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which is equivalent to VIP(∇f, C). A classical iterative method for solving VIP(F,C)
is the gradient projection method

x0 ∈ Rn −arbitrary
xk+1 = PC(x

k − λFxk),

where PC denotes the metric projection onto C and λ > 0 is sufficiently small
(see [15]). The iteration can be easily translated to the following one

uk+1 = PCu
k − λFPCu

k.

Unfortunately, both above iterations are unpractical in our case, because, in general,
the metric projection PCx is hard to compute, but the method requires to compute
it in every iteration. Following Lions [18] and Bauschke [1], Yamada proposed a
method for solving VIP(F,C) which applies cyclically nonexpansive operators Ti

with FixTi = Ci, i ∈ I,

uk+1 = Tiku
k − λkFTiku

k,

where ik = k(modm) + 1 is a cyclic control,

lim
k

λk = 0,
∞∑
k=0

λk = +∞,
∞∑
k=0

|λk − λk+m| < +∞,

and

C = Fix(TmTm−1 . . . T2T1) = Fix(T1Tm . . . T3T2) = · · · = Fix(Tm−1Tm−2 . . . T1Tm)

(see [21, Theorem 3.3]). Suzuki proved that the latter assumption is equivalent to
C = Fix(TmTm−1...T2T1) (see [19, Theorem 2]). A similar method under different
assumptions on λk was proposed by Xu and Kim in [20]. If the subsets Ci have
not simple structure allowing an easy computation of PCi , the method proposed
by Yamada is also unpractical, because, the known constructions of nonexpansive
operators Ti with FixTi = Ci are compositions of metric projections PCi and relax-
ations of projections onto closed convex supersets of Ci (see [14]). Recently, several
methods for VIP(F,C) were proposed which apply quasi-nonexpansive operators
instead of nonexpansive ones (see [7–9, 16, 22]). In this article we suppose that
Ci = {x ∈ Rn : ci(x) ≤ 0}, where ci : Rn → R are convex functions, i ∈ I, and
propose a method which employs subgradient projections Pci relative to ci, i ∈ I.
Contrary to the metric projection PCix, the subgradient projection Pcix, where
x ∈ Rn, is easier to compute. Therefore, the method is preferred in the case, when
Ci has a structure which makes a computation of PCix difficult or even impossible.
In the method, we combine a hybrid steepest descent idea (see [8,9,16,21,22]) and
an extrapolated simultaneous subgradient projection method introduced by Dos
Santos in [12] and developed in [4, Sect. 4.3], [17, Sect. 3], [10], [6] and [5, Section
4.9]. The latter provides long steps which seem to be advantageous in the behavior
of the method latter. The paper is organized as follows. In Section 2, we recall
some definitions and fact which we will use in the sequel. In Section 3, we describe
in detail the method mentioned above, and in Section 4, we present the main result
of the paper (Theorem 4.3), where we prove the convergence of sequences generated
by our method.
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2. Preliminaries

Let U : Rn → Rn. A point z ∈ Rn satisfying Uz = z is called a fixed point of U .
A subset FixU := {z ∈ Rn : Uz = z} is called the fixed point set of U . An operator
Uα : Id+α(U − Id), where α ≥ 0 and Id denotes the identity operator, is called an
α-relaxation of U . It is clear that FixUα = FixU for any α > 0.

2.1. VIP over the intersection of convex subsets. Let ci : Rn → R be convex
and Ci := {x ∈ Rn : ci(x) ≤ 0}, i ∈ I := {1, 2, . . . ,m}. Suppose that C :=∩

i∈I Ci ̸= ∅. Let F : Rn → Rn be η-strongly monotone and κ-Lipschitz continuous,
where 0 < η ≤ κ, i.e.,

⟨Fx− Fy, x− y⟩ ≥ η∥x− y∥2 for all x, y ∈ Rn

and

∥Fx− Fy∥ ≤ κ∥x− y∥ for all x, y ∈ Rn.

Consider the following variational inequality problem VIP(F,C):

find x∗ ∈ C satisfying ⟨F (x∗), x− x∗⟩ ≥ 0 for all x ∈ C.

As mentioned in the previous section, the above assumptions guarantee the existence
and the uniqueness os a solution of VIP(F,C).

2.2. Quasi-nonexpansive and approximately shrinking operators. Let U :
Rn → Rn be an operator having a fixed point. We say that U is quasi-nonexpansive
(QNE) if ∥Ux− z∥ ≤ ∥x− z∥ for all x ∈ Rn and all z ∈ FixU . The subset of fixed
points of a QNE operator is closed and convex (see [3, Proposition 2.6(ii)]). We say
that U is γ-strongly quasi-nonexpansive (γ-SQNE), where γ ≥ 0, if

∥Ux− z∥2 ≤ ∥x− z∥2 − γ∥Ux− x∥2

for all x ∈ Rn and all z ∈ FixU . If γ1 < γ2 and U is γ2-SQNE then it is γ1-SQNE.
If γ > 0 then T is called strongly quasi-nonexpansive (SQNE). We say that U is a
cutter if

⟨z − Ux, x− Ux⟩ ≤ 0

for all x ∈ Rn and all z ∈ FixU . The operator U is a cutter if and only if its α-
relaxation is 2−α

α -SQNE, where α ∈ (0, 2] (see [11, Proposition 2.3(ii)] and [5, The-
orem 2.1.39]). In particular, U is a cutter if and only if U is 1-SQNE. Furthermore,
U is QNE if and only if 1

2(U + Id) is a cutter (see [3, Proposition 2.3(v)⇔(vi)]
or [5, Corollary 2.1.33(ii)]). The subset

∆m :=
{
w = (ω1, ω2, . . . , ωm) ∈ Rm : ωi ≥ 0, i = 1, 2, . . . ,m, and

m∑
i=1

ωi = 1
}

is called the standard simplex. An element of ∆m is called a weight. A function
w : Rn → ∆m is called a weight function.

Definition 2.1 (cf. [5, Definition 2.1.25]). Let Ui : Rn → H, i ∈ I, be a family of
operators. We say that a weight function w : Rn → ∆m is appropriate, if for any
x /∈

∩
i∈I FixUi there exists j ∈ I such that

(2.1) ωj(x) ∥ Ujx− x ∦= 0.
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The proposition below follows from [5, Theorems 2.1.26 and 2.1.50].

Proposition 2.2. Let Ui : Rn → Rn be cutters, i ∈ I := {1, 2, . . . ,m}, with∩
i∈I FixUi ̸= ∅. and let w = (ω1, ω2, . . . , ωm) : Rn → ∆m be an appropriate

weight function. Then a convex combination U :=
∑

∈I ωiUi is a cutter. Moreover,
FixU =

∩
i∈I FixUi.

A comprehensive review of the properties of QNE and SQNE operators can be
found in [5, Chapter 2].

Below we present one of several equivalent definitions of an approximately shrink-
ing operator (cf. [9, Proposition 3.2])

Definition 2.3. We say that a QNE operator U : Rn → Rn is approximately
shrinking if for any bounded sequence {xk}∞k=0 ⊆ Rn and for any η > 0 there are
γ > 0 and k0 ≥ 0 such that for all k ≥ k0 it holds

(2.2) ∥Uxk − xk∥ < γ =⇒ d(xk,FixU) < η.

2.3. Subgradient projection and its properties. Let f : Rn → R be a convex
function satisfying S(f, 0) := {x ∈ Rn : f(x) ≤ 0} ̸= ∅. Let gf (x) be a subgradient
of f at x, i.e., gf (x) ∈ ∂f(x), where

∂f(x) := {g ∈ Rn : ⟨g, y − x⟩ ≤ f(y)− f(x) for all y ∈ Rn}
is a subdifferential of f at x ∈ Rn. The existence of gf (x) follows from [2, Corollary
7.9]. The operator Pf : Rn → R defined by

Pfx =

{
x− f(x)+

∥gf (x)∥2
g(x) if gf (x) ̸= 0,

x otherwise,

where f(x)+ := max{0, f(x)}, is called a subgradient projection relative to f . Note
that, in general, gf (x) is not uniquely defined, therefore Pfx depends on the current
selection of gf (x) ∈ ∂f(x).

Below we recall some properties of a subgradient projection Pf .

Proposition 2.4. Let f : Rn → R be a convex function satisfying {x ∈ Rn : f(x) ≤
0} ̸= ∅. Then

(i) Pf is a cutter and FixPf = S(f, 0),
(ii) Pf is approximately shrinking.

Proof. For (i) see [5, Corollary 4.2.6 and Lemma 4.2.5] and for (ii) see [8, Lemma
24]. �
Proposition 2.5. Let Ui : Rn → R be a subgradient projection relative to a convex
function ci : Rn → R, i ∈ I := {1, 2, . . . ,m}, C :=

∩
i∈I Ci ̸= ∅ and U : Rn → Rn

be defined by Ux =
∑

i∈I ωi(x)Ui(x), where w = (ω1, ω2, . . . , ωm) : Rn → ∆m is a
weight function. Further, let x ∈ Rn and z ∈ C. Then

(2.3) ∥Ux− x∥ ≥ 1

2R

∑
i∈I

ωi(x) ∥Uix− x∥2

for any R > 0 such that ∥x− z∥ ≤ R.

Proof. Because a subgradient projection Pi is a cutter, i ∈ I, it is strongly quasi-
nonexpansive. Therefore, the proposition is a special case of [9, Proposition 4.5]. �
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3. Extrapolated simultaneous subgradient projection method

Let ci : Rn → R be convex, Ci := {x ∈ Rn : ci(x) ≤ 0} and Ui := Pci , i ∈ I :=
{1, 2, . . . ,m}. Suppose that C :=

∩
i∈I Ci ̸= ∅. Let w = (ω1, ω2, . . . , ωm) : Rn → ∆m

be an appropriate weight function (see Definition 2.1). Define U : Rn → Rn by

Ux :=

m∑
i=1

ωi(x)Uix

and a step size function σw : Rn → R by

σw(x) :=

 1 if x ∈
∩m

i=1Ci∑m
i=1 ωi(x)∥Uix−x∥2

∥∑m
i=1 ωi(x)(Uix−x)∥2 otherwise.

By (2.3), we have FixU =
∩

i∈I Ci and σw is well defined. Furthermore, the con-

vexity of the function ∥·∥2 yields that σw(x) ≥ 1 for all x ∈ Rn. Define an operator
Tw : Rn → Rn by

Twx := σw(x)Ux = σw(x)

m∑
i=1

ωi(x)Uix.

We call the operator Tw an extrapolated simultaneous subgradient projection. For
α ∈ [0, 2] the relaxation Tw,α of Tw is given by Tw,α := Id+α(Tw−Id). Let δ ∈ (0, 1]
and suppose that the weight function w satisfies the following condition

(3.1) ωj(x) ≥ δ for some j ∈ Argmax{∥Uix− x∥ : i ∈ I}

for all x /∈ C. Then w is a special case of a regular weight function (see [5, Definition
5.8.2]). It is clear that w is appropriate.

Consider the following method for solving VIP(F,C)

(3.2) xk+1 = Tkx
k − λkFTkx

k,

where F : Rn → Rn is η-strongly monotone and κ-Lipschitz continuous, 0 < η ≤ κ,
{λk}∞k=0 ⊂ [0, 2η/κ2] is a sequence satisfying

(3.3) lim
k

λk = 0 and
∞∑
k=0

λk = +∞,

Tk : Rn → Rn are quasi-nonexpansive operators defined by

(3.4) Tk := Twk,αk
,

with ωk being a sequence of weight functions satisfying (3.1) for some constant δ ∈
(0, 1] and αk ∈ [ε, 2−ε] for some constant ε ∈ (0, 1]. It is clear that

∩
k≥0 FixTk ⊃ C.

We can the method an extrapolated simultaneous subgradient projection (ESSP)
method for VIP(F,C). The method is a special case of a generalized hybrid steepest
descent (GHSD) method (see [8]). We can also write

(3.5) xk+1 = xk − λkF (xk + αkσk(Vkx
k − xk)),
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where Vk :=
∑m

i=1 ω
k
i Ui, Ui = Pci , i ∈ I, and

(3.6) σk =

 1 if xk ∈
∩m

i=1Ci∑m
i=1 ω

k
i ∥Uix

k−xk∥2

∥∑m
i=1 ω

k
i Uixk−xk∥2 otherwise.

Proposition 3.1. Let Tk be defined by (3.4), k ≥ 0. Then FixTk = C and Tk is
ε
2 -SQNE.

Proof. Because Ui are 1-SQNE, i ∈ I, the operator Vk :=
∑m

i=1 ω
k
i Ui is also 1-SQNE

(see [5, Theorem 2.1.50]). Therefore, Tk is 2−αk
αk

-SQNE (see [5, Theorem 4.9.1]). By
2−αk
αk

≥ ε
2 , Tk is ε

2 -SQNE. Furthermore, FixVk = C (see [5, Theorem 2.1.26(i)]).

Consequently,

∥Tkx− x∥ = αkσk ∥Vkx− x∥ ≥ ε ∥Vkx− x∥
and FixTk = C. �

4. Convergence results

Before we formulate our main result, we recall some general convergence theorem.
We start with the following

Definition 4.1. Let Tk : Rn → Rn be ρk-strongly quasi-nonexpansive, where
ρk ≥ 0, k ≥ 0. We say that method (3.2) is approximately shrinking with respect
to C if for any η > 0 there are γ > 0 and k0 ≥ 0, such that for all k ≥ k0 it holds

(4.1) ρk∥Tkx
k − xk∥2 < γ =⇒ d(xk, C) < η.

Sufficient conditions for the convergence of sequences generated by the GHSD
method (3.2) are given in the following result, which is a special case of [8, Theorem
12].

Proposition 4.2. Let {xk}∞k=0 be generated by GHSD method (3.2), where Tk are
ρk-SQNE with ρk ≥ 0, k ≥ 0. If the method is approximately shrinking with respect
to C, then {xk}∞k=0 converges to a unique solution of VIP(F,C).

Now we can formulate the main result of the paper.

Theorem 4.3. The ESSP method (3.5) is approximately shrinking with respect to
C. Consequently, any sequence {xk}∞k=0 generated by the method converges to a
unique solution of VIP(F,C).

Proof. The convexity of the function ∥·∥2 yields that σk ≥ 1. Therefore,

(4.2) ∥Tkx
k − xk∥ = αkσk

∥∥∥Vkx
k − xk

∥∥∥ ≥ ε
∥∥∥Vkx

k − xk
∥∥∥ .

By [8, Lemma 9], xk is bounded. Let R > 0 be such that
∥∥xk − z

∥∥ ≤ R for all
k ≥ 0 and for some z ∈ C. Let η > 0. Because the family {Ci : i ∈ I} is boundedly
regular (see [2, Proposition 5.4]), there are δ0 > 0 and k0 ≥ 0 such that

(4.3) max
i∈I

d(xk, Ci) < δ0 =⇒ d(xk, C) < η
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for all k ≥ k0. Because Ui is AS (see Proposition 2.4), there is ηi > 0 and ki ≥ 0
such that for all k ≥ ki it holds

(4.4)
∥∥∥Uix

k − xk
∥∥∥ ≤ ηi =⇒ d(xk,FixUi) ≤ δ0,

i ∈ I. Let k′ = max{k0, k1, . . . , km} and let k ≥ k′. By Proposition 3.1, Tk is
ε
2 -SQNE. Let jk ∈ Argmax{

∥∥Uix
k − xk

∥∥ : i ∈ I} be such that ωk
jk

≥ δ (see (3.1)).

Further, let γ = mini∈I
δε2η2i
4R and suppose that ε

2∥Tkx
k − xk∥ < γ. This, together

with (4.2) and Proposition 2.5 yield∥∥∥Uix
k − xk

∥∥∥2 ≤ max
i∈I

∥∥∥Uix
k − xk

∥∥∥2 = ∥∥∥Ujkx
k − xk

∥∥∥2
≤ 1

δ
ωk
jk

∥∥∥Ujkx
k − xk

∥∥∥2 ≤ 1

δ

∑
i∈I

ωk
i

∥∥∥Uix
k − xk

∥∥∥2
≤ 2R

δ

∥∥∥Vkx
k − xk

∥∥∥ ≤ 2R

δε
∥Tkx

k − xk∥

≤ 4Rγ

δε2
≤ η2i ,

i ∈ I, consequently,
∥∥Uix

k − xk
∥∥ ≤ ηi, i ∈ I. Now (4.4) and (4.3) give d(xk, C) < η,

i.e., the method is AS with respect to C. By Proposition 4.2, the sequence {xk}∞k=0
converges to a unique solution of VIP(F,C). �
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