists and belongs to N(A). If we denote
lim JA

s x by Qx, then Q : D → N(A) is the unique sunny nonexpansive retraction of
D onto N(A).

We have seen that, in response to Q2, all modifications of the classical proximal
point algorithm to obtain strong convergence so far studied still involve the com-

putation of
(
I + cnT

)−1
(xn) at each step of the process.
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In the case that A is maximal monotone and bounded, Chidume and Djitte [1] gave
an affirmative answer to Q3 by proving the following important theorem:

Theorem CD (Chidume and Djitte [1]). Let E be a 2-uniformly smooth real
Banach space and let A : E → E be a bounded m-accretive map. For arbitrary
x1 ∈ E, define the sequence {xn} iteratively by

xn+1 := xn − λnAxn − λnθn(xn − x1), n ≥ 1,(1.5)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0; and {θn} is decreasing;

(2)

∞∑
n=1

λnθn = ∞, λn = o(θn);

(3) lim
n→∞

(
θn−1

θn
− 1

)
λnθn

= 0,

∞∑
n=1

λ2
n < ∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant
γ0 > 0 such that if λn ≤ γ0θn ∀n ≥ 1, {xn} converges strongly to a solution of the
equation Ax = 0.

Remark 1.2. We note that 2-uniformly smooth Banach spaces include Lp spaces,
2 ≤ p < ∞ but do not include Lp spaces, 1 < p < 2.

It is our purpose in this paper to prove a significant improvement of Theorem
CD in the following sense. First, our recursion formula will be simpler than the
one in Theorem CD, requiring only one iteration parameter instead of two required
in Theorem CD. Secondly, our theorem will be proved in the much more general
uniformly smooth real Banach spaces. As is well known, these spaces include Lp

spaces, 1 < p < ∞. These results are achieved by using two celebrated theorems
of Simeon Reich ([8], [9]). An application of our theorem to convex minimization
problem is also given.

2. preliminaries

Let A : H → H be a monotone map. A is called m-monotone if R(I + λA) = H
for some λ > 0. It is well known that if A is m-monotone, it satisfies the range
condition, that is, R(I + λA) = H for all λ > 0 (see, e.g., Chidume and Djitte [1]
for a recent proof).

In the sequel, we shall use the following lemmas.

Lemma 2.1 (Reich, [8]). Let E be a real uniformly smooth Banach space. Then,
there exists a nondecreasing continuous function

β : [0,∞) → [0,∞),

satisfying the following conditions:
(i) β(ct) ≤ cβ(t) ∀c ≥ 1;
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(ii) lim
t→0+

β(t) = 0, and,

||x+ y||2 ≤ ||x||2 + 2Re⟨y, j(x)⟩+max{||x||, 1}||y||β(||y||)∀x, y ∈ E.

Lemma 2.2 (See e.g., [13]). Let {λn}n≥1 be a sequence of non-negative real numbers
satisfying the condition

λn+1 ≤ (1− ωn)λn + ωnσn, n ≥ 0,

where {ωn}n≥0 and {σn}n≥0 are sequences of real numbers such that {ωn}n≥1 ⊂

[0, 1],

∞∑
n=1

ωn = +∞ and lim supσn ≤ 0. Then λn → 0 as n → ∞.

Lemma 2.3 (Xu and Roach, [15]). Let E be a real uniformly smooth Banach space.
Then, there exist constants D and C such that for all x, y ∈ E, j(x) ∈ J(x); the
following inequality holds:

||x+ y||2 ≤ ||x||2 + 2⟨y, j(x)⟩+Dmax{||x||+ ||y||, 1
2
C}ρE(||y||)

where ρE denotes the modulus of smoothness of E.

Lemma 2.4 (Lindenstrauss and Tzafriri, [5]). In Lp(or ℓp) spaces, 1 < p < ∞,

ρLp(τ) =

{
(1 + τp)

1
p − 1 < 1

pτ
p; 1 < p < 2

p−1
2 τ2 + o(τ2) < p−1

2 τ2; p ≥ 2.

3. Main result

We prove the following theorem. In the theorem, β is the function defined in Lemma
2.1.

Theorem 3.1. Let E be a uniformly smooth real Banach space and let A : E → E be
a bounded accretive map which satisfies the range condition. For arbitrary x1 ∈ E,
let the sequence {xn} be iteratively defined by

(3.1) xn+1 := xn − λnAxn − λn(xn − x1), n ≥ 1,

where {λn} is a sequence in (0, 1) satisfying the following conditions:

(1) lim
n→∞

λn = 0

(2)
∑∞

n=1 λn = ∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant
γ0 > 0 such that if β(λn) < γ0, {xn} converges strongly to a solution of the equation
Ax = 0.

Proof. We first prove that {xn} is bounded. Let x∗ ∈ A−1(0), since x1 is fixed in E

there exists r > 0 sufficiently large such that x1 ∈ B(x∗, r2). Define B := B(x∗, r).
Since A is bounded, A(B) is bounded. Define

M0 := max{||x− x∗|| : x ∈ B}
M1 := sup{||Ax+ (x− x1)|| : x ∈ B}+ 1

M := M0M
2
1 and γ0 =

r2

4M
.
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Observe that λn < γ0 ∀n ≥ 1 implies λnβ(λn) < λn
r2

4M . We now prove by induction
that xn ∈ B ∀ n ≥ 1. By construction, x1 ∈ B. Assume that xn ∈ B for some n ≥ 1.
We show that xn+1 ∈ B. From the recursion formula (3.1) and Lemma 2.1, we have
that

||xn+1 − x∗||2 = ||xn − x∗ − λn(Axn + (xn − x1)||2

≤ ||xn − x∗||2 − 2λn⟨Axn, j(xn − x∗)⟩ − 2λn⟨xn − x1, j(xn − x∗)⟩
+max{||xn − x∗||, 1}||λn[Axn + (xn − x1)]||

×β
(
||λn[Axn + (xn − x1)]||

)
≤ ||xn − x∗||2 − 2λn⟨Axn, j(xn − x∗)⟩ − 2λn⟨xn − x1, j(xn − x∗)⟩

+max{||xn − x∗||, 1} × λn||Axn + (xn − x1)||

×β
(
λn||Axn + (xn − x1)||

)
.(3.2)

Since A is accretive and x∗ ∈ A−1(0), then ⟨Axn, j(xn−x∗)⟩ ≥ 0. Hence, we obtain
that

||xn+1 − x∗||2 ≤ ||xn − x∗||2 − 2λn||xn − x∗||2 + 2λn⟨x1 − x∗, j(xn − x∗)⟩
+M0M

2
1λnβ(λn)

≤ (1− 2λn)||xn − x∗||2 + λn(||x1 − x∗||2 + ||xn − x∗||2)(3.3)

+λnMβ(λn)

≤ (1− λn)r
2 + λn

r2

4
+ λn

r2

4

=
(
1− λn

2

)
r2 ≤ r2.

This implies that xn+1 ∈ B, so by induction, xn ∈ B ∀ n ≥ 1. Therefore, {xn} is
bounded.

We now prove xn → x∗ as n → ∞. Since {xn}∞n=1 is bounded, we have that
{Axn}∞n=1 is bounded. Observe that, if for all γ > 0, we define Aγ : E → E
by Aγx = γAx ∀ x ∈ E, then we easily see that Aγ is bounded and satisfies the
range condition since A satisfies the range condition. Furthermore,

A−1(0) = A−1
γ (0) = F (J

Aγ
s ),

where J
Aγ
s is the resolvent of the operator Aγ , ∀γ > 0. Observe that

||Aγxn|| = γ||Axn|| ≤ γ sup
x∈B′

||Ax||, ∀n ≥ 1

(where B′ = B ∪ {x1, x2, . . . , xn0−1}). This implies that lim
γ→0

||Aγxn|| = 0. From

Theorem 1.1, we get that lims→∞ J
Aγ
s x1 = x∗ ∈ A−1(0).

Define

ζn := max{⟨x1 − x∗, j(xn − x∗)⟩, 0}, ∀ n ≥ 1,
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then limn→∞ ζn = 0. We prove this. Since J
Aγ
s = (I + sAγ)

−1, we obtain

(I + sAγ)J
Aγ
s x1 = x1. Therefore,

AγoJ
Aγ
s x1 =

1

s

(
x1 − J

Aγ
s x1

)
.

Since A is accretive, we have that Aγ is accretive and so⟨
Aγxn − 1

s

(
x1 − J

Aγ
s x1

)
, j(xn − J

Aγ
s x1)

⟩
≥ 0 ∀ s > 0, γ > 0.

This implies that there exists a constant K > 0, such that

⟨x1 − J
Aγ
s x1, j(xn − J

Aγ
s x1)⟩ ≤ s⟨Aγxn, j(xn − J

Aγ
s x1)⟩

≤ sK||Aγxn||.

Hence, lim sup
γ→0

⟨x1 − J
Aγ
s x1, j(xn − J

Aγ
s x1)⟩ ≤ 0 ∀ n ≥ 1. Therefore, for any ε > 0,

there exists δ := δ(ε) > 0 such that for all γ ∈ (0, δ],

⟨x1 − J
Aγ
s x1, j(xn − J

Aγ
s x1)⟩ < ε.

In particular, for γ = δ, there exists K0 > 0 such that

⟨x1 − x∗, j(xn − x∗)⟩ = ⟨x1 − x∗, j(xn − x∗)− j(xn − JAδ
s x1)⟩

+⟨x1 − JAδ
s x1, j(xn − JAδ

s x1)⟩
+⟨JAδ

s x1 − x∗, j(xn − JAδ
s x1)⟩

< ⟨x1 − x∗, j(xn − x∗)− j(xn − JAδ
s x1)⟩

+K0||JAδ
s x1 − x∗||+ ε

≤ ||x1 − x∗||||j(xn − x∗)− j(xn − JAδ
s x1)||

+K0||JAδ
s x1 − x∗||+ ε.

This implies that

lim sup
n→∞

(
lim sup
s→∞

⟨x1 − x∗, j(xn − x∗)⟩
)
≤ K0 lim sup

n→∞

(
lim sup
s→∞

||JAδ
s x1 − x∗||

)
+ lim sup

n→∞

(
lim sup
s→∞

||x1 − x∗||||j(xn − x∗)− j(xn − JAδ
s x1)||

)
+ ε.

Since E is uniformly smooth, J is norm-to-norm uniformly continuous on bounded
subsets of E. Then, we have

lim sup
n→∞

⟨x1 − x∗, j(xn − x∗)⟩ ≤ ε.

This implies that

(3.4) lim sup
n→∞

⟨x1 − x∗, j(xn − x∗)⟩ ≤ 0.

Using (3.4), we get that lim sup
n→∞

ζn = 0. From (3.1), we obtain

||xn+1 − x∗||2 ≤ (1− 2λn)||xn − x∗||2 + 2λn⟨x1 − x∗, j(xn − x∗)⟩+ λnβ(λn)M

≤ (1− 2λn)||xn − x∗||2 + 2λnζn + λnβ(λn)M

= (1− 2λn)||xn − x∗||2 + λnσn,(3.5)
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where σn := 2ζn+β(λn)M. Clearly, lim supσn ≤ 0, so by conditions (i) and (ii) and
applying Lemma 2.2 to (3.5), we conclude that xn → x∗, n → ∞, completing the
proof. �

4. Convergence theorems for the special case of Lp, 1 < p < ∞

In this section, using a result of Xu and Roach (Lemma 2.3), a result of Linden-
strauss and Tzafriri (Lemma 2.4) and following the method of proof of Theorem
3.1, the following theorems are easily proved.

Theorem 4.1. Let E = Lp, 1 < p < 2 and let A : E → E be a bounded accretive
map which satisfies the range condition. For arbitrary x1 ∈ E, let the sequence {xn}
be iteratively defined by

(4.1) xn+1 := xn − λnAxn − λn(xn − x1), n ≥ 1,

where {λn} is a sequence in (0, 1) satisfying the following conditions:

(1) lim
n→∞

λn = 0

(2)
∑∞

n=1 λn = ∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant
γ1 > 0 such that if λn < γ1, the sequence {xn} converges strongly to a solution of
the equation Ax = 0.

Theorem 4.2. Let E = Lp, 2 ≤ p < ∞ and let A : E → E be a bounded accretive
map which satisfies the range condition. For arbitrary x1 ∈ E, let the sequence {xn}
be iteratively defined by

(4.2) xn+1 := xn − λnAxn − λn(xn − x1), n ≥ 1,

where {λn} is a sequence in (0, 1) satisfying the following conditions:

(1) lim
n→∞

λn = 0

(2)
∑∞

n=1 λn = ∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant
γ2 > 0 such that if λn < γ2, the sequence {xn} converges strongly to a solution of
the equation Ax = 0.

Remark 4.3. Following the method of proof of Theorem 3.1 and using Lemma 2.3
and Lemma 2.4, the condition β(λn) < γ0 is replaced with the condition λn < γ1 in

Theorem 4.1, where γ1 :=
(

r2

4M∗

) 1
p−1

for some constant M∗ > 0 and with λn < γ2

in Theorem 4.2, where γ2 :=
r2

4M∗∗ for some constant M∗∗ > 0.

Remark 4.4. Condition 1 and continuity of β imply that β(λn) → 0 as n → ∞.
Consequently, the condition β(λn) < γ0 is always satisfied for sufficiently large n.

Remark 4.5. 1. As has been remarked in the Introduction, the recursion formula
(3.1) is simpler than that of Theorem CD. We note that the desirable choice λ = 1

n
is applicable in our theorems which is not the case in Theorem CD.
2. Theorem 3.1 is applicable in arbitrary uniformly smooth real Banach spaces. In
particular, it is applicable in Lp spaces for all 1 < p < ∞ which is not the case in
Theorem CD.
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5. Application to convex minimization problems

In this section, we investigate the problem of finding a minimizer of a continuously
differentiable convex function in real Hilbert spaces. In fact, let f : H → (−∞,+∞]
be a proper lower semicontinuous convex function. We have observed that the
equation 0 ∈ ∂f(x) is equivalent to f(x) = min

y∈H
f(y).

Note that if f : H → (−∞,+∞] is differentiable at a point x, then ∂f(x) =
{∇f(x)}, where ∇f(x) is the gradient of f at x.

The following basic results are well known.

Lemma 5.1. Let f : H → R be a real-valued convex differentiable function and
a ∈ H. Then, the following hold.

(1) The point a is a minimizer of f if and only if ∇f(a) = 0.
(2) If f is bounded on bounded subsets of H, then for every x0 ∈ H and r > 0,

there exists γ > 0 such that f is γ-Lipschitzian on B(x0, r), i.e.

|f(x)− f(y)| ≤ γ∥x− y∥ ∀x, y ∈ B(x0, r).

Lemma 5.2. Let f : H → R be a real-valued convex differentiable function and
a ∈ H. Assume that f is bounded on bounded subsets of H. Then, the gradient map
∇f : H → H is bounded on bounded subsets of H.

Proof. Let x0 ∈ H and r > 0. Set B := B(x0, r). We show that ∇f(B) is bounded
in H. From lemma 5.1, there exists γ > 0 such that

(5.1) |f(x)− f(y)| ≤ γ∥x− y∥ ∀x, y ∈ B.

Let z∗ ∈ ∇f(B) and x∗ ∈ B such that z∗ = ∇f(x∗). Since B is open, for all u ∈ H,
there exists t > 0 such that x∗ + tu ∈ B. Using the fact that z∗ = ∇f(x∗) and
inequality (5.1), it follows that

⟨z∗, tu⟩ ≤ f(x∗ + tu)− f(x∗)

≤ tγ∥u∥

so that

⟨z∗, u⟩ ≤ γ∥u∥ ∀u ∈ H.

Therefore ∥z∗∥ ≤ γ. Hence ∇f(B) is bounded. �

We now prove the following theorem.

Theorem 5.3. Let H be real Hilbert space. Assume that f : H → R is a real valued
bounded, convex and continuously differentiable function. Let {xn} be the sequence
generated from arbitrary x1 ∈ H by

xn+1 := xn − λn∇f(xn)− λn(xn − x1), ∀ n ≥ 1,(5.2)

where {λn} is a sequence in (0, 1) satisfying the following conditions:

(1) lim
n→∞

λn = 0

(2)
∑∞

n=1 λn = ∞.
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If f has a minimizer on H, then there exists a real constant γ0 > 0 such that if
λn < γ0, for all n ≥ 1, the sequence {xn} converges strongly to a minimizer of f .

Proof. From [11] and Lemma 5.1, we have that the gradient map ∇f : H → H is an
m-monotone mapping hence satisfies the range condition (see, e.g., Chidume and
Djitte, [1]), and ∇f(a) = 0 if and only if a is a minimizer of f in H. Using the fact
that f is continuously differentiable, bounded and Lemma 5.2, it follows that the
gradient map ∇f : H → H is bounded and satisfies the range condition. Therefore,
the conclusion follows from Theorem 4.2. �
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