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use the notation u = λ1x ⊕ λ2y to denote this fact. With this notation condition
(1.1) implies that for any z ∈ X

(1.2) ρ (z, λ1x⊕ λ2y) ≤ λ1ρ (z, x) + λ2ρ (z, y) .

This condition can be shown (see [16]) to be equivalent to the following: Let p, x, y ∈
X. If m1 is the midpoint of [p, x] and m2 is the midpoint of [p, y] , then

(1.3) ρ (m1,m2) ≤
1

2
ρ (x, y) .

Busemann spaces include all strictly convex normed linear spaces and all CAT(0)
spaces. An important class of Busemann spaces are the CAT(0) spaces of Gromov
(see [1]). These spaces are characterized by the so-called CN inequality of Bruhat
and Tits [2] (see [1, p. 163]). A Busemann space (X, ρ) is a CAT(0) space if and
only if the following holds. For all p, q, r ∈ X and all m ∈ X with ρ (q,m) =
ρ (r,m) = ρ (q, r) /2, one has:

(CN) ρ (p, q)2 + ρ (p, r)2 ≥ 2ρ (m, p)2 +
1

2
ρ (q, r)2 .

Therefore these spaces include, among others, the complex Hilbert ball with a hy-
perbolic metric (see Goebel and Reich [6]; also see inequality (4.2) of Reich and
Shafrir [17] and subsequent comments).

In this paper we propose a way to analytically define what we call the convex
combination of a finite set of points in a Busemann space. Our approach reduces
to the classical one for subsets of a strictly convex Banach space. However its full
implications are as yet unclear.

2. Preliminaries

We begin by describing the approach of [12]. For x1, x2 ∈ X and a1, a2 ∈ [0, 1]
with a1 + a2 = 1, let a1x1 ⊕ a2x2 be the point of [x1, x2] for which

ρ (x1, a1x1 ⊕ a2x2) = a2ρ (x1, x2) and ρ (x2, a1x1 ⊕ a2x2) = a1ρ (x1, x2) .

Having defined the ordered convex combination a1x1⊕· · ·⊕an−1xn−1 for a1, . . . , an−1 ∈
[0, 1] with

∑n−1
i=1 ai = 1 (n > 1),

(x1, . . . , xn−1) ∈
n−1∏
i=1

X,

let a1, . . . , an ∈ [0, 1] with
∑n

i=1 ai = 1, and let (x1, . . . , xn) ∈
∏n

i=1X. If an = 1,
set

a1x1 ⊕ · · · ⊕ anxn = xn.

Otherwise, set

a1x1 ⊕ · · · ⊕ anxn = anxn ⊕ (1− an)

[
a1

1− an
x1 ⊕ · · · ⊕ an−1

1− an
xn−1

]
.

We now adopt the notation

a1x1 ⊕ · · · ⊕ anxn =

n∑
i=1

[aixi] .
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With this definition it follows immediately from (1.2) that if x, x1, . . . , xn ∈ X, then

ρ

(
x,

n∑
i=1

[aixi]

)
≤

n∑
i=1

aiρ (x, xi) .

It was shown in [12] that this approach has applications in the study of approxi-
mate fixed points for mappings that are ‘approximately’ continuous. However this
definition has the defect that the convex combination depends on the order of the
n-tuple {x1, . . . , xn}. For example in general, a1x1 ⊕ a2x2 ⊕ a3x3 may not be the
same as a2x2 ⊕ a1x1 ⊕ a3x3. In the next section we describe a related method for
defining a1x1⊕· · ·⊕anxn in a complete Busemann space which does not depend on
the order in which the sum is written. Our approach in the next section is inspired
by a technique of Ivanshin [8] (based on an approach of [5]) for defining the ‘mean
point’ of a finite set of points in such spaces.

3. Convex combinations

Throughout this section X denotes a complete Busemann space. We take as
our point of departure the approach of the previous section, but with the goal of
defining the convex combination of a finite set of points of X that is independent
of the order in which they are chosen. This procedure suggests two new ways to
define the convex hull of a subset of X. We discuss this in more detail at the end of
the section. Our motivation is to try to find a more analytic approach the study of
convex hulls of subsets of Busemann spaces.

We describe the general procedure in this section. To help make the general case
clear, the case k = 3 is discussed in detail in Section 5.

We proceed by induction. Having defined a1x1 ⊕ a2x2 for {x1, x2} ⊂ X and
{a1, a2} ⊂ [0, 1] with a1 + a2 = 1, we now proceed by induction. Suppose k > 2
and suppose a1x1 ⊕ · · · ⊕ ak−1xk−1 has been defined, regardless of order, for all

sets of k − 1 points of X and all {a1, . . . , ak−1} ⊂ [0, 1] satisfying
∑k−1

i=1 ai = 1.
Now consider a k-tuple: {x1, x2, . . . , xk} ⊂ X and suppose {a1, . . . , ak} ⊂ [0, 1]

satisfies
∑k

i=1 ai = 1. By the inductive assumption we may further assume that
{a1, . . . , ak} ⊂ (0, 1) . Now set

x11 = a1x1 ⊕ (1− a1)

(
a2

1− a1
x2 ⊕

a3
1− a1

x3 ⊕ · · · ⊕ ak
1− a1

xk

)
x12 = a2x2 ⊕ (1− a2)

(
a1

1− a2
x1 ⊕

a3
1− a2

x3 ⊕ · · · ⊕ ak
1− a2

xk

)
x13 = a3x3 ⊕ (1− a3)

(
a1

1− a3
x1 ⊕

a2
1− a3

x2 ⊕ · · · ⊕ ak
1− a3

xk

)
...

x1k = akxk ⊕ (1− ak)

(
a1

1− ak
x1 ⊕

a2
1− ak

x2 ⊕ · · · ⊕ ak−1

1− ak
xk−1

)
.
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In general, let

xn1 = a1x
n−1
1 ⊕ (1− a1)

(
a2

1− a1
xn−1
2 ⊕ a3

1− a1
xn−1
3 ⊕ · · · ⊕ ak

1− a1
xn−1
k

)
xn2 = a2x

n−1
2 ⊕ (1− a2)

(
a1

1− a2
xn−1
1 ⊕ a3

1− a2
xn−1
3 ⊕ · · · ⊕ ak

1− a2
xn−1
k

)
xn3 = a3x

n−1
3 ⊕ (1− a3)

(
a1

1− a3
xn−1
1 ⊕ a2

1− a3
xn−1
2 ⊕ · · · ⊕ ak

1− a3
xn−1
k

)
...

xnk = akx
n−1
k ⊕ (1− ak)

(
a1

1− ak
xn−1
1 ⊕ a2

1− ak
xn−1
2 ⊕ · · · ⊕ ak−1

1− ak
xn−1
k−1

)
.

We now estimate ρ
(
xni , x

n
j

)
for i, j ∈ {1, . . . , k} , i < j. By iterated use of (1.2) we

obtain

ρ
(
xni , x

n
j

)
≤

k∑
i=1

aiρ
(
xn−1
i , xnj

)
≤

k∑
i=1

ai

k∑
j=1

ajρ
(
xn−1
i , xn−1

j

)

=
k∑

i,j=1

aiajρ
(
xn−1
i , xn−1

j

)

≤ 2

 k∑
i,j=1(i<j)

aiaj

 diam
({

xn−1
1 , xn−1

2 , xn−1
3 , . . . , xn−1

k

})
.

Thus

diam ({xn1 , xn2 , xn3 , . . . , xnk}) ≤ 2

 k∑
i,j=1(i<j)

aiaj

diam ({xn−1
1 , xn−1

2 , xn−1
3 , . . . , xn−1

k

})
.

Next observe that if {a1, a2, . . . , an} ⊂ (0, 1) and
∑k

i=1 ai = 1, then

2

k∑
i,j=1(i<j)

aiaj < 1.

Indeed

2

k∑
i,j=1(i<j)

aiaj = a1

 k∑
j=2

aj

+ a2

 k∑
j=1,j ̸=2

aj

+ · · ·+ ak

k−1∑
j=1

aj


= a1 (1− a1) + a2 (1− a2) + · · ·+ ak (1− ak)

=

k∑
i=1

ai −
k∑

i=1

a2i = 1−
k∑

i=1

a2i < 1.
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Letting

δ = 2
k∑

i,j=1(i<j)

aiaj ,

we now have

diam ({xn1 , xn2 , xn3 , . . . , xnk}) ≤ δdiam
({

xn−1
1 , xn−1

2 , xn−1
3 , . . . , xn−1

k

})
with δ < 1. It follows that

(3.1) diam ({xn1 , xn2 , xn3 , . . . , xnk}) ≤ δndiam ({x1, x2, x3, . . . , xk}) .

Now let conv (F ) denote the closed convex hull of a subset F ⊂ X in the usual
sense. Thus conv (F ) denotes the closure of the set

(3.2) conv (F ) =

∞∪
n=0

Fn,

where F0 = F, and for n ≥ 1 the set Fn consists of all points in the space which lie
on geodesics which have endpoints in Fn−1. With this definition it is clear via (1.2)
that diam (F ) = diam (F1) = diam (F2) = · · · = diam (conv (F )) .

By construction, the set {xn1 , xn2 , xn3 , . . . , xnk} lies in the convex hull of the set{
xn−1
1 , xn−1

2 , xn−1
3 , . . . , xn−1

k

}
; thus

conv {xn1 , xn2 , xn3 , . . . , xnk} ⊂ conv
{
xn−1
1 , xn−1

2 , xn−1
3 , . . . , xn−1

k

}
.

Now, from inequality (3.1), we conclude that

diam (conv {xn1 , xn2 , xn3 , · · ·, xnk}) ≤ δndiam (conv {x1, x2, x3, . . . , xk}) .

We can now apply Cantor’s intersection theorem to the descending sequence of
closed sets

{conv {xn1 , xn2 , xn3 , · · ·, xnk}}
∞
n=1

and conclude that for 1 ≤ j ≤ k, each of the sequences
{
xnj

}∞

n=1
is a Cauchy

sequence, and each converges to a common limit, which we denote a1x1⊕· · ·⊕akxk.

As in the approach of [12], with this definition we have the following estimate: If
x, x1, . . . , xn ∈ X, then

ρ (x, a1x1 ⊕ · · · ⊕ akxk) ≤
k∑

i=1

aiρ (x, xi) .

If ai ≡ 1

k
then we have another definition of the mean point (or ‘barycenter’)

x1 ⊕ · · · ⊕ xk
k

analogous to the one given in [8]. In this case,

2
k∑

i,j=1(i<j)

aiaj =
k − 1

k
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and for each x ∈ X,

ρ

(
x,

x1 ⊕ · · · ⊕ xk
k

)
≤ 1

k

k∑
i=1

ρ (x, xi) .

Remark 3.1. If X is a closed subset of a strictly convex Banach space then the
iterative process described above for defining the convex combination terminates at
the first step. It is also known that X is isometric to a convex subset of a normed
space if and only if affine functions on X separate points (see Theorem 1.1 in [7]).

Remark 3.2. Let co (F ) denote the collection of all convex combinations of finite
subsets of F as defined above, and let co (F ) denote its closure. All that is clear at
this point is that co (F ) ⊂ conv (F ) . It is probably asking too much to expect the
two sets to coincide. A third approach might be to set F0 = F and for n ≥ 1, set
Fn = co (Fn−1). It is now possible to define a new concept of ‘convex hull’ of F by
taking the union of the sets co (Fn) . In general this ‘convex hull’ would appear to
lie between co (F ) and conv (F ) .

4. Possible applications

4.1. A KKM principle. Niculescu and Rovenţa have shown in [14] that the clas-
sical KKM lemma due to Knaster, Kuratowski, and Mazurkiewicz extends to com-
plete CAT(0) spaces. We suggest another approach here via the following definition.

Definition 4.1. Let (X, ρ) be a Busemann space and K ⊂ X. We call a multivalued
mapping G : K → 2X a KKM-map if for any finite set of points x1, . . . , xn ∈ K,

co({x1, . . . , xn}) ⊂
∪

1≤i≤n

G (xi) ,

where co ({x1, . . . , xn}) denotes the collection of all convex combinations (as defined
in Section 3) of the set {x1, . . . , xn} . Let co ({x1, . . . , xn}) denote the closure of the
set co ({x1, . . . , xn}) .

A question left open is whether the convex combination a1x1 ⊕ · · · ⊕ anxn of a
fixed finite set of points {x1, . . . , xn} in a complete Busemann space is always a
continuous function of the parameters {a1, . . . , an} . The lemma below only applies
in situations where this is true.

Lemma 4.2. Suppose X is a complete Busemann space and suppose

co ({x1, . . . , xn})

has the fixed point property for continuous maps for every finite subset {x1, . . . , xn}
of X. Let G : H → 2X be a KKM-map for which each set G (x) is closed. Then
the family {G (x) : x ∈ H} has the finite intersection property. Thus if G (x0) is
compact for some x0 ∈ H,

∩
x∈H G (x) ̸= ∅.

Proof. (This mimics the proof of Theorem 3 of [10].) Suppose there exists F :=
{x1, . . . , xn} ⊂ H such that

∩n
i=1G (xi) = ∅. Set C = co (F ) . Then for every
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c ∈ C there exists i0 ∈ {1, . . . , n} such that c /∈ G (xi0) . Since G (xi0) is closed,
dist (c,G (xi0)) > 0. Therefore,

α (c) =

n∑
i=1

dist (c,G (xi)) > 0.

Definef : C → C by setting

f (c) =
dist (c,G (x1))

α (c)
x1 ⊕ · · · ⊕ dist (c,G (xn))

α (c)
xn.

Then f is continuous, and f (c) ∈ co (C) for each c ∈ C. By assumption, there exists
c0 ∈ C such that f (c0) = c0. Set

I := {i ∈ {1, . . . , n} : dist (c0, G (xi)) > 0} .

Then

c0 =
1

α (c0)

∑
i∈I

dist (c,G (xi))xi.

Thus c0 ∈ co {xi : i ∈ I} . However c0 /∈
∪

i∈I G (xi) , contradicting the assumption

co {xi : i ∈ I} ⊂
∪
i∈I

G (xi) .

�

It is known that in a complete CAT(0) space X, every compact convex set K
has the fixed point property for continuous maps ([15], Theorem 1.5). Therefore
Lemma 4.2 holds in any such space for which coF is compact and convex for any
finite subset F of X (under the additional continuity assumption).

4.2. Kannan maps. In this section we illustrate the potential usefulness of an
analytic approach to convex combinations. We begin with a classical definition
from Banach space geometry.

Definition 4.3. A convex set K in a Banach space X is said to have quasi-normal
structure if every bounded convex subset H of K which contains more than one
point contains a point x0 such that ∥x0 − y∥ < diam (H) for each x ∈ H.

The concept of quasi-normal structure is a very mild condition in Banach spaces
(see e.g., [20], [18]). However it has a rather striking fixed point implication. A
mapping T : K → K is called a Kannan mapping if

∥T (x)− T (y)∥ ≤ 1

2
[∥x− T (x)∥+ ∥y − T (y)∥]

for each x, y ∈ K. Kannan proved in [9] that if K is a weakly compact convex
subset of a Banach space and if for any T -invariant subset H of K with more
than one point, sup {∥y − T (y)∥ : y ∈ H} < diam (H) , then T has a fixed point.
Subsequently Wong proved in [19] that a weakly compact convex subset of a Banach
space has the fixed point property for Kannan maps if and only if it has quasi-normal
structure.
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It is known that if K is a bounded closed convex subset of complete CAT(0)
space then

rad (K) ≤
√
2

2
diam (K) ,

where rad(K) denotes the Chebyshev radius of K. This is a particular case of
Theorem B of [13] (also see [11], [4]). Thus if diam (K) > 0 then K must have
nondiametral points. This raises the question of whether every Kannan map T :
K → K has a fixed point. We show that the answer is affirmative if co (F ) is convex
for every F ⊂ K. It remains open whether this is true in general for a complete
CAT(0) space.

Theorem 4.4. Let K be a bounded closed convex subset of a complete CAT(0)
space (X, ρ), and let T : K → K be a Kannan map. Suppose also that co (F ) is
convex for every F ⊂ K. Then there exists x ∈ K such that

ρ (x, T (x)) = inf {ρ (y, T (y)) : y ∈ K} .
Proof. This theorem can be proved following the corresponding proof of Wong
[19], simply by replacing the norm ∥·∥ with the metric ρ (·) . Specifically, let r0 =
inf {ρ (y, T (y)) : y ∈ K} , and for r > r0, let

Kr = {y ∈ K : ρ (y, T (y)) ≤ r} .
As in [19], T : Kr → Kr. Now letHr = co (T (Kr)) . Since the family {T (Kr)}r>r0

is a descending chain, the family {Hr}r>r0
has the finite intersection property. It is

known that in a CAT(0) space any descending sequence of bounded closed convex
sets has nonempty intersection. Thus∩

r>r0

Hr ̸= ∅.

Next it is necessary to show that for each r > r0, Hr ⊆ Kr. (This is the only
step where the definition of Section 3 is needed.) For such r, let y ∈ Hr and let
ε > 0. Then there exist {t1, t2, . . . , tn} ⊂ R+ and {y1, y2, . . . , yn} ⊂ Kr such that∑n

i=1 ti = 1 and for which

ρ (y, t1T (y1)⊕ · · · ⊕ tnT (yn)) < ε.

Thus

ρ (y, T (y)) ≤ ρ (y, t1T (y1)⊕ · · · ⊕ tnT (yn)) + ρ (t1T (y1)⊕ · · · ⊕ tnT (yn) , T (y))

< ε+ ρ (t1T (y1)⊕ · · · ⊕ tnT (yn) , T (y))

≤ ε+

n∑
i=1

tiρ (T (yi) , T (y))

≤ ε+

n∑
i=1

ti
1

2
[ρ (yi, T (yi)) + ρ (y, T (y))]

≤ ε+

n∑
i=1

ti
1

2
[r + ρ (y, T (y))]

= ε+
1

2
[r + ρ (y, T (y))] .
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From this we conclude that ρ (y, T (y)) < ε+r, and since ε > 0 is arbitrary, y ∈ Kr.
Thus

∩
r>r0

Kr ̸= ∅, and the conclusion follows. �

Theorem 4.5. Let K be as in Theorem 4.4. Then every Kannan map T : K → K
has a fixed point.

Proof. Let K0 be a minimal nonempty closed convex subset of K which is invariant
under T. (Such a minimal set is known to exist; see [1]; also [11]). Upon replacing
∥·∥ with ρ (·) in part (a) of Theorem 3 of [19], it is possible to show that for each
x ∈ K0, ρ (x, T (x)) = diam (K0) . However, as noted above, if diam (K) > 0
then K has nondiametral points. It follows that diam (K0) = 0 and the conclusion
follows. �

5. Appendix

To help make the general case more transparent, we describe the procedure
of Section 3 in detail for three points, i.e., for defining a2x2 ⊕ a1x1 ⊕ a3x3 for
{x1, x2, x3} ⊂ X, and {a1, a2, a3} ⊂ [0, 1] with a1 + a2 + a3 = 1.

If an = 1 for some n ∈ {1, 2, 3} , set

a1x1 ⊕ a2x2 ⊕ a3x3 = xn.

Since the convex combination of two points has already been defined, we may assume
{a1, a2, a3} ⊂ (0, 1) and set

x11 = a1x1 ⊕ (1− a1)

(
a2

1− a1
x2 ⊕

a3
1− a1

x3

)
x12 = a2x2 ⊕ (1− a2)

(
a1

1− a2
x1 ⊕

a3
1− a2

x3

)
x13 = a3x3 ⊕ (1− a3)

(
a1

1− a3
x1 ⊕

a2
1− a3

x2

)
;

x21 = a1x
1
1 ⊕ (1− a1)

(
a2

1− a1
x12 ⊕

a3
1− a1

x13

)
x22 = a2x

1
2 ⊕ (1− a2)

(
a1

1− a2
x11 ⊕

a3
1− a2

x13

)
x23 = a3x

1
3 ⊕ (1− a3)

(
a1

1− a3
x11 ⊕

a2
1− a3

x12

)
.

Having defined xn−1
1 , xn−1

2 , xn−1
3 set

xn1 = a1x
n−1
1 ⊕ (1− a1)

(
a2

1− a1
xn−1
2 ⊕ a3

1− a1
xn−1
3

)
xn2 = a2x

n−1
2 ⊕ (1− a2)

(
a1

1− a2
xn−1
1 ⊕ a3

1− a2
xn−1
3

)
xn3 = a3x

n−1
3 ⊕ (1− a3)

(
a1

1− a3
xn−1
1 ⊕ a2

1− a3
xn−1
2

)
.



58 M. A. ALGHAMDI, W. A. KIRK, AND N. SHAHZAD

We assert that the sequences {xnk}
∞
n=1 , k = 1, 2, 3, are Cauchy and all converge

to a common point. Indeed two applications of the inequality (1.2) yields

ρ (xn1 , x
n
2 ) ≤ a1a2ρ

(
xn−1
1 , xn−1

2

)
+ a1a3ρ

(
xn−1
1 , xn−1

3

)
+ a2a1ρ

(
xn−1
2 , xn−1

1

)
+a2a3ρ

(
xn−1
2 , xn−1

3

)
+ a3a1ρ

(
xn−1
3 , xn−1

1

)
+ a3a2ρ

(
xn−1
3 , xn−1

2

)
= 2a1a2ρ

(
xn−1
1 , xn−1

2

)
+ 2a1a3ρ

(
xn−1
1 , xn−1

3

)
+2a2a3ρ

(
xn−1
3 , xn−1

2

)
≤ 2 [a1a2 + a1a3 + a2a3] diam

({
xn−1
1 , xn−1

2 , xn−1
3

})
.

In general for i, j ∈ {1, 2, 3} ,
ρ
(
xni , x

n
j

)
≤ 2 [a1a2 + a1a3 + a2a3] diam

({
xn−1
1 , xn−1

2 , xn−1
3

})
.

It follows that
diam ({xn1 , xn2 , xn3}) ≤ δndiam ({x1, x2, x3})

where δ = 2 [a1a2 + a1a3 + a2a3] . Also, δ < 1 because

2 [a1a2 + a1a3 + a2a3] = a1 (a2 + a3) + a2 (a1 + a3) + a3 (a2 + a1)

= a1 (1− a1) + a2 (1− a2) + a3 (1− a3)

= 1−
(
a21 + a22 + a23

)
.

Since conv({xn1 , xn2 , xn3}) ⊂ conv({xn−1
1 , xn−1

2 , xn−1
3 }), by Cantor’s intersection the-

orem the three sequences
{
xnj

}∞

n=1
, j = 1, 2, 3, are Cauchy with a common limit

which we denote a1x1 ⊕ a2x2 ⊕ a3x3.
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