2 Pug

' -
Journal of Nonlinear and Convex Analysis § Mdm P"“'Shas
Volume 15, Number 1, 2014, 219-240 G 2 JSSN 1880-5221 ONLINE JOURNAL

g 1989
© Copyright 2014

Yok%

COMPOSITE VISCOSITY APPROXIMATION METHODS FOR
EQUILIBRIUM PROBLEM, VARIATIONAL INEQUALITY AND
COMMON FIXED POINTS

L. C. CENG*, A. PETRUSEL', AND J. C. YAO?

Dedicated to Professor Simeon Reich on the occasion of his 65th birthday

ABSTRACT. In this paper, we present a new composite viscosity approximation
method, and prove the strong convergence of the method to a common fixed
point of a finite number of nonexpansive mappings that also solves a suitable
equilibrium problem and an appropriate variational inequality.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, C' be a
nonempty closed convex subset of H and P be the metric projection from H onto
C. Let T : C — C be a self-mapping on C. We denote by Fix(T") the set of fixed
points of 7" and by R the set of all real numbers. A mapping T : C' — C is called
nonexpansive if

[Tz = Tyll < |z —yl, Vva,yeC.

A mapping A : C — H is called a-inverse strongly monotone, if there exists a
constant o > 0 such that

<A$—Ay,ﬂj‘—y> ZOZHIL‘—yHZ, \V/ZU,yGC.

For a given mapping A : C' — H, we consider the following variational inequality
(VI) of finding x* € C such that

(1.1) (Ax*,x —2*) >0, VxeCl.

The solution set of the VI (1.1) is denoted by VI(C, A). We remark that the varia-
tional inequality was first discussed by Lions [12] and now is well known. In 2003,
for finding an element of Fix(S) N VI(C, A) when C' C H is nonempty, closed and
convex, S : C' — C is nonexpansive and A : C' — H is a-inverse strongly mono-
tone, Takahashi and Toyoda [23] introduced the following Mann’s type iterative
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algorithm:

(1.2) { xo = 2 € C chosen arbitrarily,

Tnt1l = QnTn + (]‘ - an)SPC(xn - )\nA:Un)v Vn > Oa

where {a,} C (0,1) and {A\,} C (0,2a). It was shown in [23] that, if Fix(5) N
VI(C, A) # (), then the sequence {x,} generated by (1.2) converges weakly to some
z € Fix(S) N VI(C, A). Further, given a contractive mapping f : C — C, an
a-inverse-strongly monotone mapping A : ¢ — H and a nonexpansive mapping
T :C — C, Jung [10] introduced the following two-step iterative scheme by the
viscosity approximation method

xg = x € C chosen arbitrarily,
(1.3) Yn = anf(xn) + (1 — an) T Po(zy — AAxy),
Tn+1 = (]— - /Bn)yn + 5nTPC(yn - )\nAyn)’ Vn >0,

where {\,} C (0,2«) and {an}, {Bn} C [0,1). It was proven in [10] that, if Fix(7") N
VI(C, A) # 0, then the sequence {z,} generated by (1.3) converges strongly to
q = Prix(r)nvic,a)f(q)-

On the other hand, if C' is the fixed point set Fix(T) of a nonexpansive mapping
T and S is another nonexpansive mapping (not necessarily with fixed points), the
VI (1.1) becomes the variational inequality of finding «* € Fix(T) such that

(1.4) (I —=8)z*,x—x*) >0, VreFix(T).

This problem, introduced by Mainge and Moudafi [17,18], is called hierarchical fixed
point problem. It is clear that if S has fixed points, then they are solutions of the
VI (1.4).

If S is a p-contraction (i.e., ||[Sz — Sy| < pllz — y|| for some 0 < p < 1) the set
of solutions of the VI (1.4) is a singleton and it is well-known as viscosity problem.
This was last introduced by Moudafi [15] and also developed by Xu [26]. In this
case, it is easy to see that solving the VI (1.4) is equivalent to finding a fixed point
of the nonexpansive mapping Priy(1)S, where Ppiy() is the metric projection on
the closed and convex set Fix(T').

In the literature, the recent research work shows that variational inequalities
like the VI (1.1) cover several topics, for example, monotone inclusions, convex
optimization and quadratic minimization over fixed point sets; see [13,15,24,26] for
more details.

At present, there are generally two main approaches to the variational inequality.
The first, known as a hierarchical fixed point approach, was introduced by Mainge
and Moudafi [17]. This approach, in the implicit frame, generates a double-index
net {xs; : (s,t) € (0,1) x (0,1)} satisfying the fixed point equation

Tsp =tf(xse) + (1 —1)(sSxs + (1 —5)Txsy)
where f is a p-contraction on C'. In [17], the authors gave the following theorem.

Theorem 1.1. The net x5 strongly converges, ast — 0, to x5, where x4 satisfies
Ty = PFiX(SSJr(l,S)T)f(xS). Moreover, the net xg, in turn, weakly converges, as
s — 0, to a solution x of the VI (1.4).



APPROXIMATION METHODS FOR EP, VI AND COMMON FIXED POINTS 221

Here, it is worth pointing out that Mainge and Moudafi [17] stated the problem
of the strong convergence of the net x,; when (¢,s) — (0,0) jointly, to a solution of
the VI (1.4). A negative answer to this question is given in [5].

In [18], Moudafi and Mainge studied the explicit scheme introducing the iterative
algorithm

(1.5) Tnt1 = M f(Tn) + (1 — An)(anSzp + (1 — an)Txy),

where {a,}, {\,} are sequences in (0,1) and proving the strong convergence to a
solution-point of the VI (1.4).

Theorem 1.2. Assume that the following hold
(P0) Fix(T) Nint(C) # 0;

(P1) a, = 0(A\p) and Y, oy = 00;

n n : >\n_>\n7
(P2) limy—e0 Oﬂ,éioﬁnl = limy, 00 m =0y
(P3) there exist two constants 0 and k such that

|z — Tz|| > k - dist(z, Fix(T"))?, Vz € C;

(P4) AT = o(a).
Suppose that {xy,} is bounded. Then {x,} strongly converges to a solution of the VI
(1.4).

A different approach was introduced by Yao, Liou and Marino [28]. That is, their
two-step iterative algorithm generates a sequence {x,} by the explicit scheme

(1 6) { Yn = BnSTn + (1 - ﬁn)-r'ru
’ Tp41 = anf(xn) + (1 - Oén)Tyna Vn > 1.

Theorem 1.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let S and T be two nonexpansive mappings on C into itself. Let f: C — C be
a p-contraction and {ay} and {Bn} two real sequences in (0,1). Assume that the
sequence {x,} generated by scheme (1.6) is bounded and

(i) Yo om = OO;'

(i) Timp o0 2|5 — 52| = 0, limy, o0 |1 — 221 = 0;
2
(iil) limp—oo Bn = 0, lim, o0 %—: =0, lim,_oo % =0;
(iv) Fix(T) Nint(C) # 0;
(v) there exists a constant k > 0 such that ||x — Tz| > k - dist(x, Fix(T)) for
each x € C, where dist(z, Fix(T)) = inf cpix(r) |7 — yl|.

Then the sequence {x,,} strongly converges to & = ng(:i‘) which solves the VI (1.4).
In addition, if C'= Fix(T) and F(x,y) := (({ — S)z,y — x), the VI (1.4) can be

reformulated as the problem of finding «* € C' such that

(1.7) F(z*,y) >0, VyeC,

i.e., as an equilibrium problem. In [2,19], it is shown that formulation (1.7) covers
monotone inclusion problems, saddle point problems, variational inequality prob-
lems, minimization problems, Nash equilibria in noncooperative games, vector equi-
librium problems and certain fixed point problems (see [9]).
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It is worth to remark that, in the case of the VI (1.4), the induced bifunction
F(z,y) :=((I — S)x,y — =) satisfies the following conditions:

(f1) F(x,z) =0 for all z € C;

(f2) F(z,y) + F(y,x) <0 for all (z,y) € C x C (i.e., F' is monotone);

(f3) for each x,y,z € C

limsup F(tz + (1 — t)z,y) < F(x,y);
t—0

i.e., I’ is hemicontinuous in the first variable.

(f4) the function y — F'(z,y) is convex and lower semicontinuous for each x € C.

Recently, many authors have generalized the classical equilibrium problem in-
troduced by Combettes and Hirstoaga [8] by introducing “perturbations” to the
function F; for example, Moudafi [16] studied the equilibrium problem of finding
x* € C such that

F(l'*,y)+<Al'*,y—l'*> 207 VyEC’,
where A is an a-inverse strongly monotone operator. In [4, 20, 21], the authors
studied the mixed problem of finding 2* € C such that

F(x*,y)+ o(y) —(z*) >0, Vyel

with ¢ being an opportune mapping.
In this paper, we study the equilibrium problem (EP) of finding z* € C such that

(1.8) F(x*,y) +h(z*,y) 20, VyeC,

that includes all previous equilibrium problems as special cases.

On the other hand, for a long time, many authors were interested in the con-
struction of iterative algorithms that weakly or strongly converge to a common
fixed point of a family of nonexpansive mappings (see e.g., [1,3,11]). In [25], Xu
proved that the sequence generated by

Tnt1 = (I — €1 A)Tpp12n + €nq1u

where T), = T,modnN, strongly converges to a solution of a quadratic minimization
problem under the assumption

Fix(TyTy - - - Ty) = Fix(TwTy - - - T—1) = Fix(TyTs - - - TY).

In [27], Yao studied the viscosity approximation of a common fixed point of the
family of mappings under the lack of the last hypothesis. In [7], Colao, Marino and
Xu used a different approach to obtain the convergence of a more general scheme
that involves an equilibrium problem.

Very recently, Marino, Muglia and Yao [14] introduced a multi-step iterative
scheme

F(unvy)+h(unay)+i<y_umun_$n> >0, Vyed,
(1.9) Yn1 = Bn,lslun + (1 - /Bn,l)un; .

Yni = /Bn,zszun + (1 - /Bn,i>yn,i—la 1= 27 cee ,N,

Tn4+1 = anf(xn) + (1 - an)Tyn,N7
with f : C — C a p-contraction and {an},{Bni}Y, C (0,1), {r,} C (0,00), that
generalizes the two-step iterative scheme in [28] for two nonexpansive mappings to
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a finite family of nonexpansive mappings 7,S; : C' — C, i = 1,..., N, and proved
that the iterative scheme (1.9) converges strongly to a common fixed point of the
mappings that is also an equilibrium point of the EP (1.8).

Combining the two-step iterative scheme in [10] and the multi-step iterative
scheme in [14] by virtue of the viscosity approximation method and the Mann iter-
ative method, we introduce and consider a composite viscosity iterative scheme for
finding a common element of the solution set VI(C, A) of the variational inequality
(1.1), the solution set EP(F,h) of the equilibrium problem (1.8) and the common
fixed point set of a finite family of nonexpansive mappings 7,S; : C — C, i =
1,..., N, in the setting of infinite-dimensional Hilbert space.

In this paper, we study the composite viscosity iterative scheme that generalizes
the two-step iterative scheme in [28] for two nonexpansive mappings, the two-step
iterative scheme in [10] for the VI (1.1) and a nonexpansive mapping, and the
multi-step iterative scheme in [14] for a finite family of nonexpansive mappings,
to the VI (1.1) and a finite family of nonexpansive mappings. It is proved that
this iterative scheme converges strongly to a common fixed point of the mappings
7,5 :C — C,i=1,...,N, that is also an equilibrium point of the EP (1.8) and
a solution of the VI (1.1).

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denoted by (-, -)
and || - ||, respectively. Let K be a nonempty closed convex subset of H. We write
x, — x to indicate that the sequence {z,} converges weakly to = and z,, — z to
indicate that the sequence {z,} converges strongly to z. Moreover, we use wy,(Zy,)
to denote the weak w-limit set of the sequence {z,} and ws(z,) to denote the strong
w-limit set of the sequence {z,}, i.e.,

wy(xy) :={z € H : z,, — x for some subsequence {x,,} of {z,}}
and
ws(zp) :={z € H : z,;, — x for some subsequence {x,,} of {z,}}.

Recall that the metric (or nearest point) projection from H onto K is the mapping
Px : H — K which assigns to each point x € H the unique point Pxx € K
satisfying the property

— Pzl = inf ||z — y|| = d(z, K).
|z — Preall = inf flo —yl = d(z, K)

Some important properties of projections are gathered in the following proposi-
tion.

Proposition 2.1. For given x € H and z € K :
(i) z=Pgzr & (r—2,y—2) <0, Vye K;
(i) 2 = Pga & |lo— 2| < |lz =yl —|ly — 2|, ¥y € K;
(iii) (Pxx — Pgy,r —y) > ||Pxz — Pryl||?, Yy € H, which hence implies that
Px is nonexpansive and monotone.

The following lemma appears implicitly in the paper of Reineermann [22].



224 L. C. CENG, A. PETRUSEL, AND J. C. YAO

Lemma 2.2 ([22]). Let H be a real Hilbert space. Then, for all x,y € H and
A€ fo,1],

1Az + (1= Nyl* = Al + (1 = Myl = A1 = Nz = y]*.
In the sequel, we will indicate with EP(F, h) the set of solutions of (1.8).

Lemma 2.3 ([6]). Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let F: C x C — R be a bi-function such that

(f1) F(z,xz) =0 for allx € C;
(f2) F' is monotone and upper hemicontinuous in the first variable;
(f3) F is lower semicontinuous and conver in the second variable.
Let h : C x C — R be a bi-function such that
(hl) h(x,z) =0 for all z € C;
(h2) h is monotone and weakly upper semicontinuous in the first variable;
(h3) h is convex in the second variable.

Moreover, let us suppose that
(H) for fized r > 0 and x € C, there exists a bounded K C C and & € K such
that for all z € C\ K, —F(2,2) + h(z,&) + 2(& — 2,2 — z) < 0.

Forr >0 andz € H, let T, : H — 2° be a mapping defined by
1
(2.1) Trx={2€C:F(z,y) +h(z,y) + ;<y —z,z—1z)>0,Yy € C}

called the resolvent of F' and h. Then
(1) Trw # 0;
(2) T,z is a singleton;
(3) T, is firmly nonexpansive;
(4) EP(F,h) = Fix(T},) and it is closed and convez.

Lemma 2.4 ([6]). Let us suppose that (f1)-(f3), (h1)-(h3) and (H) hold. Let x,y €
H, ri,79>0. Then

T2 —"
1Ty = Triall < lly = all + | ==

T3~ .
2

Lemma 2.5 ([14]). Suppose that the hypotheses of Lemma 2.3 are satisfied. Let
{rn} be a sequence in (0, 00) with liminf,_,o r, > 0. Suppose that {z,} is a bounded
sequence. Then the following statements are equivalent and true:

(a) if ||z — Ty, || = 0 as n — oo, the weak cluster points of {x,} satisfies the
problem
F(z,y) + h(z,y) >0, VyeC,
i.e., wy(xy) CEP(F,R).
(b) the demiclosedness principle holds in the sense that, if x, — x* and ||z, —
T, Tn|| = 0 as n — oo, then (I — Ty, )z* =0 for all k > 1.

Lemma 2.6 ([24]). Assume that {a,} is a sequence of nonnegative numbers such
that
ant1 < (1 —yn)an + 6n, Vn >0,

where {y,} is a sequence in (0,1) and {d,} is a sequence in R such that
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. [e'e) 3
(1) > neoYn = 00;
(ii) either imsup,, . 6n/vn < 0 or > o7 [0,] < c0.

Then lim,,_,s a, = 0.
The following result is an immediate consequence of inner product.
Lemma 2.7. In a real Hilbert space H, there holds the following inequality
Iz +yl* < ll«]* + 2{y, & +y), Va,ye H.

3. MAIN RESULTS

Let us consider the following composite viscosity iterative scheme

F(unay)+h(umy)+%<y_un7un_xn> >0, Vyed,
Yn1 = Bn,lslun + (1 - /Bn,l)una
(3.1) Ynyi = Bn,iSitn + (1- /Bn,i)yn,z‘—ly 1=2,...,N,
Yn = anf(Yn,N) + (1 = an)TPo(yn,N — MAynN),
Tpy1 = (1= Bn)yn + BT Po(yn — MAyn), Vn >1,

where
the mapping f : C — C is a p-contraction;
A: C — H is an a-inverse-strongly monotone mapping;
S;, T : C — C are nonexpansive mappings for each i = 1,..., N;
F,h:C x C — R are two bi-functions satisfying the hypotheses of Lemma 2.3;
{An} is a sequence in (0,2a) with 0 < liminf,, o Ay < limsup,,_, o A < 2¢;
{an},{Bn} are sequences in (0, 1) with 0 < liminf, o 8, < limsup,,_, . Bn < 1;
{Bn,i} is a sequence in (0,1) for each i = 1,..., N;
{rn} is a sequence in (0, 00) with lim 1nfn_>oo rp > 0.

Lemma 3.1. Let us suppose that 2 = Fix(T)N(N;Fix(S;)) NEP(F, h)NVI(C, A) #
(0. Then the sequences {xpn}, {yn},{yni} for all i, {u,} are bounded.

Proof. Let us observe, first of all that, if p € 2, then
[yn1 = pll < llun —pll < [lan —pl|.
For all from ¢ = 2 to ¢ = N, by induction, one proves that
1yni = Il < Bulllun —pll + (1 = Bui)lyn,i—1 = pll < un = pll < [lzn — |-
Thus we obtain that for every ¢ = 1,..., N,
(3-2) [Yni = pll < llun = pll < [lzn = pll-

Let z, = Po(yn,N — MAyn,N) and wy, = Po(yn, — A\Ayy) for every n > 1. Since
I — X\, A is nonexpansive and p = Po(p — A\ Ap) (due to (2.2)), we have

PC(yn,N - AnAyn,N) - PC(p - )‘nAp)H
(yn,N - )\nAyn,N) - (p - AnAp)H
Yn,N = Pl < llun = pll < [lzn = p-

lzn —pl =1l
<
<
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Moreover,

lyn —pll = llan(f(Ynn) —p) + (1 — an) (T2, — p)|
< anllf(Ynn) —pll + (1 = an)llzn — pll
< anllf (Yn,n) = F@ + anll f(p) —pll + (1 — an) |z, — pll
< anpllyn,n — pll + anll f(p) — pll + (1 — an)|lzn — pl|
< anpllzn —pll + anllf(p) — pll + (1 — an)llzn — pl|
=(1—1=p)an)|zn —pl + ol f(p) — |
= (1= (1= pan)|lan — pll + (1 — p)ay, 1122
< max{”xn — |, ||f(P) P|| }’

and hence

|Zns1 — pll |(1 = Bn)(yn — p) + Ba(Twn — )|
L= Bu)llyn — pll + Bullwn — p||
1

— Bo)llyn — ol + ﬁnllyn —pll
aX{HCUn — |, Hf PII}_

—~~

INININA I

=

By induction, we get
o = ol < max {Jlao -, LEZEY, o1,

This implies that {z,} is bounded and so are {Ay, n}, {Ayn}, {20}, {wn}, {un},
{yn}, {yn,i} for each i = 1,..., N. Since ||Tz, — p| < ||z, — p| and ||Tw, — p|| <
llyn — pl|, {T2z,} and {Tw,} are also bounded. O

Lemma 3.2. Let us suppose that 2 # (). Moreover, let us suppose that the following
hold:

limy, 00, = 0 and Y 00 | g = 00;

lon—am—1| __ =0:
)

H2) >0 |an — ap—1] < 00 or limy, e .

(H1)
(H2)
(H3) 3021 1By — Ba-1,4] < 00 or limy, 00 il _ =0 for eachi=1,...,N;
(H4)
(H5)

| Ol‘n
Tn—Tn—1 .
on - 07

H5) >0 |Bn — Bn-1] < 0o or lim, mn;ﬁ =0;

n

(H6) fo:l |An — An—1] < 00 or limy, 00 Pn—Ana] 0.

Qn

H4) 3207 |rn — 1] < 00 or limy, oo

Then limy, o0 [|[Tnt1 — x| =0, i.e., {zn} is asymptotically regular.

Proof. From (3.1), we have

Yn = O‘nf(yn,N) + (1 - O‘n)TZTLa
Yn—1 = 1 f(Yn—1,8) + (1 — an_1)T2p—1, YVn > 1.

Simple calculations show that

Yn — Yn—-1 = (1 — an)(TZn - Tzn—l) + (an - an—l)(f(yn—l,N) - Tzn—l)
+ an(f(yn, ) = [ (Yn—1,3))-
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Since
”Zn - Zn—lH S H(yn,N - )\nAyn,N) - (yn—l,N - )\n—lAyn—l,N)H
< H(yn,N - )\nAyn,N) - (yn—l,N - )\nAyn—l,N)H
+|An—1 - )\nmAyn—l,NH
< Hyn,N - yn—LNH + [An-1 — )‘n‘HAyn—l,NH,
we have
(3.3)

[yn —ynall < (1 —an)llzn = znall + lan — analllf (Yn-1,8) = Tznl|
+anplyn, N — Yn-1.N||
< (1= an)(|ynN = Yn-1.nl + A1 = Al Ayn—1.n])
+an — an—lmf(yn—l,N) —Tzpal + O‘anyn,N - yn—l,NH
< (1 - (1 - p)an)Hyn,N - yn—l,NH + M1(|)\n71 - )\n| + |an - Oénfll),
where ||Ayn N|| + ||f (Yn,N) — Tzn|| < My,Vn > 1 for some M; > 0.
Furthermore, from (3.1) we have

Tn+1 = (1 - ,Bn)yn + BT wy,,
Tn = (1 - 571—1):1/71—1 + /Bn—lTwn—l-
Also, simple calculations show that
Tog1 — T = (1= Bn) Wn — Yn—1) + Bn(Twy, — Twp—1) + (Bn — Brn—1)(TWn—-1 — Yn—1)-

Since

S H(yn - /\nAyn) - (yn—l - An—lAyn—l)H
< H(yn - /\nAyn) - (yn—l - AnAyn—l)” + ’)‘n—l - )‘n’HAyn—lH
< Hyn - yn—IH + | An—1 — )\nH‘Ayn—luv

[wn — wp—1]|

it follows that
(3.4)
lzna1 —2nll < (1= Ba)llyn — yn—1ll + Bullwn — wn1|
+|5n - 6n71|||Twn71 - yanH
< (1 - /Bn)Hyn - yn71|| + ﬁn(”yn - ynfln
H A1 = Al Ayn—1ll) + 1Bn — Ba—tl[|[Twn—1 — yn1]|
< ||yn - ynfln + ’)\nfl - >\n|||Ayn71|| + ‘Bn - ﬁnflmTwnfl - yanH-

This together with (3.3) implies that

[Zn41 — zall < (1= (1 = p)an)|yn,n — yn-1.n ] + Mi(|An—1 — A
+|04n - Oén71|) + ‘)\nfl - )\n|||Ayn71H
+|ﬁn - anlmTwnfl - yn71||
< (1= =p)an)llyny = Yn-1.n| + Ma(|An—1 — An| + |, — 1)
+M2(|)\n71 - )\n| + |5n - Bn71|>
= (1= (1= plan)lynn = yn-1.n[ + M2(2[An—1 — A
+|an - an—l’ + |Bn - /Bn—l‘)-

where || Ay, || + [|Twn — yn|| + M1 < Ma,¥n > 1 for some My > 0.
Meantime, by the definition of y, ; one obtains that, for all t = N,...,2

NUni — Un—1ll < Bnillun — un—1| + ||Sitn—1 — Yn—1,i—1|[|Bn,i — Bn—1,l

3.5
(8:5) 0= Bl — g il
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In the case ¢ = 1, we have

Y1 = Yn—11ll < Brallun — un—1ll + |S1un—1 — wn—1|l[Bn1 — Br-11
(3.6) +(1 = Bl tun — un—1]|
= Jun — Un—1l| + S18n-1 — wn—1|||Bn.1 — Bn-1.1l-
Substituting (3.7) in all (3.6)-type one obtains for : =2,..., N
(3.7) |
lyni — Yn—1,ill < llun — un—1ll + D ko 1Sktn—1 — Yn—1k—11|Bnk — Brn-1.kl
+HS1U7L—1 - un—lu ’/Bn,l - Bn—l,l

This together with (3.5) implies that

[Zn+1 —znll < (1= (1= p)an)[llun — un—1]|
5 1Sktn—1 = Yn-1.h-111Bnk — Bu1.k]
+[[S1Uun—1 — Un—1|||Bn1 — Bn-1,11]
+M2(2|)\n71 - An‘ + |an - O‘n71| + |ﬁn — anID

< (1= (1= pan)llun — up—1]|

3 1SkUn—1 = Yn—1 k1|l Bk — Bn_14l
+[[S1un—1 — un—1|||Bn1 — Brn-11]
+M2(2|)‘n—1 - /\n‘ + ’an - an—1| + |Bn - ﬂn—lD'

By Lemma 2.4, we know that

(3.8)

Ty —
(3.9) ltn — tn—1]| < |0 — 21| + L1 — 271

n
where L = sup,,~; ||un, — 2||. So, substituting (3.9) in (3.8) we obtain
(3.10) -

[#n41 =zl < (1= (1= p)an)([|n — zp-1]l + L|1 = =2])
3 1Sk un—1 = Yn—1.k-111Bnk — Br-14]
+IS1Un—1 — Un—1||Bn — Bn-1,1
+M2(2|)\n71 - )\n| + ’an - an71| + |ﬁn - ﬁn71|)

< (1= (1= p)an) |z — wpa]| + L=
o 1Skun—1 = Yn—-1.k-111Bnk — Br-14]
+H51un—l - un—l” |,8n,1 - ﬁn—l,l
+M2(2|)\n—1 - An‘ + ’an - an—1| + |Bn - ﬁn—lD
< (1= (1= p)an) ||z — wp1]| + M|l
+ ZQIZQ ‘/Bn,k - /Bn—l,k|
+|ﬁn,1 - ﬂn—l,l‘ + ’)\n—l - )\n| + |an - O‘n—l‘ + ’/Bn - Bn—lH
< (1= (1 = p)an) ||z — wp1]| + M| ==t
N 1Bk = Baeik] + A1 — Al
+|an - O‘n71| + ‘/Bn - ﬁnflua

where b > 0 is a minorant for {r,} and L+ 2My 4+ S0, |Sktin — Yn k1]l + | S1tn —
un|| < M,¥n > 1 for some M > 0. By hypotheses (H1)-(H6) and Lemma 2.6, we
obtain the claim. d

Lemma 3.3. Let us suppose that 2 # (). Let us suppose that {z,} is asymptotically
reqular. Then ||zn, — yn|| — 0 and ||z, — up|| = ||xn — T, 20|l = 0 as n — oco.
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Proof. We recall that, by the firm nonexpansivity of 7, , a standard calculation
(see [7]) shows that if p € EP(F, h)

lun = pl* < 2w = plI* = llan — unll*.

Let g € 2. Then by Lemma 2.2, we have from (3.2)

lyn —all* = llan(f(Ynn) — q)2+ (1—an)(Tzn — q)llj
< anlf(Ynn) —ql* + (1 — an)||Tzn — 4|
< anlfynn) —al* + |20 — gl
<

)
(Yn,N)
ol f (yn,n) = al* + [[ynn — all? + An(An — 20)|| Ayn, v — Ag||?
< anllf(ynn) = all* + llun — ql” + An(An — 20) || Ayn, v — Ag|)?
< anllf(nn) = all? + ll2n — ql|* = [0 — un|?

+An<)\n - 2a)HAyn,N - AQHQu

and hence
(3.11)
[#nt1 = all* =11 = Bn)(Yn — @) + Ba(Twn — g)|?

(1= Bn)llyn — q||2 + Bul|Twy, — qH2 — Bn(1 = Bn)llyn — Twn||2

(1= Bn)llyn — Q||2 + Bullwn — ‘JH2 = Bn(1 = Bn)llyn — TwnH2

(1= Bu)llyn — all” + Bulllyn — 4l + MM = 20) | Ay, — Ag])?]
*ﬁn(l - Bn)”yn - Twn||2

= [|yn — Q||2 + BuAn(An — 20) || Ay, — Aq“2 — Bn(1 = Bu)llyn — Twn”2
< |l f(Yn,N) =l + 20 — al* = |20 — ual?

+An(An — 2a)||Ayn,N - AQHZ + BnAn(An — 20) | Ay, — AqH2

—Bn(1 = Bn)llyn — Twn”2~

So, we deduce that

zn — unH2 + A (200 — )‘n)HAyn,N - AQH2 + BnAn (200 = An) || Ayn — Aq||2
+/8n(1 - ﬁn)”yn - Twn”2

< an||f(Yn,N) = 4l + 20 = glI* = |01 — q?

= anllf(yn,N) = al* + (|20 — gl| + |2nr1 = gl (|20 — gll = [[2n+1 — gl])
< anll f(yn,n) = al? + (lzn = gll + lznr1 = glDllzn — zpia .

INIA

By Lemmas 3.1 and 3.2 we know that both {z,} and {y, v} are bounded, and that
{z,} is asymptotically regular. Therefore, utilizing (H1) we obtain that
(3.12)

lim ||z, — up|| = lim ||Ay, n — Ag|| = lim ||Ay, — Aq¢|| = lim ||y, — Tw,| =0.
n—o0 n—o0 n—o0 n—00

We note that ||zp+1 — ynl| = Bul|Twn — yn|| — 0 as n — oo. This together with
|Znt1 — zn|| — 0, implies that

Jim [|z, —yn [ = 0.
O

Remark 3.4. By the last lemma we have wy,(x,) = wy(uy,) and ws(zy,) = ws(un),
i.e., the sets of strong/weak cluster points of {z,} and {u,} coincide.
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Of course, if 8,; — Bn # 0, as n — oo, for all index 7, the assumptions of Lemma
3.2 are enough to assure that

- Mwng1 — x| .
lim —————— = 1,...,N}L
A 0, Vie{l,...,N}
In the next lemma, we examine the case in which at least one sequence {3, .}

is a null sequence.

Lemma 3.5. Let us suppose that 2 # (). Let us suppose that (H1) holds. Moreover,
for an index ko € {1,..., N}, limy o0 Bn b, = 0 and the following hold:

(H7) for all i,

. |ﬁn,l - anl,i| . ’an - Oén—l‘ . |/Bn - ﬂn—l’
lim ————— = lim ——— = lim ————
n—0o0 anﬁn,ko n—0o0 anﬁn,ko n—00 anﬁn,ko
Tn — Tn— An — An—
zlim7|n n1|:lim7|n n1|:0;
n—o0o anﬁn,ko n—o0 anﬁn,ko
(H8) there exists a constant x > 0 such that | z2— — —L—| < & for alln > 1.
Qn 6n,k0 anl,ko
Then
Tpt1 — T
lim 1ot =Tl _
n—oo 'n,,ko

Proof. We start by (3.10). Dividing both the terms by 3, , we have

lzns1—zn . N llzn—zn_al Irn—rn—1] | Sneq Brk—Bn—1.kl
el < [1—a(1 - p)| eigectll gy [Irgpracal 4 2k [
|>\n_>\n71| |an_an71‘ |5n_18n71‘
+ Bn,ko + Bn,ko + Bn,ko :| '

So, by (H8) we have
ln i1 —2n| <1 = an(l —p)] a1 +[1 = an(l = p)]||lzn — mn—l”‘ﬁnl,ko N /Bn—ll,k() ’

n,kq ﬁn]\;l,ko
_lTnfrn—1| Zk:l |6n,k_6n—1,k‘ |)\n*)\n—1| ‘Olnfan—ll ‘ﬁn*ﬁn—lr
+M L bﬁn,ko + Bn,ko + ﬁn,ko + ﬁn,ko + ﬁn,ko ]
n—4n— 1 1
S [1 - an(]' - p)] Hxﬁn]\?‘lljﬁkolll + ||:I:n - xni]‘”‘ﬁn,ko o Bn—l,ko |
—lTn*Tn71| Zk:l |Bn,k’_ﬁn—1,k‘ |)\n*)\n71| ‘an*an71| ‘6n*5n71|_
+M| T Brho T ke T Boke T Bong |
<1 an(1 = ) 5=t 4 aify — 2|
(rn—rn 1] | Sh i 1Bngk—Ba1kl | Pn=An1] | lon—an_1] | 1Bn—Bn_1]]
M| T B kg T 0 v Bk T Bume
= [1—an(1 = o)t 4 (1= ) - 5 { Bl —
N ns—Barl . Pndnal s len—cn il | 18aBail
‘Tn_Tnfll Zkzl n,k— Pn—1, n—An—1 n—0n—1 n—Pn—1
+M [ bonBrrg anBrre T anBarg T @nBurg | anPang ”

Therefore, utilizing Lemma 2.6, from (H1), (H7) and the asymptotical regularity of
{zn} (due to Lemma 3.2), we deduce that

i Mntt = 2all _ o

n—oo 671,]{0
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Lemma 3.6. Let us suppose that 2 # (). Let us suppose that 0 < liminf,_,o B <
limsup,, o Bni < 1 for each i =1,...,N. Moreover, suppose that (H1)-(H6) are
satisfied. Then, for all i, ||Siun — un|| = 0 as n — oco.

Proof. First of all, by Lemma 3.2 we know that {z,} is asymptotically regular. Let
us show that for each i € {1,..., N} one has ||Siju, — yni—1| — 0 as n — oco. Let
p € 2. When ¢ = N, by Lemma 2.2 we have

lyn —plI* < anllf(yn,n) = plI* + (1 — )| Tz — p||?
< ol f (yn,n) = I + 120 — D2
< anllf(Yn,n) = PI* + lyn,n = 2lI? 4+ An(An = 20)[[yn,n — pl|?
< anllf(yn,n) =PI + llyn,n — D2
= an |l f (Yn,N) =PI + BuN[[Snun — pII> + (1 = Bon) |yn,n—1 — p?
_Bn,N(l - ﬁn,N)HSNUn - yn,N—IHZ
< anllf(yn,n) = PI* + lun = plI* = Ban (1 = BuN)ISNUn — Ynn—1]]?
< anllf(yn,n) = PI? + 120 = PlI* = Ban (1 = BuN)ISNUn — Yn,v—1]].

So we have

BN (L = Bu,N) 1SNt = ynn—1]* < anllf (yn,n) —pllz + [|lzn = pl1? = llyn — plI?
= anl|f(yn,N) — Pl
+(|lzn = 2l + lyn — 2IDl|Z0 — Ynl|-

Since ay, — 0, 0 < liminfy, o0 Bp v < limsup,, o Bn,nv < 1 and limy, o0 [|2r — ya|
=0 (due to Lemma 3.3), it is known that {|[Sxu, — yn,nv—1]|} is a null sequence.
Let i € {1,...,N — 1}. Then one has

lyn —pII* < anllf(ynn) = plI* + llyn.n — pl?
< anll f(ynn) = I + Bu N IISNun — 2l + (1 = Bu,n)lyn,n—1 — plI?
< anll f(ynn) =PI + Bunllzn — pl* 4+ (1 = Ban) lynn—1 — Pl
< anllf (n,N) = PI? + Bunll@n — pl?
+(1 = Bo) Bun-1ISN—1un — || + (1 = Ban—1)[Ynn—2 — ||?]
< anllfWnn) = 2I? + (Ban + (1 = Bun)Bun—1)|lzn — p||?
+ TN (1 = Bage) [ynn—2 — DI,

and so, after (N — i+ 1)-iterations,
(3.13)
o —pl12 < tnll F ) — Bl2 + By + 5o (T (1 = BB — 2
+ T2 (1 = ) s —
< an”f(yn,N) -p ’2 + (Bn,N + z;y:i+2(nl]\;j(1 - ﬂn,l))ﬁn,jfl)
Xlzn = pI* + TTkzis1 (L = Bak) X [Bnill Sitin — plI”
+(1 = Bui)lyni-1 — pII> = Bri(1 = Bnd)l|Sitin — Yn,i-1]l?]
< anll f(yn,n) =PI + 20 = plI* = B TIRZi(1 = B | Siven = g1

Again we obtain that

B TTeei (1 = Bue) 1Sitn = ynic1 > < anllf (yn,) —p\lz +llon = plI? = llyn — pII?
< an|[f(yn,n) =PI
+(llzn =l + llyn — P lI2n = ynll-
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Since o, — 0, 0 < liminf,, o By < limsup,_,., Bni < 1lforeachi=1,...,N —1,
and lim,, o || — ynl| = 0 (due to Lemma 3.3), it is known that

lim HSZun - ym_lH =0.
n—00

Obviously for i = 1, we have [|Siu, — u,|| — 0.
To conclude, we have that
[1S2un — un|| < [|S2un — Yn,1ll + Yn,1 — unll = [1S2un — Yn1ll + Bl S1un — un ||
from which || Soup —uy| — 0. Thus by induction ||Sjun,—uy| — 0foralli =2,..., N
since it is enough to observe that
HSzun - Un” S Hszun - yn,i—IH + Hyn,i—l - Si—lunH + HS'—lun - un”
< 1Sitn = yni—1ll + (1 = Bri—1) [ Si—1un — yni—2ll + [[Sicrun — unl|-
[l

Remark 3.7. As an example, we consider N = 2 and the sequences:
(a) /\n:a—%, Vn>é;
(b)an:ﬁ, rn:Q—%, Vn > 1;

(C) ﬁn:ﬁn,IZ%*%v ﬁn,ZZ%*#, Vn > 2.
Then they satisfy the hypotheses of Lemma 3.6.
Lemma 3.8. Let us suppose that 2 # (0 and B,,; — B for alli as n — oco. Suppose

there exists k € {1,...,N} such that B, — 0 asn — co. Let kg € {1,...,N} the
largest index such that By, , — 0 as n — oo. Suppose that

(1) 537’;0 — 0 as n — oo;

(ii) ifi < ko and Bp; — O then %l—kf — 0 asn — oo;

(ifi) if Bus — Bi # 0 then B; lies in (0,1).
Moreover, suppose that (H1), (H7) and (H8) hold. Then, for alli, ||Siun, —uy| — 0
as n — oo.

Proof. First of all we note that if (H7) holds than also (H2)-(H6) are satisfied. So
{z,} is asymptotically regular.

Let ko be as in the hypotheses. As in Lemma 3.6, for every index i € {1,..., N}
such that 3, ; — f; # 0 (which leads to 0 < liminf,, o B < limsup,,_,, fni < 1),
one has ||Siun — Yni—1]| = 0 as n — oo.

For all the other indexes i < kg, we can prove that ||Siju, —yn,i—1]] = 0 as n — oo
in a similar manner. By the relation (due to (3.11) and (3.13))

lznr1 = pl* < llyn — 2l
N
< anll £ () = PIP + ll2n = P> = Bui [ [(1 = Bt 1Sitin = g |1,
k=i
we immediately obtain that
N

« Tn — Tn+l
T Bus1Sstin—tm i1 12 < 21 £ ) 1P+ (rn—pl 1 —pl) 122 = o1l
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By Lemma 3.5 or by hypothesis (ii) on the sequences, we have

[#n — Zni1| _ [z — Zna]] ) Brko 0

Bni B ko Bn.i '

So, the conclusion follows. O

Remark 3.9. Let us consider N = 3 and the following sequences:

(a) an:nll/Q, m=2—2%  VYn>1;
(b)/\n:a—i Vn>a11/2;

n2»

1 1 1
(C) ﬁn,l = #a /Bn = /Bn,Q =35 T 52 Bn,3 = /3> Vn > 1.
S

n
It is easy to see that all hypotheses (i)-(iii), (H1), (H7) and (H8) of Lemma 3.8 are
satisfied.

Remark 3.10. Under the hypotheses of Lemma 3.8, similarly to Lemma 3.6, one
can see that

lim HSiun—ym_lH =0, Vie {2,...,N}.

n—oo
Corollary 3.11. Let us suppose that the hypotheses of either Lemma 3.6 or Lemma
3.8 are satisfied. Then Ww(xn) = ww(un) = Ww(yn)a Ws(xn) = ws(un) = ws(yn,l)
and wy(,) C £2.

Proof. By Remark 3.4, we have wy, () = wy(uy) and ws(z,) = ws(uy).
First of all, let us show that

lim [Jya,x — zall = 0.
— 00

Indeed, let ¢ € 2. Then by the firm nonexpansivity of Pg, we get

= PC(yn,N - /\nAyn,N) - Pc(q - )‘nAQ)HQ

< (Yn,N — MAynN — (¢ — MAQ), 20 — q)

= Hl(nn — MAynn) — (@ = XA + |20 — q?
[(n, v = MAynn) = (¢ — AAg) — (20 — @)|I*}
s{Ulynn = all® + 20 — all* = llyn,n — 2nl?
2)‘n<yn,N — Zn, Ayn,N - AQ> - )‘%HA?/TL,N - AQ||2}7

20 — qll?

and so
(3.14)

120 —al1* < [Yn, v —alI* = [[yn,n — 20| > +2X0 (Yn, N — 200, Ay, N —AG) — A2 || Ayn, v — Ag]|>.
Thus, we have

lyn —al> < anllf(ynn) — qll* + (1 — )| 20 — gl
< anllf(yn,n) — qll* + |20 — ql?
< anl fynn) = all? + lynn — all* = llyn,N — 2l
+2X (Yn,N — 2n, Ayn, N — Aq) — )\%HAymN — Aq||2.
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This implies that
(3.15)
YN = 2l < @l f(yn,N) = all® + lyn.n —all* = [lyn — ql?
+2)\n<yn,N — Zn, AymN - AQ> - A%L||f4yn,N - AQH2
< anllfnn) = all? + ([ynn — all + lvn — aD1Ynn — yall
+2>‘ﬂ<yn,N — Zn, Ayn,N - AQ> - A%LHAyn,N - AQH2'

Note that by Remark 3.10,
lim HSNUTL - yn,N—l” =0.
n—oo
Meantime, it is known that
lim ||Syun — up| = lim ||uy, — 2| = lim ||z, — yn|| = 0.
n—00 n—00 n—00
Hence we have
(3.16) lim ||Syun — yn|| = 0.
n—o0
Furthermore, it follows from (3.1) that
lim ||yn, N — Ynn-1ll = lim By N[ SNtun — ynn-1]| =0,
n—oo n—oo

which together with lim,, o || SNun — yn,n—1] = 0, yields

Combining (3.16) and (3.17), we conclude that
(318) T flgn — gl = 0.
Therefore, from (3.12), (3.15) and (3.18) it immediately follows that
(3.19) lim ||y, n — 2n] = 0.
n— o0

Now we observe that
|27 — yn,IH < lzn — unl + ||yn,1 — Ul = [|Tn — unl| + Bn,l”slun — Uy
By Lemma 3.6, ||S1u, — up|| — 0 as n — oo, and hence

(3.20) nlggo |zn — yn,1|| = 0.

So we get wy (zy) = wy(Yn,1) and ws(,) = ws(Yn,1)-
Let p € wy(zy). Since p € wy(uy), by Lemma 3.6 and demiclosedness principle,
we have p € Fix(95;) for all index i, i.e., p € N;Fix(S;). Since
0 = Toall < 20 = gnll + ln — T2l + T2 — Tyl + Ty — T
< lzn = ynll + anll £ (yn,n) = Tznll + 20 = YN || + [[Yn, v — 20|
< len = ynll + nll f(yn,n) = Tznll + 120 — ynn |l
+ 5700 lynk = g1l s — 2
< lzn = ynll + anllf(Yn,n) — Tzl + 20 — ynN|
+ i Bkl Sk = Y1l + lyna — .
So, utilizing Lemma 3.3 and Remark 3.10 we deduce from (3.19) and (3.20) that

lim ||, — Tz,| = 0.
n— oo
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By deniclosedness principle, we have p € Fix(7T'). In addition, by Lemmas 2.5 and
3.3 we know that p € EP(F,h). Finally, by standard argument as in [21], we can
show that p € VI(C, A) and consequently, p € 2. a

Theorem 3.12. Let us suppose that 2 # 0. Let {an},{Bni}, ¢ = 1,...,N, be
sequences in (0,1) such that 0 < iminf, o By < limsup,, . Bni < 1 for all index
i. Moreover, Let us suppose that (H1)-(HG6) hold. Then the sequences {xn},{yn}
and {uy}, explicitly defined by scheme (3.1), all converge strongly to the unique

solution x* € §2 of the variational inequality
(3.21) (f(z*)—x",z—2a") <0, Vzen.

Proof. Since the mapping P f is a p-contraction, it has a unique fixed point x*;
it is the unique solution of (3.21). Since (H1)-(H6) hold, the sequence {z,} is
asymptotically regular (according to Lemma 3.2). By Lemma 3.3, ||z, —yy,| — 0 and
|xn — un|| = 0 as n — oco. Moreover, utilizing Lemma 2.7 and the nonexpansivity
of (I — A\, A), we have from (3.2) and (3.11)

[ e N
< lan(f(yn,n) = F(@*) + (1 — ) (T2 — 2*)|1?
+200 (f(2*) — 2%, yp — 27)
< anpllyn, v —2*|* + (1 — ap)llzn — ¥
+200 (f(2*) — 2%, yp — 27)
= anp||yn,N — ﬂ5*”2
+(1 — a)||Pc(d — MpA)yn, N — Po(I — A A)x™||
+200 (f (%) — 2", yn — z7)
< anpllyn,n — 2> + (1 = an)|[yn,n — =7
+200 (f(2*) — 2%, yp — 27)
1= (1 = p)an]llyn,n — 2> + 205, (f(2*) — 2*, yp — z*)
[1— (1= pan]llzn — 2*|* + 200 (f (2*) — 2%, yn — *)
[1— (1= p)ag]|lzy —=*|?
+(1 - p)an : 1%,,(.]0(*73*) — 2", Yn — x*>

Now, let {zp, } is a subsequence of {z,} such that

A

(3.22) limsup(f(z*) — 2, x, — ™) = lim (f(z*) — 2%, zp, — 7).
n—o0 k—o00

By the boundedness of {z,}, we may assume, without loss of generality, that x,, —
z € wy(ryn). According to Corollary 3.11, we know that wy(z,) C {2 and hence
z € {2. Taking into consideration that 2* = Py, f(z*) we obtain from (3.22) that

limsup,, o (f(z*) — 2%, yn — z*)

= limsup,,_,,[(f (") — 2", 2 — 2) + (f(2") — 2", yn — @n)]

= limsup,, . (f(2*) — 2%, 2, — 2%) = limp_oo (f(z*) — 2%, 2y, — %)
= () “ a2~ 2%) <0

In terms of Lemma 2.6 we derive z,, — z* as n — oo. O

In a similar way, we can conclude another theorem as follows.

Theorem 3.13. Let us suppose that 2 # 0. Let {an},{Bni}, i = 1,...,N, be
sequences in (0,1) such that B ; — Bi for alli as n — oco. Suppose that there exists
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ke{l,...,N} for which B, — 0 asn — oco. Let kg € {1,..., N} the largest index
for which By, — 0. Moreover, let us suppose that (H1), (H7) and (HS) hold and

(i) 753,7;0 — 0 asn — oo;

(ii) ifi < ko and Bp; — 0 then 'Bgfi‘) — 0 asn — 00;

(ifi) if Bns — Bi # 0 then B; lies in (0,1).
Then the sequences {xy},{yn} and {u,} explicitly defined by scheme (3.1) all con-
verge strongly to the unique solution x* € (2 of the variational inequality

(f(z*) —a*,z—2%) <0, Vze .

Remark 3.14. According to the above argument processes for Theorems 3.12 and
3.13, we can readily see that if in scheme (3.1), the iterative step yn, = o f(yn,N) +
(1 — an)TPc(Yn, N — AAyn,N) is replaced by the iterative one y, = oy, f(xyn) + (1 —
an)T Po(yn,N — AnAyn, n), then Theorems 3.12 and 3.13 remain valid.

Remark 3.15. Our Theorems 3.12 and 3.13 improve, extend, supplement and
develop [26, [10, Theorems 3.1] and [14, Theorems 3.12 and 3.13] in the following
aspects:

(a) The multi-step iterative scheme (3.1) of [14] is extended to develop our com-
posite viscosity iterative scheme (3.1) by virtue of Jung’s two-step iterative
scheme (3.1) of [10] for the VI (1.1) and a nonexpansive mapping T';

(b) The argument techniques in our Theorems 3.12 and 3.13 are the combina~
tions of the argument ones in [14, Theorem 3.12 and 3.13], and the argument
ones in [10, Theorem 3.1];

(c) The problem of finding an element of Fix(7T') N (N;Fix(S;)) N EP(F, k) N
VI(C, A) in our Theorems 3.12 and 3.13 is more general than the one of
finding an element of Fix(T") N (N;Fix(S;)) N EP(F, h) in [14, Theorem 3.12
and 3.13] and the one of finding an element of Fix(7T') N VI(C, A) in [10,
Theorem 3.1].

4. APPLICATIONS

For a given nonlinear mapping A : C' — H, we consider the variational inequality
(VI) of finding & € C such that
(4.1) (Az,y —z) >0, YyeCl.
We will indicate with VI(C, A) the set of solutions of the VI (4.1).
Recall that if u is a point C, then the following relation holds:
(4.2) ue VI(C,A) & u=Po(I—AA)u, VA>0.

An operator A : C' — H is said to be an a-inverse strongly monotone operator if
there exists a constant a > 0 such that

(Az — Ay, x —y) > ol| Az — Ay|]®, Vz,y e C.

As an example, we recall that the a-inverse strongly monotone operators are

firmly nonexpansive mappings if & > 1 and that every a-inverse strongly monotone

operator is also 2-Lipschitz continuous (see [23]).
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Let us observe also that, if A is a-inverse strongly monotone, the mapping P (I —
AA) are nonexpansive for all A > 0 since they are compositions of nonexpansive
mappings (see page 419 in [23]).

Let us consider S, ..., Sy a finite number of nonexpansive self-mappings on C'
and Ai,..., Ay be a finite number of a-inverse strongly monotone operators. Let
T be a nonexpansive self-mapping on C' with fixed points. Let us consider the
following mixed problem of finding z* € Fix(T') N EP(F, h) N VI(C, A) such that

((I=5)a*y—a*) >0, VyeFix(T)NEP(F,h)NVI(C,A),
(I —S2)x*,y—2*) >0, VyeFix(T)NEP(F,h)NVI(C,A),

(4.3) (I = Sy)a*,y—x*) >0, Vy e Fix(T)NEP(F,h) NVI(C, A),
' (Ayx*,y —2*) >0, VyeC,
(Agz*,y —2*) >0, YyeC,

(Ayz*,y —z*) >0, VyeC.

Let us call (SVI) the set of solutions of the (M + N)-system. This problem is
equivalent to finding a common fixed point of T, {PFix(T)mEP(F,h)mVI(C,A)Si}i]i1a
{Po(I — XA)}M,. So we claim that

Theorem 4.1. Let us suppose that 2 = Fix(T) N (SVI) NEP(F,h) N VI(C, A) # 0.
Fiz A > 0. Let {an},{Bni}, 1 =1,...,(M + N), be sequences in (0,1) such that
0 < liminf, o Bn,; < limsup,, o Bn,i < 1 for all index i. Moreover, Let us suppose
that (H1)-(H6) hold. Then the sequences {xn}, {yn} and {u,} explicitly defined by
scheme

(4.4)
( F(un,y) + h(un,y) + %@ — Up, Up — Tp) > 0,Vy € C,

T
Yn,1 = B, 1 Pris(T)nEP(F,R)VI(C,A)S1Un + (1 = Bp1)tn,
Yn,i = Bn.iPrix(r)neP(Fp)vIC,A)Sitn + (1 = Bri)Yni-1, 1=2,..., M,
YnM+j = Bay+jPol — AAj)un + (1 — Bovvj)Ynmvj—1, j=1,...,N,
Yn = anf(yn,M+N) + (1 - an)TPC(yn,M+N - AnAyn,M-i-N)a
Tnt+1 = (1 - /Bn)yn + BnTPC(yn - )\nAyn)a Vn > 17

all converge strongly to the unique solution x* € {2 of the variational inequality
(f(z*) —a",z—2") <0, Vzell

Theorem 4.2. Let us suppose that 2 # 0. Fix X\ > 0. Let {an},{Bni}, ¢ =
L,...,(M 4+ N), be sequences in (0,1) and By; — B; for all i as n — co. Suppose
that there exists k € {1,...,M + N} such that B, — 0 as n — oo. Let kg €
{1,...,M + N} be the largest index for which By, — 0. Moreover, let us suppose
that (H1), (H7) and (H8) hold and

(i) 53,7;0 — 0 as n — oo
Bn,

(ii) if ¢ < ko and By — 0 then 5 =0 asn — oo;
(iii) if Bni — Bi # 0 then p; lies in (0,1).
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Then the sequences {xy},{yn} and {u,} explicitly defined by scheme (4.4) all con-
verge strongly to the unique solution x* € {2 of the variational inequality

(f(2") —a",z—a") <0, VzeR

Remark 4.3. If we choose A = A; = .-+ = Ay = 0 in system (4.3), we obtain
a system of hierarchical fixed point problems introduced by Mainge and Moudafi
[17,18].

On the other hand, recall that a mapping S : C' — C' is called k-strictly pseudo-
contractive if there exists a constant x € [0, 1) such that

1Sz — Syl* < |z — y|* + &l|(I = S)a — (I = Syl*, Vz,yeC.

If Kk =0, then S is nonexpansive. Put A =1 — S, where S : C — C is a k-strictly
pseudocontractive mapping. Then A is 177’“—invelrse strongly monotone; see [10].

Utilizing Theorems 3.12 and 3.13, we first give the following strong convergence
theorems for finding a common element of the solution set EP(F,h) of the EP
(1.8) and the common fixed point set Fix(T") N (N;Fix(S;)) N Fix(S) of a finite
family of nonexpansive mappings 7,5; : C — C, i = 1,...,N, and a k-strictly
pseudocontractive mapping S.

Theorem 4.4. Let o = 55, Let us suppose that 2 = Fix(T) N (M;Fix(S;)) N
Fix(S) NEP(F,h) # 0. Let {an},{Bni}, i =1,...,N, be sequences in (0,1) such
that 0 < liminf, o By < limsup,_,. Bni < 1 for all index i. Moreover, Let us
suppose that (H1)-(H6) hold. Then the sequences {xyn},{yn} and {u,} generated
explicitly by

F(Um ) + h(una ) TL< = Up, Up — $n> >0, Vyed,

Yn,1 = ﬁn 1slun ( 1)Un7
(4‘5) Yn,i = Bn,zS Uy, + (1 )y ni—1, &= 2,..., N,
Yn = o f(yn,n) + (1 — an)T(( An)Yn,N + AnSYn,N),

Tnt1 = (1= Bn)yn + BT (1 — A\p)yn + AnSyn), Vn >1,

all converge strongly to the unique solution x* € (2 of the variational inequality

(f(z*) —a* 2z —2*) <0, Vzen.

Proof. In Theorem 3.12, put A =1—.S5. Then A is 15"‘—inverse strongly monotone.
Hence we have that Fix(S) = VI(C, A), Po(ynNn — MAYnN) = (1 — A\p)yn,n +
AnSYn, N and Po(yn — AMAyn) = (1 — Ap)yn + A Syn. Thus, in terms of Theorems
3.12, we obtain the desired result. Il

Theorem 4.5. Let o = 155, Let us suppose that 2 = Fix(T) N (M;Fix(S;)) N
Fix(S) NEP(F,h) # 0. Let {an}, {Bni}, i =1,...,N, be sequences in (0,1) such
that B — Bi for alli asn — oo. Suppose that there exists k € {1,..., N} for which
Bngr — 0 asn — co. Let kg € {1,...,N} the largest index for which By, — 0.
Moreover, let us suppose that (H1), (H7) and (H8) hold and

(1) g

(ii) if ¢ < ko and By — 0 then ﬂ"ko — 0 asn — oo;

B,
(iii) if Bni — Bi # 0 then fB; lies in (0 1).
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Then the sequences {xn}, {yn} and {u,} generated explicitly by (4.5), all converge
strongly to the unique solution x* € (2 of the variational inequality
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(f(z*) —a*,z—2%) <0, Vze .
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