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EXTRAPOLATED SIMULTANEOUS SUBGRADIENT
PROJECTION METHOD FOR VARIATIONAL INEQUALITY
OVER THE INTERSECTION OF CONVEX SUBSETS

ANDRZEJ CEGIELSKI

ABSTRACT. Many convex optimization problems in the Euclidean space can be
formulated as a variational inequality over a subset of points satisfying a system of
convex inequalities. In this article we propose a method for solving this problem.
In the method we combine a hybrid descent idea presented in I. Yamada and N.
Ogura, Hybrid steepest descent method for variational inequality problem over
the fixed point set of certain quasi-nonexpansive mapping, Numer. Funct. Anal.
and Optimiz. 25 (2004) 619-655 and an extrapolated simultaneous subgradient
projections introduced in L. T. Dos Santos, A parallel subgradient projections
method for the convex feasibility problem, J. Comp. and Applied Math. 18 (1987)
307-320. The method does not require computation of the metric projection and
can be simply performed. The method provides long steps which seem to be
advantageous for the behavior of the method.

1. INTRODUCTION

Let R™ be equipped with an inner product (-, -) and with the corresponding norm
Il - |l, C € R™ be a nonempty, closed and convex subset and F' : R” — R™ be
a continuous operator. The variational inequality problem VIP(F,C) is to find a
point 2* € C such that

(F(z*),z —a") >0 forall x € C.

Denote by Sol(F, C) the set of all solutions of VIP(F,C). Throughout this article
we suppose that F'is Lipschitz continuous and strongly monotone which guarantee
the existence and the uniqueness of a solution (see, e.g., [23, Theorem 46.C]). Many
optimization problems can be presented as special cases of VIP(F, C), e.g. the prob-
lem of finding an element of C' with minimal norm, differentiable convex constrained
minimization, complementarity problem, Nash equilibrium problem (see, e.g., [13]
for a preview of problems which can be translated to VIPs). In this article we
suppose that C' = (%, C; # 0, where C; := {x € R" : ¢;(z) <0} and ¢; : R - R
is convex, ¢ € I := {1,2,...,m}. This situation occurs, e.g., in the differentiable
convex constrained minimization

minimize  f(z)
subject to ¢;(x) <0,i=1,2,...,m,
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which is equivalent to VIP(V f, C'). A classical iterative method for solving VIP(F, C')
is the gradient projection method

20 e R” —arbitrary
oF 1l = Po(a% — AFzF),

where Po denotes the metric projection onto C' and A > 0 is sufficiently small
(see [15]). The iteration can be easily translated to the following one

uFtl = Pcuk — )\FPcuk.

Unfortunately, both above iterations are unpractical in our case, because, in general,
the metric projection Pox is hard to compute, but the method requires to compute
it in every iteration. Following Lions [18] and Bauschke [1], Yamada proposed a
method for solving VIP(F,C) which applies cyclically nonexpansive operators T;
with FixT; = C;, i € 1,

uk+1 —_ Tvlkuk‘ _ )‘k;FT‘Zkuky

where i, = k(modm) + 1 is a cyclic control,

oo oo
limA, =0 A = A — A
1]?1 k ,kZ_O k = +00, kz_o\ k fem | < 00,

and
C=Fix(TyTn-1...T5T1) = Fix('Ty, ... T3T2) = - - = Fix(Tyn-1Tm—2 ... T1T))

(see [21, Theorem 3.3]). Suzuki proved that the latter assumption is equivalent to
C = Fix(T;nTm—1...T2T1) (see [19, Theorem 2]). A similar method under different
assumptions on A\, was proposed by Xu and Kim in [20]. If the subsets C; have
not simple structure allowing an easy computation of Pc,, the method proposed
by Yamada is also unpractical, because, the known constructions of nonexpansive
operators T; with FixT; = C; are compositions of metric projections P, and relax-
ations of projections onto closed convex supersets of C; (see [14]). Recently, several
methods for VIP(F,C) were proposed which apply quasi-nonexpansive operators
instead of nonexpansive ones (see [7-9,16,22]). In this article we suppose that
C; = {x € R" : ¢i(z) < 0}, where ¢; : R® — R are convex functions, ¢ € I, and
propose a method which employs subgradient projections F, relative to ¢;, 7 € I.
Contrary to the metric projection Pg,z, the subgradient projection Pz, where
x € R", is easier to compute. Therefore, the method is preferred in the case, when
C; has a structure which makes a computation of P, difficult or even impossible.
In the method, we combine a hybrid steepest descent idea (see [8,9,16,21,22]) and
an extrapolated simultaneous subgradient projection method introduced by Dos
Santos in [12] and developed in [4, Sect. 4.3], [17, Sect. 3], [10], [6] and [5, Section
4.9]. The latter provides long steps which seem to be advantageous in the behavior
of the method latter. The paper is organized as follows. In Section 2, we recall
some definitions and fact which we will use in the sequel. In Section 3, we describe
in detail the method mentioned above, and in Section 4, we present the main result
of the paper (Theorem 4.3), where we prove the convergence of sequences generated
by our method.
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2. PRELIMINARIES

Let U : R® — R". A point z € R" satisfying Uz = z is called a fized point of U.
A subset FixU := {z € R" : Uz = z} is called the fized point set of U. An operator
Uy : Id4+a(U — 1d), where o > 0 and Id denotes the identity operator, is called an
a-relazxation of U. It is clear that Fix U, = FixU for any a > 0.

2.1. VIP over the intersection of convex subsets. Let ¢; : R” — R be convex
and C; := {x € R" : ¢(x) < 0}, i € I :={1,2,...,m}. Suppose that C :=
Nicr Ci # 0. Let F : R™ — R™ be n-strongly monotone and k- Lipschitz continuous,
where 0 < 1 < &, i.e.,

(Fz — Fy,z —y) > |z — y|? for all z,y € R"

and
|Fz — Fy|| < sf|z — yl| for all z,y € R™.

Consider the following variational inequality problem VIP(F,C):
find z* € C satisfying (F(z*),z — 2*) > 0 for all x € C.

As mentioned in the previous section, the above assumptions guarantee the existence
and the uniqueness os a solution of VIP(F,C).

2.2. Quasi-nonexpansive and approximately shrinking operators. Let U :
R™ — R"™ be an operator having a fixed point. We say that U is quasi-nonexpansive
(QNE) if |[Ux — z|| < ||z — z|| for all x € R™ and all z € FixU. The subset of fixed
points of a QNE operator is closed and convex (see [3, Proposition 2.6(ii)]). We say
that U is y-strongly quasi-nonexpansive (v-SQNE), where v > 0, if

Uz — 2] < ||z = 2]* = Uz — ||

for all x € R™ and all z € FixU. If 1 < 79 and U is 72-SQNE then it is v1-SQNE.
If v > 0 then T is called strongly quasi-nonexpansive (SQNE). We say that U is a
cutter if
(z=Uzx,x—Ux) <0

for all x € R™ and all z € FixU. The operator U is a cutter if and only if its a-
relaxation is 2-2-SQNE, where « € (0,2] (see [11, Proposition 2.3(ii)] and [5, The-
orem 2.1.39]). In particular, U is a cutter if and only if U is 1-SQNE. Furthermore,
U is QNE if and only if (U + Id) is a cutter (see [3, Proposition 2.3(v)<(vi)]
or [5, Corollary 2.1.33(ii)]). The subset

m
Ay = {w: (Wi, way . ywm) ER™ 1w; >0,i=1,2,...,m, andZwZ- = 1}
i=1

is called the standard simplex. An element of A,, is called a weight. A function
w: R™ = A, is called a weight function.

Definition 2.1 (cf. [5, Definition 2.1.25]). Let U; : R™ — H, ¢ € I, be a family of
operators. We say that a weight function w : R™ — A, is appropriate, if for any
x ¢ (\;e; Fix U; there exists j € I such that

(2.1) wi(e) || Uy — | £ 0.
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The proposition below follows from [5, Theorems 2.1.26 and 2.1.50].
Proposition 2.2. Let U; : R" — R” be cutters, i € I := {1,2,...,m}, with
Nic; FixU; # 0. and let w = (wi,w2,...,wn) @ R® = Ay, be an appropriate
weight function. Then a convex combination U := ) _;w;U; is a cutter. Moreover,
FixU = ;¢ Fix U;.

A comprehensive review of the properties of QNE and SQNE operators can be
found in [5, Chapter 2].

Below we present one of several equivalent definitions of an approximately shrink-
ing operator (cf. [9, Proposition 3.2])

Definition 2.3. We say that a QNE operator U : R" — R" is approximately

shrinking if for any bounded sequence {a:k}zozo C R” and for any 1 > 0 there are
v > 0 and kg > 0 such that for all £ > kg it holds

(2.2) |UzF — 2¥|| < v = d(2F, FixU) < 7.
2.3. Subgradient projection and its properties. Let f : R” — R be a convex

function satisfying S(f,0) := {x € R" : f(z) <0} # 0. Let g¢(x) be a subgradient
of f at z, i.e., gf(x) € 0f(x), where

Of(@) :={g9 e R": (g,y — ) < f(y) — f(z) for all y € R"}
is a subdifferential of f at x € R™. The existence of g¢(z) follows from [2, Corollary
7.9]. The operator Py : R™ — R defined by

f(x .
P {x — erg(x) if gy(x) £ 0,
X

otherwise,

where f(x)4 := max{0, f(x)}, is called a subgradient projection relative to f. Note
that, in general, gf(x) is not uniquely defined, therefore Prx depends on the current
selection of g¢(x) € Of(x).
Below we recall some properties of a subgradient projection Py.

Proposition 2.4. Let f : R" — R be a convex function satisfying {x € R™: f(x) <
0} #0. Then

(i) Py is a cutter and Fix Py = S(f,0),

(ii) Py is approximately shrinking.
Proof. For (i) see [5, Corollary 4.2.6 and Lemma 4.2.5] and for (ii) see [8, Lemma
24). O
Proposition 2.5. Let U; : R™ — R be a subgradient projection relative to a convex
function ¢; : R" - R, i€ I:={1,2,....m}, C:=,c;Ci #0 and U : R* — R"
be defined by Ux = 3, ;wi(x)Us(x), where w = (wi,wa,...,wn) : R" = Ay, is a
weight function. Further, let x € R™ and z € C. Then

1
(2.3) Uz — || > ﬁzwi(x) Uiz — ||
iel
for any R > 0 such that ||z — z|| < R.

Proof. Because a subgradient projection P; is a cutter, ¢ € I, it is strongly quasi-
nonexpansive. Therefore, the proposition is a special case of [9, Proposition 4.5]. O
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3. EXTRAPOLATED SIMULTANEOUS SUBGRADIENT PROJECTION METHOD

Let ¢; : R® — R be convex, C; := {x € R" : ¢j(x) <0} and U; := P, i € I :=
{1,2,...,m}. Suppose that C' :=;c; C; # 0. Let w = (w1, w2,...,wm) : R" = Ay,
be an appropriate weight function (see Definition 2.1). Define U : R™ — R" by

Uz := Zwi(m)Uix
i=1

and a step size function o, : R® — R by
ow(x) = Z;’;lwi(zp)uUizﬂH:
(|37 wi() (Usz—2) ||
By (2.3), we have FixU = (,.; C; and oy, is well defined. Furthermore, the con-

vexity of the function ||-||* yields that o, (z) > 1 for all € R”. Define an operator
Ty : R — R™ by

otherwise.

m
Twx = oy(x)Ux = 0y () sz(x)le
i=1
We call the operator T}, an extrapolated simultaneous subgradient projection. For
a € [0, 2] the relaxation T, o of Ty, is given by Ty, o := Id +a(Ty, —1d). Let § € (0, 1]
and suppose that the weight function w satisfies the following condition

(3.1) wj(x) > 0 for some j € Argmax{||Ujx — x| :i € I}

for all z ¢ C. Then w is a special case of a regular weight function (see [5, Definition
5.8.2]). It is clear that w is appropriate.

Consider the following method for solving VIP(F, C)
(3.2) M = Tyah — A\ FTha®,

where F' : R® — R" is n-strongly monotone and k-Lipschitz continuous, 0 < n < &,
{632, C [0,2n/K2] is a sequence satisfying

. lim M\ = d A =
(3.3) im Ay 0 an kzo k= +00,

Ty : R® — R™ are quasi-nonexpansive operators defined by

(3.4) Ty, i= Ty

YOk

with w* being a sequence of weight functions satisfying (3.1) for some constant § €
(0,1] and oy, € [e,2—¢] for some constant € € (0, 1]. It is clear that ()~ Fix T} D C.
We can the method an extrapolated simultaneous subgradient projection (ESSP)
method for VIP(F,C). The method is a special case of a generalized hybrid steepest
descent (GHSD) method (see [8]). We can also write

(3.5) 2f = ok — N\ F(af + o (Via® — 2F)),
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where Vi, := Y wFU;, U; = P,,, i € I, and

1 if zF e ﬂ;ll C;
(3.6) o = > wk”Uwck—:z:k”2

i=1"4
[

Proposition 3.1. Let Ty be defined by (3.4), k > 0. Then FixTy = C and Ty, is

<-SQNE.

otherwise.

Proof. Because U; are 1-SQNE, i € I, the operator Vj := ", wai is also 1-SQNE
(see [5, Theorem 2.1.50]). Therefore, T}, is 2=2:-SQNE (see [5, Theorem 4.9.1]). By

ag
% > 5, T) is 5-SQNE. Furthermore, FixVj, = C (see [5, Theorem 2.1.26(i)]).
Consequently,
|Tkx — z|| = agoy [|Vix — z|| > e||Viz — z|]

and Fix T, = C. O

4. CONVERGENCE RESULTS

Before we formulate our main result, we recall some general convergence theorem.
We start with the following

Definition 4.1. Let T, : R® — R" be pg-strongly quasi-nonexpansive, where
pr > 0, k > 0. We say that method (3.2) is approximately shrinking with respect
to C' if for any 1 > 0 there are v > 0 and kg > 0, such that for all & > kg it holds

(4.1) prl Tia® — 2*|* < v = d(a*,C) < n.

Sufficient conditions for the convergence of sequences generated by the GHSD
method (3.2) are given in the following result, which is a special case of [8, Theorem
12).

Proposition 4.2. Let {xF}2 | be generated by GHSD method (3.2), where Ty are
pr-SQNE with p, > 0, k > 0. If the method is approximately shrinking with respect
to C, then {z*}32,, converges to a unique solution of VIP(F,C).

Now we can formulate the main result of the paper.

Theorem 4.3. The ESSP method (3.5) is approximately shrinking with respect to

C. Consequently, any sequence {mk}zozo generated by the method converges to a
unique solution of VIP(F,C).

Proof. The convexity of the function ||| yields that o}, > 1. Therefore,
(4.2) | Tz — 2%|| = apory, Hkak — ka > HVk:ck — azkH .

By [8, Lemma 9], z* is bounded. Let R > 0 be such that ka — zH < R for all
k > 0 and for some z € C. Let n > 0. Because the family {C; : i € I'} is boundedly
regular (see [2, Proposition 5.4]), there are dp > 0 and kg > 0 such that

(4.3) max d(z*,C;) < 69 = d(z*,C) < 7
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for all k > kq. Because U; is AS (see Proposition 2.4), there is n; > 0 and k; > 0
such that for all £ > k; it holds

(4.4) HU’LJ;k — :UkH <n = d(mk,FiX U;) < o,

i € I. Let ¥ = max{ko,k1,...,kn} and let k > k’. By Proposition 3.1, T} is
£-SQNE. Let ji, € Argmax{|U;z* — 2% : i € I} be such that w¥ > § (see (3.1)).

Je —
2,2
Further, let v = min;e; 5i£i and suppose that 5| Ta" — 2*|| < ~. This, together

with (4.2) and Proposition 2.5 yield

2 2 2
Uixk — P < max Uixk —2F|| = U, 2F — 2
el Tk
1 2 1 2
< gwfk Ujk:):k — ka < 5 g wf Uixk — ka
el

< 2 HVkmk — ka < ﬁHTkxk —zF|

0 oe

4R
7;;; S n37
i € I, consequently, HUZxk - :ckH < i, i € I. Now (4.4) and (4.3) give d(2F,C) < n,
i.e., the method is AS with respect to C. By Proposition 4.2, the sequence {xk}zozo
converges to a unique solution of VIP(F,C). O

<
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