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therapy treatment planning) and has been studied extensively; see for example
[4, 13, 15, 16, 17] and the references therein. The relationship between the solution
sets of EP and CFP is described as in the following proposition, which is taken from
[15, Theorem 2.1]. Recall that f is pseudomonotone if the following implication
holds for any x, y ∈ K:

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0.

Proposition 1.1. The solution set of CFP (1.2) is a subset of the solution set of
EP (1.1). The converse is also true if f is pseudomonotone.

Based on this relationship, some algorithms for solving (1.1) can be designed
via finding a solution of problem (1.2). The most famous algorithms for solving
problem (1.2) are the so-called projection-type methods, which are usually classified
in two categories: successive and simultaneous (cf. [15]). Here we consider the
successive projection method to solve problem (1.2). For this purpose, we use
PZ : Rn → Z ⊆ Rn to denote the orthogonal projection onto Z. Give initial point
x0. Then the iteration sequence {xk} can be constructed as follows:

xk+1 = xk + λk(PLf (yk)
(xk)− xk),

where {λk} ⊂ [α, 2−α] with α ∈ (0, 1) is a sequence of exogenously given relaxation
parameters and the sequence {yk} ⊆ K is chosen to satisfy some control strategy,
which is usually one of the three control strategies descried in the following:

(1) Remotest set control: This is obtained by determining each yk ∈ K such
that

(1.3) ∥xk − PLf (yk)
(xk)∥ = sup

y∈K
∥xk − PLf (y)(x

k)∥ for each k ∈ N.

(2) Approximately remotest set control: This is obtained by choosing {yk} ⊆ K
such that

(1.4) lim
k→∞

∥xk − PLf (yk)
(xk)∥ = 0 ⇒ lim

k→∞
sup
y∈K

∥xk − PLf (y)(x
k)∥ = 0.

(3) Most violated constraint control: This control strategy measures the prox-
imity of xk to a set in the family not through the Euclidean distance, but
through the values of the function f(·, xk) : K → R, that is, each yk is
chosen so that

(1.5) f(yk, xk) = max
y∈K

f(y, xk) for each k ∈ N.

As pointed out in [15], the three control strategies described above require some
sort of maximization in y in order to choose yk in each step. Existence of such
maximizer, and/or efficient methods for finding it, demand some compactness as-
sumption on K or coercivity of f(·, x). Furthermore, note that evaluating f(y, xk)
is generally simpler than computing the distance ∥xk −PLf (y)(x

k)∥. The authors in
[15] considered a modified version of the successive projection methods, where the
maximization step in each iteration is limited to a compact set, but without impos-
ing any compactness assumption on K (nor coercivity on f(·, x)). More precisely,
Iusem and Sosa in [15] presented the following successive projection-like algorithm:
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Algorithm IS.

Step 0: Give sequences {λk} ⊆ [α, 1] with α ∈ (0, 1) and {εk} ⊂ R+ with
limk→∞ εk = 0;

Step 1: Select x0 ∈ K, put ρ0 := ∥x0∥ and k := 0;
Step 2: Set Ck := {x ∈ K| ∥x∥ ≤ ρk + 1};
Step 3: Find yk ∈ Ck such that

(1.6) max
y∈Ck

f(y, xk) ≤ f(yk, xk) + εk;

Step 4: Compute xk+1 as

xk+1 := xk + λk

(
PLf (yk)

(xk)− xk
)
;(1.7)

Step 5: Update ρk through

ρk+1 := max{ρk, ∥xk+1∥};(1.8)

Step 6: Set k := k + 1, and turn to Step 2.

Under the assumption that ∩∞
k=0Lf (y

k) ̸= ∅, they proved the convergence of the

algorithm. Note that in Algorithm IS, one has to compute the projection PLf (yk)
(xk)

at each iteration, which, as is well-known, is very difficult in general. This motivates
us present two modified versions of Algorithm IS that avoid the computations of
the projections PLf (yk)

(xk). As usual, for any y ∈ K, we use [f(y, ·)]+ to denote

the convex function [f(y, ·)]+ : K → R defined by

(1.9) [f(y, x)]+ := max{0, f(y, x)} for each x ∈ K.

Furthermore, we assume for Algorithms 1.2 and 1.3 that sequences {αk} ⊆ [α1, α2]
with 0 < α1 < α2 < +∞ and {εk} ⊂ R+ with limk→∞ εk = 0.

Algorithm 1.2.

Step 0: Select x0 ∈ K, put ρ0 := ∥x0∥ and k := 0;
Step 1: Set Ck := {x ∈ K| ∥x∥ ≤ ρk + 1};
Step 2: Find yk ∈ Ck to satisfy (1.6);
Step 3: Compute xk+1 as

xk+1 := argmin
x∈K

{
[f(yk, x)]+ +

1

2αk
∥x− xk∥2

}
;(1.10)

Step 4: Update ρk through (1.8);
Step 5: Set k := k + 1, and turn to Step 1.

A different control strategy for the sequence {yk} is used in Algorithm 1.3
below.

Algorithm 1.3.

Step 0: Select η ∈ (0, 1), x0 ∈ K and put k := 0;
Step 1: Find yk ∈ K such that

(1.11) f(yk, xk) ≥ η sup
y∈K

f(y, xk);

Step 2: Compute xk+1 by (1.10);
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Step 3: Set k := k + 1, and turn to Step 1.

The next section contains some necessary notations and preliminary results. We
will establish the convergence results for Algorithms 1.2 and 1.3 in Sections 3 and
4, respectively. Moreover a linear convergence result for Algorithm 1.3 is presented
in Section 4. Numerical experiments for Algorithms 1.2 and 1.3 are provided in the
last section.

2. Notations and preliminaries

The notation used in the present paper is standard (cf. [27]). Let x ∈ Rn and
r > 0. We use B(x, r) and B̄(x, r) to denote the open and closed balls with center
x and radius r, respectively. By ⟨·, ·⟩ we shall denote the inner product in Rn. Let
Z ⊆ Rn. The indicator function δZ and the normal cone NZ(z0) of Z at z0 ∈ Z are
respectively defined by

δZ(z) :=

{
0, z ∈ Z,

+∞, otherwise,

and

NZ(z0) := {x∗ ∈ Rn : ⟨x∗, z − z0⟩ ≤ 0 for all z ∈ Z}.
As usual, we use d(·, Z) : Rn → R and PZ : Rn → Z to denote the distance function
and the orthogonal projection onto Z, respectively, that is,

d(x,Z) := inf
y∈Z

∥x− y∥

and

PZ(x) := {y ∈ Z : ∥x− y∥ = min
z∈Z

∥x− z∥}.

Then, the following property of the orthogonal projection holds (cf. [1]):

(2.1) x0 ∈ PZ(x) ⇐⇒ ⟨x− x0, y − x0⟩ ≤ 0 for each y ∈ Z.

Let g : Rn → R ∪ {+∞} be a proper convex function. The effective domain of g
is defined by

dom g := {x ∈ X : g(x) < +∞},
and the subdifferential of g at x ∈ dom g is defined by

∂g(x) := {x∗ ∈ Rn : g(x) + ⟨x∗, y − x⟩ ≤ g(y) for each y ∈ Rn}.

Clearly, by the first order optimality condition (see [27, Theorem 2.5.7]), the fol-
lowing equivalence holds:

(2.2) x0 is a minimizer of g if and only if 0 ∈ ∂ g(x0).

Moreover, if h : X → R ∪ {+∞} is a proper convex function such that dom g ∩
domh ̸= ∅, then

(2.3) ∂g(a) + ∂h(a) ⊆ ∂(g + h)(a) for each a ∈ dom g ∩ domh.

Furthermore, if g or h is continuous at some point of dom g ∩ domh, then

(2.4) ∂(g + h)(x) = ∂g(x) + ∂h(x) for each x ∈ dom g ∩ domh.
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Let x ∈ dom g and y ∈ domh. If x∗ ∈ ∂g(x) and y∗ ∈ ∂h(y), then by the mono-
tonicity of the subdifferential (cf. [26]), we have

(2.5) ⟨x∗ − y∗, x− y⟩ ≥ 0.

Recall that a sequence {xk} is Fejér monotone w.r.t a set S if

∥xk+1 − x̄∥ ≤ ∥xk − x̄∥ for each x̄ ∈ S and k = 0, 1, . . . .

Then the following lemma holds (cf. [1, Theorem 2.16]):

Lemma 2.1. Suppose the sequence {xk} is Fejér monotone w.r.t a set S. Then the
following assertions hold.

(i) {xk} is bounded and d(xk+1, S) ≤ d(xk, S).
(ii) If there exits a subsequence {xkm} of {xk} such that {xkm} is convergent to

a point x ∈ S, then {xk} is convergent to x.

Consider the following convex inequality system:

(2.6) x ∈ K, F (x) ≤ 0,

where K is a closed convex subset of Rn as in the previous section and F : K → R
is a continuous convex function. Let KF denote the solution set of the inequality
system (2.6).

Definition 2.2. The inequality system (2.6) is said to have
(i) an (global) error bound if there exists γ > 0 such that

(2.7) d(x,KF ) ≤ γ[F (x)]+.

holds for any x ∈ K.
(ii) bounded error bounds if and only if, for any ρ > 0, there exists γ > 0 such

that (2.7) holds for any x ∈ K ∩B(0, ρ).

Clearly, the inequality system (2.6) has an error bound implies that it has bounded
error bounds. The following proposition provides a useful characterization for error
bounds; see for example [2, Theorem 2.2].

Proposition 2.3. Let γ > 0 and ρ > 0. Then (2.7) holds for each x ∈ K ∩B(0, ρ)
if and only if the following inclusion holds for each z ∈ KF ∩B(0, ρ):

(2.8) B(0, 1) ∩NKF
(z) ⊆ γ∂[F (·)+ + δK(·)](z).

3. Convergence analysis of Algorithm 1.2

Unless explicitly stated otherwise, let K and f be as in Section 1; namely, K is a
closed and convex subset of Rn and f : K×K → R is a continuous function satisfying
P1 and P2. Recall that, for each y ∈ K, the convex function [f(y, ·)]+ : K → R is
defined by (1.9). The following two lemmas are taken from [8, Lemma 4.1] and [8,
Lemma 4.2], respectively.

Lemma 3.1. Let y∗, ξ ∈ K and α > 0. Suppose that

(3.1) x+ ∈ argmin
x∈K

{
[f(y∗, x)]+ +

1

2α
∥x− ξ∥2

}
.
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Then, for each x ∈ K, we have

(3.2) [f(y∗, x)]+ +
1

2α
∥x− ξ∥2 ≥ [f(y∗, x+)]+ +

1

2α
∥x+ − ξ∥2 + 1

2α
∥x− x+∥2.

Lemma 3.2. Let y∗ ∈ K and α > 0. Then the following equivalence holds:
(3.3)

x∗ ∈ argmin
x∈K

{
[f(y∗, x)]+ +

1

2α
∥x− x∗∥2

}
⇐⇒ x∗ ∈ argmin

x∈K
[f(y∗, x)]+ = Lf (y

∗).

For convenience, we set L := ∩∞
k=0Lf (y

k). The following lemma will be useful for
our study.

Lemma 3.3. Let {xk} and {yk} be sequences generated by Algorithm 1.2 or Algo-
rithm 1.3. Suppose that L ̸= ∅. Then the sequence {xk} is Fejér monotone w.r.t L
and

(3.4) lim
k→∞

∥xk+1 − xk∥ = 0.

Proof. Let x̄ ∈ L and k ∈ N. Then we have that

(3.5) [f(yk, x̄)]+ ≤ [f(yk, x)]+ for each x ∈ K.

Using (1.10) and applying Lemma 3.1 (to {yk, xk, x̄, xk+1, αk} in place of
{y∗, ξ, x, x+, α}), we have that
(3.6)

[f(yk, x̄)]+ +
1

2αk
∥x̄− xk∥2 ≥ [f(yk, xk+1)]+ +

1

2αk
∥xk+1 − xk∥2 + 1

2αk
∥x̄− xk+1∥2.

Since αk > 0 and [f(yk, x̄)]+ ≤ [f(yk, xk+1)]+ by (3.5), it follows that

∥x̄− xk∥2 ≥ ∥xk+1 − xk∥2 + ∥x̄− xk+1∥2.(3.7)

Hence the sequence {xk} is Fejér monotone w.r.t L as x̄ ∈ L and k ∈ N are arbitrary;
moreover (3.4) is seen to hold. The proof is complete. �

The following lemma is taken from [15, Theorem 2.5].

Lemma 3.4. If there exist an open set U ⊂ Rn and x̄ ∈ K∩U such that f(x̄, y) ≥ 0
for all y ∈ K ∩ U , then x̄ solves EP.

The following theorem provides some convergence properties of Algorithm 1.2.

Theorem 3.5. Let {xk} and {yk} be sequences generated by Algorithm 1.2. Then
the following assertions hold.

(i) If L ̸= ∅, then {xk} converges to a solution of EP.
(ii) If EP lacks solutions, then {xk} is not convergent.

Proof. Let {km} ⊆ N be a subsequence and consider the following conditions:

(3.8) xkm → x∗, ykm → y∗, αkm → ᾱ

and

(3.9) ∥xkm+1 − xkm∥ → 0 and xkm+1 → x∗.
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We first verify the following implication:

(3.10) (3.8) and (3.9) =⇒ xk → x∗ ∈ L and x∗ solves EP.

To do this, suppose that both (3.8) and (3.9) hold. Note by (1.10) that

[f(ykm , xkm+1)]+ +
1

2αkm

∥xkm+1 − xkm∥2 ≤ [f(ykm , x)]+ +
1

2αkm

∥x− xkm∥2

for each x ∈ K.

Then taking limits and making use of (3.8) and (3.9), we conclude from the conti-
nuity of f that

(3.11) x∗ = argmin
x∈K

{
[f(y∗, x)]+ +

1

2ᾱ
∥x− x∗∥2

}
.

This together with Lemma 3.2 implies that x∗ ∈ Lf (y
∗), that is, f(y∗, x∗) ≤ 0.

Noting that {ρk} is bounded, one sees that ρ̄ := sup{ρk} is well-defined. Take
δ ∈ (0, 12) and consider the open ball U(δ) := B(0, ρ̄+ 1− δ). It follows from Step
4 of Algorithm 1.2 that

∥xk∥ ≤ ρk ≤ ρ̄ < ρ̄+ 1− δ for each k ∈ N.
This means that x∗ ∈ U(δ) and so x∗ ∈ K ∩ U(δ). Since the sequence {ρk} is
nondecreasing, it follows from the definition of ρ̄ that there exists N ∈ N such that

(3.12) ρk ≥ ρ̄− δ for each k ≥ N.

Consequently, we have that

xk ∈ K ∩ U(δ) ⊆ K ∩ B̄(0, ρk + 1) = Ck for each k ≥ N.

Now fix y ∈ K ∩ U(δ). It follows from Step 2 of Algorithm 1.2 that

(3.13) f(y, xk) ≤ max
y∈Ck

f(y, xk) ≤ f(yk, xk) + εk for each k ≥ N.

Note that εk → 0 and f is continuous. Then, passing to the limit, we obtain that

(3.14) f(y, x∗) ≤ f(y∗, x∗) ≤ 0 for each y ∈ K ∩ U(δ).

Hence x∗ ∈ ∩y∈K∩U(δ)Lf (y). Thus, by Proposition 1.1,

(3.15) f(x∗, y) ≥ 0 for each y ∈ K ∩ U(δ).

This together with Lemma 3.4 implies that x∗ is a solution of EP. Furthermore,
since δ ∈ (0, 12) is arbitrary and f is continuous, it follows from (3.14) that

(3.16) f(y, x∗) ≤ 0 for each y ∈ K ∩ B̄(0, ρ̄+ 1).

Therefore f(yk, x∗) ≤ 0 for all k ∈ N because yk ∈ Ck ⊆ K ∩ B̄(0, ρ̄ + 1), that is,
x∗ ∈ L. Thus, by the fact xkm → x∗, Lemmas 2.1(ii) and 3.3, we see that xk → x∗.
Hence we complete the proof of implication (3.10).

Now we are back to the proof of the theorem. To show assertion (i), suppose that
L ̸= ∅ and let x̄ ∈ L. Then, by Lemma 3.3, the sequence {∥x̄− xk∥} converges and
so {xk} is bounded. It follows from Step 2 and Step 4 of Algorithm 1.2 that {ρk}
and {yk} are also bounded. Thus, we can choose a subsequence {km} of {k} such
that (3.8) holds. By Lemma 3.3, one sees that (3.9) holds. Hence the implication
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(3.10) is applicable to conclude that xk → x∗ and x∗ is a solution of EP. This
completes the proof of assertion (i).

To show assertion (ii), we assume that EP lacks solutions. Suppose on the con-
trary that {xk} converges to x∗. Then, by Step 2 of Algorithm 1.2, the sequence
{yk} is bounded. Thus we can select a subsequence {km} ⊆ N such that (3.8) and
(3.9) hold. Then the implication (3.10) means that x∗ is a solution of EP, which is
a contradiction. The proof is complete. �

4. Convergence analysis of Algorithm 1.3

This section is devoted to establishing the linear convergence result for Algorithm
1.3. The main tool used in the present section is the notion of error bounds for con-
vex inequality systems, which was originally introduced by Hoffman [11] for linear
inequality systems. This notion has become one of the most important and useful
tools for studying convergence analysis of algorithms and the sensitivity analysis to
solve optimization problems, and has been studied extensively; see [6, 11, 18, 24, 25]
and references therein for details.

Let {yk} ⊆ K and consider the following parameter inequality system:

(4.1) x ∈ K, f(yk, x) ≤ 0.

We introduce in the following definition the notions of uniform error bounds for the
parameter inequality system (4.1).

Definition 4.1. Let {yk} ⊆ K. The parameter inequality system (4.1) is said to
have

(i) a uniform error bound if there exists γ > 0 such that

(4.2) d(x, Lf (y
k)) ≤ γ[f(yk, x)]+

for any yk and x ∈ K.
(ii) uniform bounded error bounds if, for any ρ > 0, there exists γ > 0 such that

(4.2) holds for any yk and x ∈ K ∩B(0, ρ).

Recall that L = ∩∞
k=0Lf (y

k). Before proving the main theorem, we first verify
two lemmas.

Lemma 4.2. Let {xk} and {yk} be sequences generated by Algorithm 1.3. Suppose
that L ̸= ∅ and that the parameter inequality system (4.1) has uniform bounded
error bounds. Then there exists k0 ∈ N such that

(4.3) xk+1 = PLf (yk)
(xk) for each k ≥ k0.

Proof. Since L ̸= ∅, it follows from Lemma 3.3 that the sequence {xk} is Fejér mono-
tone w.r.t L and (3.4) holds. Take x̄ ∈ L, then ρ := 3max{supk ∥xk∥, ∥x̄∥} < +∞.
Since the parameter inequality system (4.1) has uniform bounded error bounds,
there exits γ > 0 such that (4.2) holds for each yk and each x ∈ K ∩B(0, ρ). Fix
k ∈ N. By Step 2 of Algorithm 1.3, it follows form (2.2) that

0 ∈ ∂([f(yk, ·)]+ + δK +
1

2αk
∥ · −xk∥2)(xk+1),
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that is,

0 ∈ ∂([f(yk, ·)]+ + δK)(xk+1) +
1

αk
(xk+1 − xk).

Denote ωk := 1
αk

(xk − xk+1). Then

(4.4) ωk ∈ ∂([f(yk, ·)]+ + δK)(xk+1)

and by (3.4), there exists k0 ∈ N such that

(4.5) ∥ωk∥ <
1

γ
for each k ≥ k0.

Below we first show that

(4.6) xk+1 ∈ Lf (y
k) for each k ≥ k0.

To do this, suppose on the contrary that there exists k ≥ k0 such that xk+1 /∈ Lf (y
k).

Denote x̄k+1 := PLf (yk)
(xk+1). Then,

∥x̄k+1∥ = ∥PLf (yk)
(xk+1)∥

≤ ∥PLf (yk)
(xk+1)− PLf (yk)

(x̄)∥+ ∥PLf (yk)
(x̄)∥

≤ ∥xk+1 − x̄∥+ ∥x̄∥ ≤ ∥xk+1∥+ 2∥x̄∥,

which implies that x̄k+1 ∈ K ∩B(0, ρ). By (2.1), we have that

(4.7) ⟨xk+1 − x̄k+1, x− x̄k+1⟩ ≤ 0 for each x ∈ Lf (y
k).

This implies that xk+1 − x̄k+1 ∈ NLf (yk)
(x̄k+1). Let z := xk+1−x̄k+1

γ∥xk+1−x̄k+1∥ . Then

(4.8) z ∈ 1

γ
B(0, 1) ∩NLf (yk)

(x̄k+1).

Hence, by Proposition 2.3, we have that

z ∈ ∂([f(yk, ·)]+ + δK)(x̄k+1).

Note that ωk ∈ ∂([f(yk, ·)]+ + δK)(xk+1). Then, by (2.5), we conclude that

(4.9) ⟨ωk − z, xk+1 − x̄k+1⟩ ≥ 0,

which implies

(4.10) ⟨z, xk+1 − x̄k+1⟩ ≤ ⟨ωk, x
k+1 − x̄k+1⟩ ≤ ∥ωk∥ · ∥xk+1 − x̄k+1∥.

Thus, by the definition of z, we see that

(4.11) ∥ωk∥ ≥ ⟨z, xk+1 − x̄k+1

∥xk+1 − x̄k+1∥
⟩ = 1

γ
,

which contradicts with (4.5). Therefore, (4.6) holds.
Let k ≥ k0. Then xk+1 ∈ Lf (y

k) by (4.6). By step 2 of Algorithm 1.3, we see
that
(4.12)

[f(yk, x)]+ +
1

2αk
∥x− xk∥2 ≥ [f(yk, xk+1)]+ +

1

2αk
∥xk+1 − xk∥2 for each x ∈ K.
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Note that xk+1 ∈ Lf (y
k) and that αk > 0. It follows from (4.12) that

(4.13) ∥x− xk∥2 ≥ ∥xk+1 − xk∥2 for each x ∈ Lf (y
k),

which implies that

xk+1 = argmin
x∈Lf (yk)

∥x− xk∥ = PLf (yk)
(xk).

The proof is complete. �
Lemma 4.3. Let {xk} and {yk} be two sequences generated by Algorithm 1.3.
Suppose that the conditions of Lemma 4.2 hold. Then, for sufficiently large k, the
following relations hold:

∥xk+1 − xk∥2 = ∥PLf (yk)
(xk)− xk∥2 ≤ d2(xk, L)− d2(xk+1, L).(4.14)

Proof. By Lemma 4.2, there exists k0 ∈ N such that (4.3) holds. Let k ≥ k0. Then

d2(xk, L)− d2(xk+1, L) ≥ ∥xk − PL(x
k)∥2 − ∥xk+1 − PL(x

k)∥2

= ∥xk − PL(x
k)∥2 − ∥PLf (yk)

(xk)− xk + xk − PL(x
k)∥2

= ∥PLf (yk)
(xk)− xk∥2

−2⟨PLf (yk)
(xk)− xk, PLf (yk)

(xk)− PL(x
k)⟩

≥ ∥PLf (yk)
(xk)− xk∥2

= ∥xk+1 − xk∥2,
where the last inequality holds by (2.1). Hence, (4.14) holds and the proof is
complete. �

To establish the linear convergence result for Algorithm 1.3, we still need the
following assumption, which was used in [19, page 451].

P3. For any ρ > 0 there exists lρ > 0 such that

|f(y, x′)− f(y, x′′)| ≤ lρ∥x′ − x′′∥ for any x′, x′′ ∈ K ∩B(0, ρ) and y ∈ K.

(4.15)

Now we are ready to give the main theorem of the present section.

Theorem 4.4. Let {xk} and {yk} be two sequences generated by Algorithm 1.3.
Suppose that L := ∩∞

k=0Lf (y
k) ̸= ∅ and assumption P3 holds. Suppose further that

the parameter inequality system (4.1) has uniform bounded error bounds and that
the inequality system (2.6) with F (·) := supk∈N f(yk, ·) has bounded error bounds.
Then the sequence {xk} converges linearly to a solution of EP, that is, there exist
constants C > 0 and q ∈ (0, 1) such that

(4.16) ∥xk − x∗∥ ≤ Cqk for each k ∈ N.
Proof. By Lemma 3.3, the sequence {xk} is Fejér monotone w.r.t L so {xk} is
bounded by Lemma 2.1(i). Let ρ := sup{∥xk∥} + 1. Then ρ < +∞. Since the
inequality system (2.6) with F (·) := supk∈N f(yk, ·) has bounded error bounds, it
follows that there exists γ > 0 such that

d(xk, L) ≤ γ sup
j∈N

[f(yj , xk)]+ ≤ γ sup
y∈K

[f(y, xk)]+ ≤ γ

η
f(yk, xk),(4.17)
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where the last inequality holds by Step 1 of Algorithm 1.3. On the other hand, by
Lemma 4.2, there exists k0 ∈ N such that (4.3) holds. Let k ≥ k0 and note that
xk, xk+1 ∈ B(0, ρ). Then, by (4.3) and assumption P3, there exits lρ such that

(4.18) f(yk, xk) ≤ |f(yk, xk)− f(yk, xk+1)| ≤ lρ∥xk+1 − xk∥.

This together with (4.17) implies that

(4.19) d(xk, L) ≤ γlρ
η

∥xk+1 − xk∥.

Hence, by Lemma 3.3, we see that

(4.20) lim
k→∞

d(xk, L) = 0.

Consider

(4.21) Ωk :=

k∩
m=0

B(PL(x
m), d(xm, L)).

Note by Lemma 3.3 that the sequence {xm} is Fejér monotone w.r.t L. Then

(4.22) ∥xk − PL(x
m)∥ ≤ ∥xm − PL(x

m)∥ = d(xm, L) for each m ≤ k.

This implies that xk ∈ Ωk. Hence, Ωk is a nonempty and bounded closed convex
set with the properties Ωk+1 ⊆ Ωk. Therefore, ∩∞

k=0Ωk ̸= ∅. Taking x∗ ∈ ∩∞
k=0Ωk.

Then, x∗ ∈ B(PL(x
k),d(xk, L)) and hence

(4.23) ∥xk − x∗∥ ≤ ∥xk − PL(x
k)∥+ ∥PL(x

k)− x∗∥ ≤ 2d(xk, L).

This together with (4.20) implies that limk→∞ ∥xk − x∗∥ = 0. Moreover, by Step 1
of Algorithm 1.3 and (4.18),

(4.24) ηf(y, xk) ≤ η sup
y∈K

f(y, xk) ≤ f(yk, xk) ≤ lρ∥xk+1 − xk∥ for each y ∈ K.

Taking limits on both sides of (4.24), we conclude from the continuity of f that
f(y, x∗) ≤ 0 for each y ∈ K, that is, x∗ ∈ ∩y∈KLf (y). This means that x∗ is a
solution of CFP. Thus, by Proposition 1.1, x∗ is a solution of EP.

Let λ :=
γlρ
η . Without loss of generality, we assume that λ > 1. Denote C :=

2d(x0, L) and q :=
√
λ2−1
λ . Below we show that (4.16) holds. To do this, by (4.19)

and Lemma 4.3, we have

1

λ2
d2(xk, L) ≤ ∥xk+1 − xk∥2 ≤ d2(xk, L)− d2(xk+1, L).

This implies that

d(xk+1, L) ≤
(
1− 1

λ2

) 1
2

d(xk, L) =

(√
λ2 − 1

λ

)
d(xk, L).

Thus, by induction, one has that

d(xk, L) ≤ d(x0, L)

(√
λ2 − 1

λ

)k

.
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Combining with (4.23), we get

∥xk − x∗∥ ≤ 2d(x0, L)

(√
λ2 − 1

λ

)k

= Cqk.

Hence, (4.16) holds and the proof is complete. �

Remark 4.5. Note that if the solution set of CFP is empty, Algorithm 1.2, Algo-
rithm 1.3 and Algorithm IS may not be convergent. For example, let K = [0, 2] and
define f(x, y) := (x − y)2 for each (x, y) ∈ K × K. Then the solution set of CFP
is empty, but the solution set of EP is K. In this case, all of the three algorithms
oscillate between two points.

5. Numerical experiments

In this section, by applying Matlab (version R2011b), we report some numerical
examples to test Algorithm 1.2 and Algorithm 1.3. For comparison purpose, we
also test Algorithm IS of Iusem and Sosa [15]. Throughout the computational
experiments, the parameters εk and η appearing in these algorithms are set as
εk ≡ 0 and η = 0.95.

Example 5.1. Let

(5.1) K :=

{
x ∈ R5

∣∣∣ 5∑
i=1

xi ≥ 10, xi ≥ 0, i = 1, . . . , 5

}
.

Define f : K ×K → R by

f(x, y) := ⟨Mx+ 10c(x) + q, y − x⟩ for each (x, y) ∈ K ×K,(5.2)

where

(5.3) M :=


0.726 −0.949 0.266 −1.193 −0.504
1.645 0.678 0.333 −0.217 −1.443
−1.016 −0.225 0.769 0.934 1.007
1.063 0.567 −1.144 0.550 −0.548
−0.259 1.453 −1.073 0.509 1.026

 , q :=


5.308
0.008
−0.938
1.024
−1.312

 ,

and

c(x) := (max{x1 − 2, 0}, . . . ,max{x5 − 2, 0})T for each x ∈ K.

Then x∗ = (2, 2, 2, 2, 2)T is a solution for EP. Furthermore, by definition, one can
check that f is strongly monotone and so x∗ is the unique solution by [12, Corollary
3.2.] as the EP is a variational inequality problem. Choose x0 := (1, 2, 3, 4, 5)T .
Numerical results with the starting point are listed in Tables 1 and 2; while com-
parisons of Algorithms 1.2 and 1.3 with Algorithm IS are illustrated in Figures 1
and 2 below.

Example 5.2. Let

(5.4) K :=
{
x ∈ R10

∣∣∣∥x∥2 ≤ 100, xi ≥ −9, i = 1, . . . , 10
}
.
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Table 1. Errors ∥xk − x∗∥ for Algorithms 1.2 and IS.

k
Alg.1.2 Alg.IS

αk ≡ 0.01 αk ≡ 0.5 αk ≡ 100 λk ≡ 0.5 λk ≡ 1
1 3.5503 2.7340 3.6728 3.2949 2.7341
2 3.3111 1.4891 2.4162 2.4568 1.4892
3 3.0844 1.0946 1.4317 1.8549 1.0019
4 2.8699 5.1560e-01 7.7386e-01 1.4936 7.4009e-01
5 2.6713 3.5614e-01 3.4526e-01 1.2569 4.9564e-01
6 2.4885 2.0866e-01 2.1723e-01 1.0491 3.5022e-01
7 2.3539 1.4815e-01 1.3176e-01 9.0485e-01 2.5577e-01
10 1.9444 3.9883e-02 2.4972e-02 5.8358e-01 9.0874e-02
20 1.2044 3.7463e-04 7.9685e-05 1.1251e-01 3.0936e-03
30 9.4952e-01 3.7927e-07 1.8253e-07 2.4514e-02 3.7593e-05
40 7.7826e-01 6.4590e-09 2.3059e-09 5.9900e-03 4.9637e-07

Table 2. Errors ∥xk − x∗∥ for Algorithms 1.3 and IS.

k
Alg.1.3 Alg.IS

αk ≡ 0.01 αk ≡ 0.5 αk ≡ 100 λk ≡ 0.5 λk ≡ 1
1 3.6178 1.8333 2.8749 3.2949 2.7341
2 3.3755 1.3859 1.9970 2.4568 1.4892
3 3.1457 9.6625e-01 8.3107e-01 1.8549 1.0019
4 2.9282 7.1984e-01 4.2486e-01 1.4936 7.4009e-01
5 2.7255 4.1155e-01 2.2608e-01 1.2569 4.9564e-01
6 2.5390 3.0624e-01 1.4950e-01 1.0491 3.5022e-01
7 2.3678 1.8373e-01 9.2021e-02 9.0485e-01 2.5577e-01
10 1.9381 4.6477e-02 1.2608e-02 5.8358e-01 9.0874e-02
20 1.2263 4.8397e-04 4.0673e-05 1.1251e-01 3.0936e-03
30 9.7785e-01 1.5438e-07 1.4640e-07 2.4514e-02 3.7593e-05
40 8.0065e-01 3.1454e-09 2.2201e-09 5.9900e-03 4.9637e-07

Define f : K ×K → R by

f(x, y) := max
1≤i≤10

{aTi (y − x)}+ max
1≤i≤10

{bTi (y − x)} for each (x, y) ∈ K ×K,

(5.5)

where ai, bi ∈ R10, 1 ≤ i ≤ 10, are chosen by
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[a1, a2, . . . , a10] = A =



0.8 1.5 0.3 1.4 1.3 0.7 0.9 1.1 1.0 0.8
1.3 0.8 0.5 0.2 0.1 0.2 0.1 0 0.8 0.7
0.5 1.1 0.1 1.1 0.4 1.5 0.1 0.1 0.6 1.3
0.7 1.5 0.8 1.1 0.1 0.5 1.2 1.0 0.1 1.2
0.1 0.4 0.5 0.8 0.7 0.4 1.4 0.9 1.2 1.1
0.3 0.6 0.3 0.3 0 0.1 0.8 0.8 0.5 0.1
1.0 0.7 0.3 0.9 1.3 0.4 0.2 1.1 0.9 0.1
0.5 1.1 1.4 0.4 0.3 0.1 1.2 1.1 1.1 0.1
1.3 1.2 1.0 0.2 0.1 0.8 0.5 1.2 0.2 1.2
0.2 0.2 0.7 0.3 0.5 1.1 0.4 0.4 0.2 1.4


and

[b1, b2, . . . , b10] = AT .

Then, we can check by definition that x∗ = (−9,−9, . . . ,−9) is the unique solution
of CFP. Choose x0 := (0, 0, 0, 0, 0)T . Numerical results with this starting point are
listed in Tables 3 and 4; while comparisons of Algorithms 1.2 and 1.3 with Algorithm
IS are illustrated in Figures 3 and 4 below.

Table 3. Errors ∥xk − x∗∥ for Algorithms 1.2 and IS.

k
Alg.1.2 Alg.IS

αk ≡ 0.1 αk ≡ 10 αk ≡ 100 λk ≡ 0.5 λk ≡ 1
1 2.7863e+01 2.7502e+01 2.7502e+01 2.7981e+01 2.7502e+01
2 2.7302e+01 2.6547e+01 2.6547e+01 2.7024e+01 2.6547e+01
3 2.6849e+01 2.5303e+01 2.4999e+01 2.6472e+01 2.5293e+01
4 2.6360e+01 2.4066e+01 2.3243e+01 2.5517e+01 2.4058e+01
5 2.5814e+01 2.3001e+01 2.1885e+01 2.4842e+01 2.2931e+01
6 2.5262e+01 2.1710e+01 2.0680e+01 2.4234e+01 2.1688e+01
7 2.4768e+01 2.0444e+01 1.8968e+01 2.3681e+01 2.0319e+01
16 2.0140e+01 4.6319 1.9309e-01 1.8059e+01 4.3691
17 1.9645e+01 1.4614 0 1.7353e+01 2.2605
18 1.9153e+01 0 0 1.6560e+01 0
30 1.3480e+01 0 0 5.3413 0

Table 4. Errors ∥xk − x∗∥ for Algorithms 1.3 and IS.

k
Alg.1.3 Alg.IS

αk ≡ 0.1 αk ≡ 10 αk ≡ 100 λk ≡ 0.5 λk ≡ 1
1 2.7863e+01 0 0 2.7981e+01 2.7502e+01
2 2.7267e+01 0 0 2.7024e+01 2.6547e+01
3 2.6673e+01 0 0 2.6472e+01 2.5293e+01
4 2.6079e+01 0 0 2.5517e+01 2.4058e+01
5 2.5487e+01 0 0 2.4842e+01 2.2931e+01
6 2.4897e+01 0 0 2.4234e+01 2.1688e+01
7 2.4308e+01 0 0 2.3681e+01 2.0319e+01
16 1.9103e+01 0 0 1.8059e+01 4.3691
17 1.8539e+01 0 0 1.7353e+01 2.2605
18 1.7979e+01 0 0 1.6560e+01 0
30 1.1733e+01 0 0 5.3413 0
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From the numerical results, we conclude the following conclusions:
• Performances of our Algorithms 1.2 and 1.3 depend on the choices of the param-

eters {αk}. In particular, the larger the parameters {αk}, the better the behavior
of Algorithms 1.2 and Algorithm 1.3.

• For the choices of parameters {αk} that are far from zero, the performances of
our Algorithms 1.2 and 1.3 are better than Algorithm IS.

• Algorithm 1.3 would have very good behavior for some special EP, such as ones
determined by polyhedral functions, and it could terminate in a finite numbers of
iterations as shown by Example 5.2.
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