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that at least one implication in these characterizations remains valid for the (Mor-
dukhovich) limiting subdifferential without assuming convexity of the function in
Asplund spaces.

Throughout X and Y are real Banach spaces. We write X∗ for the real dual space
of continuous linear functionals. We denote a set-valued mapping from X into the
subsets of Y by F : X ⇒ Y . The graph of F is the set gphF = {(x, y) ∈ X×Y | y ∈
F (x)}, while F−1 is the inverse mapping of F defined by x ∈ F−1(y) ⇐⇒ y ∈ F (x).
Single-valued mappings, also called functions, are represented by f : X → Y .

A function f : X → R ∪ {∞} is said to be convex if

f
(
(1− λ)x+ λy

)
≤ (1− λ)f(x) + λf(y),

for all λ ∈ (0, 1) and x, y ∈ dom f = {z ∈ X | f(z) < ∞}. The (convex) subdif-
ferential of a (not necessarily convex) function f : X → R ∪ {∞} is the set-valued
mapping ∂f : X ⇒ X∗ which is defined at any point x̄ ∈ dom f by

∂f(x̄) := {y∗ ∈ X∗ | f(x) ≥ f(x̄) + ⟨y∗, x− x̄⟩ for all x ∈ X}.
Therefore, ȳ∗ ∈ ∂f(x̄) if and only if x̄ is a global minimizer of the tilted function
f(·) − ⟨ȳ∗, ·⟩. A function is said to be proper if its domain is nonempty. We will
denote by Γ(X) the space of all proper lower semicontinuous convex functions from
X into R ∪ {∞}.

The closed unit ball is denoted by IB, while IBa(x) stands for the closed ball
of radius a centered at x. We denote by d(x,C) the distance from a point x to
a set C, i.e., d(x,C) = infy∈C ∥x − y∥. If C is empty, we adopt the convention
d(x,C) = ∞ for any x ∈ X. For sets C and D in X, the excess of C beyond D is
defined by e(C,D) = supx∈C d(x,D), with the convention e(∅, D) = 0 when D ̸= ∅,
and e(∅, ∅) = ∞.

Our study is focused on two key notions: metric subregularity and strong metric
subregularity. They are defined as follows.

Definition 1.1. A mapping F : X ⇒ Y is said to be metrically subregular at x̄ for
ȳ if ȳ ∈ F (x̄) and there is a positive constant κ along with neighborhoods U of x̄
and V of ȳ such such that

(1.1) d(x, F−1(ȳ)) ≤ κd(ȳ, F (x) ∩ V ), for all x ∈ U.

Definition 1.2. Amapping F : X ⇒ Y is said to be strongly (metrically) subregular
at x̄ for ȳ if ȳ ∈ F (x̄) and there is a positive constant κ along with neighborhoods
U of x̄ and V of ȳ such that

(1.2) ∥x− x̄∥ ≤ κd(ȳ, F (x) ∩ V ), for all x ∈ U.

Equivalently, F is strongly metrically subregular at x̄ for ȳ if it is metrically
subregular at x̄ for ȳ and, in addition, x̄ is an isolated point of F−1(ȳ). The
definition of metric subregularity can be simplified in the following way:

(1.3) d(x, F−1(ȳ)) ≤ κd(ȳ, F (x)), for all x ∈ U ′,

for a possibly smaller neighborhood U ′ of x̄, see [2, pp. 371–372] for details. Likewise,
the definition of strong subregularity can be simplified as

(1.4) ∥x− x̄∥ ≤ κd(ȳ, F (x)), for all x ∈ U ′,



METRIC SUBREGULARITY OF THE CONVEX SUBDIFFERENTIAL IN BANACH SPACES 37

for a possibly smaller neighborhood U ′ of x̄.
Relation (1.4) implies in particular that x̄ is an isolated point of F−1(ȳ). If a

linear mapping A is strongly metrically subregular at x̄ for ȳ = Ax̄ then A−1ȳ = {x̄}
and A is injective; in finite dimensional spaces it is an equivalence. More generally,
a polyhedral (set-valued) mapping F , i.e., a mapping whose graph is the union
of finitely many polyhedral convex sets, is metrically subregular with the same
constant at any point of its graph, and it is strongly subregular at x̄ for ȳ if and
only if x̄ is an isolated point of F−1(ȳ). This is a consequence of [18, Prop. 1], see
also [10] for more information about these properties.

Our main tool will be the well-known Ekeland’s variational principle, see [12,
Th. 1.1].

Theorem 1.3 (Ekeland’s variational principle). Let (X, d) be a complete metric
space, and f : X → R∪ {∞} a proper lower semicontinuous function bounded from
below. Suppose that for some u ∈ X and some ε > 0, f(u) ≤ infx∈X f(x)+ ε. Then
for every λ > 0 there exists some point v ∈ X such that

d(u, v) ≤ λ,(1.5)

f(v) + (ε/λ)d(u, v) ≤ f(u),(1.6)

f(x) > f(v)− (ε/λ)d(v, x), ∀x ̸= v.(1.7)

The rest of the paper is organized as follows. In Section 2 we prove that the char-
acterization of the metric subregularity given in [2] for Hilbert spaces remains valid
in Banach spaces. In Section 3 we extend as well the characterization of the strong
subregularity to Banach spaces, and show some additional characterizations of this
property. The last Section 4 contains some direct consequences of the main results
proved in the paper regarding the convergence of the proximal point algorithm, and
we show some characterizations of the metric subregularity and calmness proper-
ties of solution maps to parametric generalized equations. These consequences are
actually our main motivation for studying the metric regularity properties of the
subdifferential, and the reason why we believe in the importance in characterizing
these properties.

2. Characterization of metric subregularity

We begin by showing a characterization of the metric subregularity of the subd-
ifferential of a proper lower semicontinuous function. This result, originally proved
in [2] in Hilbert spaces, remains valid in Banach spaces with some adjustments in
the proof, which has also been simplified.

Theorem 2.1 ([2, Theorem 3.3]). Given a Banach space X, consider a function
f ∈ Γ(X) and points x̄ ∈ X and ȳ∗ ∈ X∗ such that ȳ∗ ∈ ∂f(x̄). Then ∂f is
metrically subregular at x̄ for ȳ∗ if and only if there exist a neighborhood U of x̄ and
a positive constant c such that

(2.1) f(x) ≥ f(x̄) + ⟨ȳ∗, x− x̄⟩+ cd2(x, (∂f)−1(ȳ∗)) whenever x ∈ U.

Specifically, if ∂f is metrically subregular at x̄ for ȳ∗ with constant κ, then (2.1)
holds for all c < 1/(4κ); conversely, if (2.1) holds with constant c, then ∂f is
metrically subregular at x̄ for ȳ∗ with constant 1/c.
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Proof. Assume first that (2.1) holds. Fix x ∈ U and consider any y∗ ∈ ∂f(x) (if
∂f(x) = ∅ there is nothing to prove). Choose any ε > 0. Since (∂f)−1(ȳ∗) ̸= ∅,
there is some xε ∈ (∂f)−1(ȳ∗) such that ∥x− xε∥ ≤ d(x, (∂f)−1(ȳ∗)) + ε. Then, by
definition of the subdifferential,

⟨y∗, x− xε⟩ ≥ f(x)− f(xε),

−⟨ȳ∗, x̄− xε⟩ ≥ f(xε)− f(x̄).

Moreover, by (2.1),

−⟨ȳ∗, x− x̄⟩ ≥ f(x̄)− f(x) + cd2(x, (∂f)−1(ȳ∗));

whence,

∥y∗ − ȳ∗∥(d(x, (∂f)−1(ȳ∗)) + ε) ≥ ∥y∗ − ȳ∗∥∥x− xε∥
≥ ⟨y∗ − ȳ∗, x− xε⟩
= ⟨y∗, x− xε⟩ − ⟨ȳ∗, x− x̄⟩ − ⟨ȳ∗, x̄− xε⟩
≥ cd2(x, (∂f)−1(ȳ∗)).

Thus, taking limits when ε goes to zero,

cd2(x, (∂f)−1(ȳ∗)) ≤ ∥y∗ − ȳ∗∥d(x, (∂f)−1(ȳ∗)).

If d(x, (∂f)−1(ȳ∗)) = 0 then x ∈ (∂f)−1(ȳ∗), since the set (∂f)−1(ȳ∗) is closed,
whence d(ȳ∗, ∂f(x)) = 0 and we are done. Otherwise,

d(x, (∂f)−1(ȳ∗)) ≤ 1

c
∥y∗ − ȳ∗∥,

and since y∗ ∈ ∂f(x) was arbitrarily chosen, we obtain

d(x, (∂f)−1(ȳ∗)) ≤ 1

c
d(ȳ∗, ∂f(x)), for all x ∈ U ;

that is, ∂f is metrically subregular at x̄ for ȳ∗ with constant 1/c.
Conversely, if ∂f is metrically subregular at x̄ for ȳ∗ with constant κ, there is

some positive constant a such that

(2.2) d(x, (∂f)−1(ȳ∗)) ≤ κd(ȳ∗, ∂f(x)) for all x ∈ IBa(x̄).

We will prove by contradiction that (2.1) holds for all c < 1/(4κ) and U ⊂ IB2a/3(x̄).
Otherwise, there is some z ∈ IB2a/3(x̄) such that

(2.3) f(z) + ⟨ȳ∗, x̄− z⟩ < f(x̄) + cd2(z, (∂f)−1(ȳ∗)).

Observe that x̄ is a global minimizer of the lower semicontinuous convex function
f(·) + ⟨ȳ∗, x̄ − · ⟩ since ȳ∗ ∈ ∂f(x̄). Additionally, (2.3) and ȳ∗ ∈ ∂f(x̄) implies
d(z, (∂f)−1(ȳ∗)) > 0. By Ekeland’s variational principle of Theorem 1.3, there
exists some u ∈ X such that ∥u− z∥ ≤ 1

2d(z, (∂f)
−1(ȳ∗)) and for all x ∈ X,

f(x) + ⟨ȳ∗, x̄− x⟩ ≥ f(u) + ⟨ȳ∗, x̄− u⟩ − cd2(z, (∂f)−1(ȳ∗))
1
2d(z, (∂f)

−1(ȳ∗))
∥x− u∥

= f(u) + ⟨ȳ∗, x̄− u⟩ − 2cd(z, (∂f)−1(ȳ∗))∥x− u∥.
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Hence, uminimizes the convex function f(·)+⟨ȳ∗, x̄− · ⟩+2cd(z, (∂f)−1(ȳ∗))∥ · −u∥;
whence,

0 ∈ ∂
(
f(·) + ⟨ȳ∗, x̄− · ⟩+ 2cd(z, (∂f)−1(ȳ∗))∥ · −u∥

)
(u)

= ∂f(u)− ȳ∗ + 2cd(z, (∂f)−1(ȳ∗))IB,(2.4)

where we have used in the equality the subdifferential sum rule (see, e.g.,
[8, Th. 4.1.19]). Therefore, there is some y∗ ∈ ∂f(u) such that ∥y∗ − ȳ∗∥ ≤
2cd(z, (∂f)−1(ȳ∗)). Additionally, since

d(z, (∂f)−1(ȳ∗)) ≤ ∥z−u∥+d(u, (∂f)−1(ȳ∗)) ≤ 1

2
d(z, (∂f)−1(ȳ∗))+d(u, (∂f)−1(ȳ∗)),

one has 0 < d(z, (∂f)−1(ȳ∗)) ≤ 2d(u, (∂f)−1(ȳ∗)), and thus,

d(ȳ∗, ∂f(u)) ≤ ∥y∗ − ȳ∗∥ ≤ 4cd(u, (∂f)−1(ȳ∗)) <
1

κ
d(u, (∂f)−1(ȳ∗)).

This strict inequality contradicts (2.2), since

∥u− x̄∥ ≤ ∥u− z∥+ ∥z − x̄∥ ≤ 3

2
∥z − x̄∥ ≤ a,

which completes the proof. �

Remark 2.2.

(i) We believe that it may be possible to improve the bound c < 1/(4κ) in
Theorem 2.1. Nevertheless, observe that this bound seems to be rather
tight, since (2.1) might be false for c = 1/κ, as it happens for the real
function f(x) = x2.

(ii) Notice that the first part of the proof holds without convexity: (2.1) implies
metric subregularity of the (convex) subdifferential.

(iii) The second part of the proof remains valid in Asplund spaces without
assuming convexity of f for the (Mordukhovich) limiting subdifferential if
in addition x̄ is a local minimizer of the function f(·) + ⟨ȳ∗, x̄− · ⟩. In this
case the limiting subdifferential sum rule (see [17, Cor. 4.3] or [15, Th. 3.6])
gives us an inclusion in (2.4).

3. Characterization of strong metric subregularity

The following characterization for the strong subregularity of the subdifferential
in Banach spaces can be easily derived as a consequence of the one for the metric
subregularity in Theorem 2.1.

Theorem 3.1 ([2, Theorem 3.5]). Given a Banach space X, consider a function
f ∈ Γ(X) and points x̄ ∈ X and ȳ∗ ∈ X∗ such that ȳ∗ ∈ ∂f(x̄). Then ∂f is strongly
subregular at x̄ for ȳ∗ if and only if there exist a neighborhood U of x̄ and a positive
constant c such that

(3.1) f(x) ≥ f(x̄) + ⟨ȳ∗, x− x̄⟩+ c∥x− x̄∥2 whenever x ∈ U.

Specifically, if ∂f is strongly subregular at x̄ for ȳ∗ with constant κ, then (3.1) holds
for all c < 1/(4κ); conversely, if (3.1) holds with constant c, then ∂f is strongly
subregular at x̄ for ȳ∗ with constant 1/c.
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Proof. Assume first that (3.1) holds. Let x ∈ U be such that ȳ∗ ∈ ∂f(x). Then

⟨ȳ∗, x− x̄⟩ ≥ f(x)− f(x̄),

and (3.1) implies x = x̄. Therefore, (∂f)−1(ȳ∗) ∩ U = {x̄}. In addition, (3.1)
implies (2.1), and hence Theorem 2.1 implies that ∂f is strongly subregular at x̄ for
ȳ∗ with constant 1/c.

Conversely, if ∂f is strongly subregular at x̄ for ȳ∗ with constant κ, then there is
some neighborhood U of x̄ such that (2.1) holds for all c < 1/(4κ) and (∂f)−1(ȳ∗)∩
U = {x̄}. We may assume without loss of generality that U = IB2a(x̄), for some
positive constant a. Pick any x ∈ IBa(x̄) and let z ∈ (∂f)−1(ȳ∗). If z ̸∈ IB2a(x̄),
then

∥x− z∥ ≥ ∥z − x̄∥ − ∥x− x̄∥ ≥ 2a− a = a ≥ ∥x− x̄∥;
whence,

d(x, (∂f)−1(ȳ∗)) = d(x, (∂f)−1(ȳ∗) ∩ IB2a(x̄)) = ∥x− x̄∥.
Then (3.1) holds for any x ∈ IBa(x̄). �

Remark 3.2. Similar observations to the ones in Remark 2.2 apply to Theorem 3.1.

A point x̄ is a global minimizer of the function f if and only if 0 ∈ ∂f(x̄). It
follows from Theorem 3.1 that ∂f is strongly metrically subregular at x̄ for 0 if and
only if the mapping f satisfies the following quadratic growth condition:

f(x) ≥ inf f + c∥x− x̄∥2 for all x close to x̄.

Particular forms of the above inequality are known to be equivalent to the sec-
ond order sufficient condition in nonlinear programming problems with qualified
constraints (see, e.g., [7]).

The following result regarding the strong subregularity of the subdifferential of
the sum of two functions is a straightforward consequence of the characterization
in Theorem 3.1.

Corollary 3.3 (Sum of strongly subregular subdifferentials). Let f, g ∈ Γ(X) and
let x̄ ∈ X and ȳ∗, w̄∗ ∈ X∗ such that ȳ∗ ∈ ∂f(x̄) and w̄∗ ∈ ∂g(x̄). If ∂f and ∂g are
respectively strongly subregular at x̄ for ȳ∗ and x̄ for w̄∗ then ∂(f + g) is strongly
subregular at x̄ for ȳ∗ + w̄∗.

Proof. By Theorem 3.1, the strong subregularity of ∂f (respectively ∂g) at x̄ for ȳ∗

(respectively at x̄ for w̄∗) yields (and is actually equivalent to) the existence of two
neigborhoods U1 and U2 of x̄ and two positive constants c1 and c2 such that

(3.2) f(x) ≥ f(x̄) + ⟨ȳ∗, x− x̄⟩+ c1∥x− x̄∥2, ∀x ∈ U1,

and

(3.3) g(x) ≥ g(x̄) + ⟨w̄∗, x− x̄⟩+ c2∥x− x̄∥2, ∀x ∈ U2.

By adding to each other the above inequalities we get

(3.4) (f + g)(x) ≥ (f + g)(x̄) + ⟨ȳ∗ + w̄∗, x− x̄⟩+ (c1 + c2)∥x− x̄∥2, ∀x ∈ U,

where U := U1 ∩U2; that is, ∂(f + g) is strongly subregular at x̄ for ȳ∗ + w̄∗, which
completes the proof. �
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It turns out that strong subregularity of the subdifferential is also related to local
strong monotonicity, which is defined as follows.

Definition 3.4. Given a mapping T : X ⇒ X∗, the point (x̄, ȳ∗) ∈ gphT is said to
be (locally) strongly monotonically related to gphT if there are some neighborhoods
U of x̄ and V of ȳ∗ together with some positive constant c such that

⟨y∗ − ȳ∗, x− x̄⟩ ≥ c∥x− x̄∥2, for all (x, y∗) ∈ gphT ∩ (U × V ).

When X is a Hilbert space, it is easy to check that a point (x̄, ȳ) ∈ gphT is
locally strongly monotonically related to gphT with constant c if and only if the
point (x̄, ȳ−cx̄) ∈ gph(T−cI) is locally monotonically related to gph(T−cI), where
I stands for the identity mapping; that is,

⟨y − (ȳ − cx̄), x− x̄⟩ ≥ 0, for all (x, y) ∈ gph(T − cI) ∩ (U × V ).

Remark 3.5. Recall that a mapping T : X ⇒ X∗ is strongly monotone if there
exists c > 0 such that ⟨y∗2 − y∗1, x2 − x1⟩ ≥ c∥x2 − x1∥2 whenever y∗1 ∈ T (x1), y

∗
2 ∈

T (x2). Consequently, if a mapping T is strongly monotone then any point (x̄, ȳ∗) ∈
gphT is locally strongly monotonically related to gphT .

Theorem 3.6 (Characterization of strong metric subregularity of subdifferentials).
Consider a function f in Γ(X) and points x̄ ∈ X and ȳ∗ ∈ X∗ such that ȳ∗ ∈ ∂f(x̄).
The following assertions are equivalent.

(i) The set-valued mapping ∂f is strongly subregular at x̄ for ȳ∗.

(ii) There exist a neighborhood U of x̄ and a positive constant c such that

(3.5) f(x) ≥ f(x̄) + ⟨ȳ∗, x− x̄⟩+ c∥x− x̄∥2 whenever x ∈ U.

(iii) There exist a neighborhood U of x̄ and a positive constant c such that

(3.6) ⟨y∗ − ȳ∗, x− x̄⟩ ≥ c∥x− x̄∥2, ∀x ∈ U, y∗ ∈ ∂f(x).

(iv) The point (x̄, ȳ) is locally strongly monotonically related to gph(∂f).

Proof. (i) ⇔ (ii) has been proved in Theorem 3.1.
(ii) ⇒ (iii). Suppose that (ii) holds and pick any x ∈ U and y∗ ∈ ∂f(x). Then
f(x̄) ≥ f(x) + ⟨y∗, x̄− x⟩, and thus

⟨y∗ − ȳ∗, x− x̄⟩ = ⟨y∗, x− x̄⟩+ ⟨ȳ∗, x̄− x⟩ ≥ c∥x− x̄∥2,
and (iii) holds.
(iii) ⇒ (iv) is straightforward.
(iv) ⇒ (i). Let c, U and V as in Definition 3.4. Then

⟨y∗ − ȳ∗, x− x̄⟩ ≥ c∥x− x̄∥2, for all (x, y∗) ∈ gph(∂f) ∩ (U × V ).

Take x ∈ U\{x̄}. If ∂f(x)∩V = ∅ we are done. Otherwise, pick any y∗ ∈ ∂f(x)∩V .
Then

∥x− x̄∥2 ≤ 1

c
⟨y∗ − ȳ∗, x− x̄⟩ ≤ 1

c
∥y∗ − ȳ∗∥∥x− x̄∥.

Hence, ∥x− x̄∥ ≤ 1

c
∥y∗− ȳ∗∥, and being this valid for all y∗ ∈ ∂f(x)∩V , we obtain

∥x− x̄∥ ≤ 1

c
d(ȳ∗, ∂f(x) ∩ V ),
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i.e., ∂f is strongly subregular at x̄ for ȳ∗ with constant
1

c
. �

The contingent derivative, a graphical concept of derivative for set-valued maps,
was initiated by Aubin in [5]; its definition strongly relies on the notion of contingent
cone (independently introduced by Bouligand and Severy in 1930, see comments
in [15, p. 133]). Recall that if K ⊂ X and x ∈ K (K denoting the closure of K)
then the contingent cone TK(x) is defined by

TK(x) :=

{
v ∈ X

∣∣∣∣ lim inf
τ→0+

d(x+ vτ,K)

τ
= 0

}
= lim sup

τ↓0

K − x

τ
.

The contingent derivative of F : X ⇒ Y at (x̄, ȳ) ∈ gphF is the set-valued map
DF (x̄|ȳ) from X to Y defined by

DF (x̄|ȳ)(w) := {z ∈ Y | (w, z) ∈ TgphF (x̄, ȳ)}.
Note that D∂f(x̄|∇f(x̄))(w) = {∇2f(x̄)w} when f is twice (Fréchet) differentiable
(see, e.g., [6, Proposition 5.1.2]). For more details on the contingent derivative, one
can refer to the comprehensive monograph [6] by Aubin and Frankowska.

Corollary 3.7. Consider a function f in Γ(X). Then ∂f is strongly subregular at
x̄ for ȳ∗ if there is a constant c > 0 such that D∂f(x̄|ȳ∗) is positive-definite with
modulus c in the sense that

(3.7) ⟨z∗, w⟩ ≥ c∥w∥2, for all w ∈ X and z∗ ∈ D∂f(x̄|ȳ∗)(w).
Moreover, the converse also holds true when dimX < ∞. Specifically, if (3.7) holds
then ∂f is strongly subregular at x̄ for ȳ∗ for any constant κ > 1/c.

Proof. Suppose first that ∂f is strongly subregular at x̄ for ȳ∗. Let w ∈ X and
consider z∗ ∈ D∂f(x̄, ȳ∗)(w). Then there are (xn, y

∗
n) ∈ gph ∂f and τn ↓ 0 with

(xn, y
∗
n) → (x̄, ȳ∗) and [(xn, y

∗
n) − (x̄, ȳ∗)]/τn → (w, z∗). Theorem 3.6 implies the

existence of a neighborhood U and a constant c such that (3.6) holds. Since xn ∈ U
eventually and y∗n ∈ ∂f(xn), one has

⟨y∗n − ȳ∗, xn − x̄⟩ ≥ c∥xn − x̄∥2 eventually.

Hence, ⟨
y∗n − ȳ∗

τn
,
xn − x̄

τn

⟩
≥ c

∥∥∥∥xn − x̄

τn

∥∥∥∥2 , eventually.

Making n → ∞ we obtain ⟨z, w⟩ ≥ c∥w∥2.
We offer two proofs of the converse. For the first one, observe that (3.7) implies

in particular that D∂f(x̄|ȳ∗)−1(0) = {0}, and then ∂f is strongly subregular at x̄
for ȳ∗ by [9, Theorem 5.3].

For the second proof of the converse, choose any κ > 1/c. We are going to prove
by contradiction that there are some neighborhoods U of x̄ and V of ȳ∗ such that

(3.8) ∥x− x̄∥ ≤ κ∥y∗ − ȳ∗∥ whenever (x, y∗) ∈ (gph ∂f) ∩ (U × V ).

Otherwise, for all n ∈ N there is (xn, y
∗
n) ∈ gph ∂f with ∥xn− x̄∥ ≤ 1/n, ∥y∗n− ȳ∗∥ ≤

1/n and such that ∥xn− x̄∥ > κ∥y∗n− ȳ∗∥. This implies xn ̸= x̄ for all n, and because
of the finite dimensionality of the space X, the bounded sequences (xn−x̄)/∥xn−x̄∥
and (y∗n − ȳ∗)/∥xn − x̄∥ must have some convergent subsequences. Replacing the
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original sequences by these subsequences we may assume that there are some points
w and z∗ with (

xn − x̄

∥xn − x̄∥
,
y∗n − ȳ∗

∥xn − x̄∥

)
→ (w, z∗) ∈ gphD∂f(x̄|ȳ∗).

By (3.7) we get

1 = ∥w∥ ≥ κ∥z∗∥ ≥ κc∥w∥ > 1,

which is a contradiction. Condition (3.8) implies strong subregularity of ∂f at x̄ for
ȳ∗ with any constant κ > 1/c. �

Corollary 3.8. Consider a function f in Γ(X), with dimX < ∞, and a point x̄ in
X such that f is twice (Fréchet) differentiable in a neighborhood of x̄. Then ∇f is
strongly subregular at x̄ for ∇f(x̄) if and only if there is a positive constant c such
that ∇2f(x̄) is positive-definite with modulus c, that is,

(3.9) ⟨∇2f(x̄)u, u⟩ ≥ c∥u∥2, |allu ∈ X.

Proof. Apply Corollary 3.7. �

The next result provides a sufficient condition for strong subregularity at any
point in the subdifferential.

Proposition 3.9. Let f be a function in Γ(X). Assume that there is a neighborhood
U of some point x̄ ∈ X such that for all x ∈ U, λ ∈ (0, 1),

(3.10) f((1− λ)x+ λx̄) ≤ (1− λ)f(x) + λf(x̄)− cλ(1− λ)∥x− x̄∥2.

Then for all y∗ ∈ ∂f(x̄), x ∈ U ,

(3.11) f(x) ≥ f(x̄) + ⟨y∗, x− x̄⟩+ c∥x− x̄∥2.

In particular, ∂f is strongly subregular at x̄ for any point y∗ such that y∗ ∈ ∂f(x̄).

Proof. Let y∗ ∈ ∂f(x̄), λ ∈ (0, 1) and x ∈ U . From (3.10) we get

(1− λ)f(x) ≥ f((1− λ)x+ λx̄)− λf(x̄) + cλ(1− λ)∥x− x̄∥2,

i.e.,

(3.12) f(x) ≥ 1

1− λ
f((1− λ)x+ λx̄)− λ

1− λ
f(x̄) + cλ∥x− x̄∥2.

Moreover, since y∗ ∈ ∂f(x̄), one has f((1 − λ)x + λx̄) ≥ f(x̄) + (1 − λ)⟨y∗, x − x̄⟩
and relation (3.12) yields

f(x) ≥ f(x̄) + ⟨y∗, x− x̄⟩+ cλ∥x− x̄∥2.

Making λ ↑ 1 in the latter inequality, one obtains (3.11). �

Remark 3.10. Observe that condition (3.10) is weaker than assuming strong con-
vexity of f on U , which entails the existence of a constant c > 0 such that

(3.13) f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2)− cλ(1− λ)∥x1 − x2∥2,

for all x1, x2 ∈ U and λ ∈ (0, 1).
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4. Consequences

In this final section we will show some direct consequences of the characterizations
of the metric subregularity and the strong subregularity of the subdifferential given
in the previous sections.

4.1. The proximal point algorithm. The proximal point algorithm was devel-
oped by Rockafellar in [20] for finding zeroes of maximally monotone operators.
Rockafellar proved, in particular, that the iterative process

(4.1) 0 ∈ λn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . .

known as the exact proximal point method (where λn is a sequence of positive
numbers and x0 ∈ X is the initial point), provides a sequence xn which is weakly
convergent to a solution to the inclusion 0 ∈ T (x) when T is a maximally monotone
operator. The particular case when T is the subdifferential of a lower semicontinuous
convex function is of special relevance; here the subproblem (4.1) becomes

(4.2) xn+1 := argmin
z

{
f(z) +

λn

2
∥z − xn∥2

}
,

transforming thus the single problem of minimizing a convex function into solving
a sequence of problems where the objective function is strongly convex, which im-
proves the convergence properties of some minimization algorithms (needed in order
to solve (4.2)). In addition, the term ∥z − xn∥2 forces the next iteration to remain
proximal to the previous one, while the parameter λn provides control on this effect.

In [1] the authors propose a generalization of the proximal point method without
assuming monotonicity of the operator in their convergence results. This general-
ization basically consists in replacing the constants λn in (4.1) by some functions gn
which are Lipschitz continuous on some neighborhood of 0 with Lipschitz constants
λn. This modification of the method allows the mapping T to act between two dif-
ferent (Banach) spaces X and Y . More specifically, choose a sequence of Lipschitz
continuous function gn : X → Y and consider the following algorithm:

(4.3) 0 ∈ gn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . . .

In particular, if T is strongly subregular around a solution x̄ for 0 with constant
κ > 0 and the Lipschitz constants λn are upper bounded by 1/(2κ), then any
sequence satisfying (4.3) and whose elements are sufficiently close to x̄, is linearly
convergent to this solution (see [1, Theorem 4.2]). Furthermore, the convergence is
superlinear when λn converges to 0. When T happens to be strongly regular, the
sequence exists and is unique (within a neighborhood of the solution). Therefore,
when T = ∂f for f ∈ Γ(X), the algorithm (4.3) is (super)linearly convergent if
the quadratic growth condition (3.1) is satisfied. One can find a similar condition
to (3.1) for the convergence of the classical algorithm (4.2) in [13, Th. 3.1].

Another interesting approach can be found in [14], where the author assumes
both maximal monotonicity and metric subregularity of the mapping T around some
solution x̄, and proves the local (super)linear convergence of the algorithm. Again,
for the particular case of minimizing a lower semicontinuous convex function f , since
the subdifferential ∂f is a maximal monotone mapping (see [19, Theorem A]), the
linear convergence of the algorithm is then guaranteed under metric subregularity



METRIC SUBREGULARITY OF THE CONVEX SUBDIFFERENTIAL IN BANACH SPACES 45

of the subdifferential. Thus, the exact proximal point algorithm (4.2) is linearly
convergent when (2.1) is satisfied, and the convergence is superlinear if λn converges
to 0.

4.2. Calmness and solution maps to parametric generalized equations.
We begin by recalling the definitions of two properties closely tied to metric sub-
regularity: calmness and isolated calmness.

Definition 4.1. A set-valued mapping F : X ⇒ Y is said to be calm at x̄ for ȳ if
ȳ ∈ F (x̄) and there is a positive constant κ along with neighborhood U of x̄ and V
of ȳ such that

(4.4) e(F (x) ∩ V, F (x̄)) ≤ κ∥x− x̄∥, for all x ∈ U.

Definition 4.2. A set-valued mapping F : X ⇒ Y is said to have the isolated
calmness property at x̄ for ȳ if F is calm at x̄ for ȳ and, in addition, ȳ is an isolated
point of F (x̄).

Equivalently, F has the isolated calmness property with constant κ > 0 if there
exist some neighborhoods U of x̄ and V of ȳ such that

∥y − ȳ∥ ≤ κ∥x− x̄∥, for all x ∈ U and y ∈ F (x) ∩ V.

It is well-known that F is calm with constant κ at some point x̄ for ȳ if and only if
the inverse mapping F−1 is metrically subregular at ȳ for x̄ with the same constant
(see, e.g., [10, Th. 3H.3]). Similarly, F has the isolated calmness at some x̄ for ȳ if
and only if F−1 is strongly metrically subregular ȳ for x̄, see e.g. [10, Th. 3I.2].

For any function f : X → R ∪ {∞}, the Fenchel conjugate (also called the
Legendre-Fenchel conjugate or transform) of f is the function f∗ : X∗ → [−∞,+∞]
defined by

f∗(x∗) := sup
x∈X

{⟨x∗, x⟩ − f(x)}.

The Fenchel conjugate is always a convex and lower semicontinuous function. More-
over, if X is reflexive and f is proper, convex and lower semicontinuous, then
(∂f)−1 = ∂f∗ : X∗ ⇒ X. Hence we obtain the next result as a direct consequence
of Theorem 2.1 and Theorem 3.1.

Corollary 4.3. Given a reflexive Banach space X, consider a function f ∈ Γ(X)
and points x̄ ∈ X and ȳ∗ ∈ X∗ such that ȳ∗ ∈ ∂f(x̄). Then the following assertions
hold.

(i) ∂f is calm at x̄ for ȳ∗ if and only if there exist a neighborhood V of ȳ and
a positive constant c such that

(4.5) f∗(y∗) ≥ f∗(ȳ∗) + ⟨x̄, y∗ − ȳ∗⟩+ cd2(y, ∂f(x̄)) whenever y∗ ∈ V.

Specifically, if ∂f is calm at x̄ for ȳ∗ with constant κ, then (4.5) holds for
all c < 1/(4κ); conversely, if (4.5) holds with constant c, then ∂f is calm
at x̄ for ȳ∗ with constant 1/c.

(ii) ∂f has the isolated calmness property at x̄ for ȳ∗ if and only if there exist
a neighborhood V of ȳ∗ and a positive constant c such that

(4.6) f∗(y∗) ≥ f∗(ȳ∗) + ⟨x̄, y∗ − ȳ∗⟩+ c∥y∗ − ȳ∗∥2 whenever y∗ ∈ V.
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Specifically, if ∂f has the isolated calmness property at x̄ for ȳ∗ with con-
stant κ, then (4.6) holds for all c < 1/(4κ); conversely, if (4.6) holds with
constant c, then ∂f has the isolated calmness property at x̄ for ȳ∗ with
constant 1/c.

Our final statement provides quadratic growth characterizations of the metric
subregularity and calmness properties of solution maps to parametric generalized
equations.

Corollary 4.4. Let

S(x) :=
{
y ∈ Y

∣∣ 0 ∈ f(x, y) + ∂φ(y)
}
, x ∈ X,(4.7)

define the solution map of the parametric generalized equation with the reflexive
Banach space Y of decision variables and the Banach space X of parameters, and
let φ ∈ Γ(Y ). Given (x̄, ȳ) ∈ gphS, assume that f : X × Y → Y is Lipschitz
continuous around (x̄, ȳ) and partially strictly differentiable at this point with respect
to x uniformly in y and that its partial derivative operator ∇xf(x̄, ȳ) : X → Y is
surjective. The following hold:

(i) The solution map S in (4.7) is metrically subregular at x̄ for ȳ if and only
if the conjugate growth condition (4.5) is satisfied.

(ii) The solution map S is strongly subregular at x̄ for ȳ if and only if the
conjugate growth condition (4.6) is satisfied.

(iii) Suppose that the base mapping f = f(x) in (4.7) does not depend on the
decision variable y. Then the solution map S is calm at x̄ for ȳ if and only
if the growth condition (2.1) is satisfied.

(iv) If the quadratic growth condition (3.1) holds with constant c > 0 and the
partial Lipschitz modulus of f with respect to y is smaller than c, then the
solution map S has the isolated calmness property at x̄ for ȳ.

Proof. Assertions (i) and (ii) follow from Corollary 4.3, [3, Cor.3.5] and [4, Th. 5.10].
Assertion (iii) is a consequence of Theorem 2.1 and [3, Th. 5.6]. Assertion (iv)
follows from Theorem 3.1 and [4, Th. 4.3]. �
Remark 4.5. The converse of Corollary 4.4(iv) also holds under some additional
conditions, see [4, Th. 5.5].
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