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In many applications we consider topologies generated by some families of con-
tinuous and linear functionals. Therefore we recall the following definitions. Let
(X, ∥·∥) be a Banach space and let Γ be a nonempty subspace of its dual X∗. If

sup {f (x) : f ∈ Γ, ∥f∥ = 1} = ∥x∥
for each x ∈ X, then we say that Γ is a norming set for X. It is obvious that a
norming set generates a Hausdorff linear topology σ (X,Γ) on X which is weaker
than the weak topology σ (X,X∗). In the case when Γ is a norming subset ofX∗ and
C a nonempty subset ofX we say that C satisfies the Γ-Opial condition (the Γ-Opial
condition for nets), if C satisfies the σ (X,Γ)-Opial condition (the σ (X,Γ)-Opial
condition for nets). Now, let us observe that the following theorem is valid.

Theorem 2.1 ( [6]). Let (X, ∥·∥) be a Banach space, Γ be a norming set for X and
C a nonempty, bounded and sequentially Γ-compact subset of X. Then for such a
C the Γ-Opial condition for nets is equivalent to the Γ-Opial condition.

Remark 2.2. For the weak topology the above theorem was proved (by using a
different method) by W. Kaczor and S. Prus [17].

Next, we will also use the notions of an asymptotic radius and an asymptotic
center [10]. Let (X, ∥ · ∥) be a Banach space and C a nonempty subset of X. For
x ∈ X and a bounded sequence {xn} ⊂ X(a bounded net {xα}α∈I ⊂ X), define the
asymptotic radius of {xn} ({xα}α∈I) at x as the number

r(x, {xn}) = lim sup
n

∥xn − x∥(
r(x, {xα}α∈I) = lim sup

α
∥xα − x∥

)
.

The asymptotic radius of {xn} ({xα}α∈I) in C is the number

r(C, {xn}) = inf {r(x, {xn}) : x ∈ C}

(r(C, {xα}α∈I) = inf {r(x, {xα}α∈I) : x ∈ C})
and the asymptotic center of {xn} ({xα}α∈I) in C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}

(A(C, {xα}α∈I) = {x ∈ C : r(x, {xα}α∈I) = r(C, {xα}α∈I)}) .
Finally, we recall definitions of a nonexpansive mapping and a nonexpansive

retraction. Let (X, ∥ · ∥) be a Banach space. If C,C1 are nonempty subsets of X
and T : C → C1 satisfies

∥Tx− Ty∥ ≤ ∥x− y∥
for each x, y ∈ C, then T is called a nonexpansive mapping.

We say that a nonempty C ⊂ X has FPP (the fixed point property) for non-
expansive mappings if each nonexpansive T : C → C has a fixed point, i.e. there
exists x0 ∈ C such that Tx0 = x0. Then the set {x ∈ C : Tx = x} is denoted by
FixT and called the fixed point set of T .

If for a nonempty subset D ⊂ C there exists a nonexpansive mapping r : C → D
such that r(x) = x for each x ∈ D, then D is called a nonexpansive retract of C
and the mapping r is called a nonexpansive retraction.
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3. Fixed point theorems in Cartesian product of sets

The following theorems are generally known.

Theorem 3.1. Let (X, ∥·∥) be a Banach space with the Hausdorff vector topology T
and let a nonempty, bounded, convex, and sequentially compact in T subset C ⊂ X
have the T -Opial property. Then C has FPP for nonexpansive mappings.

Theorem 3.2. Let (X, ∥ · ∥) be a Banach space with the Hausdorff vector topology
T such that the norm ∥·∥ is lower semicontinuous in this topology. Let a nonempty,
bounded, convex, and compact in T subset C ⊂ X have the T -Opial property for
nets. Then C has FPP for nonexpansive mappings and for each nonexpansive map-
ping T : C → C its fixed point set FixT is a nonexpansive retract of C.

Till the end of this chapter we will always assume that if (X1, ∥·∥1) and (X2, ∥·∥2)
are Banach spaces then the norm in the Cartesian product X1×X2 is the max norm.
We will investigate fixed point property of subsets of the Cartesian products of two
sets with the Opial property (with the Opial property for nets). The two basic
theorems are the following.

Theorem 3.3. Let (X1, ∥ · ∥1) and (X2, ∥ · ∥2) be Banach spaces with the Hausdorff
vector topologies T1 and T2, respectively. Let the norms ∥ · ∥1 and ∥ · ∥2 be lower
semicontinuous with respect to the topologies T1 and T2, respectively. Let nonempty
bounded convex sets C1 ⊂ X1 and C2 ⊂ X2 be sequentially compact in T1 and
T2, respectively, and let C1 have the T1-Opial property and C2 have the T2-Opial
property. If a nonempty and convex subset C of C1 × C2 is closed in the topology
T1 × T2, then C has FPP for nonexpansive mappings.

Proof. Let T = (T1, T2) : C → C be a nonexpansive mapping. Choose x̃ =
(x̃1, x̃2) ∈ C. For each n ∈ N there exists a unique xn = (x1n, x2n) ∈ C such
that

xn =
1

n
x̃+

(
1− 1

n

)
Txn.

Then ∥Txn−xn∥→n0. Taking a subsequence {xnk
}, which tends to y = (y1, y2) ∈ C

in the topology T1 × T2, by the Opial property we get y ∈ A(C, {xnk
}) and next

lim sup
k

∥xnk
− Tx∥ = lim sup

k
∥Txnk

− Tx∥ ≤ lim sup
k

∥xnk
− x∥

for each x ∈ A(C, {xnk
}), i.e.

T (A(C, {xnk
})) ⊂ A(C, {xnk

}).
Without loss of generality we can assume that

lim sup
k

∥xnk
− y∥ = max{lim sup

k
∥x1nk

− y1∥1, lim sup
k

∥x2nk
− y2∥2}

= lim sup
k

∥x1nk
− y1∥1,

which implies (by the Opial property)

A(C, {xnk
}) = {y1} ×D2,

where D2 is a nonempty, convex and norm-closed subset of C2.
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The asymptotic center A(C, {xnk
}) is T -invariant. Choose w̃ = (w̃1, w̃2) ∈

A(C, {xnk
}). For each n ∈ N there exists a unique wn = (w1n, w2n) ∈ A(C, {xnk

})
such that

wn =
1

n
w̃ +

(
1− 1

n

)
Twn.

Then ∥Twn − wn∥→n0. Take a subsequence {wnk
} which tends to w = (w1, w2) =

(y1, w2) ∈ C in the topology T1 × T2. By the Opial property we obtain w ∈
A(C, {wnk

}) and next

lim sup
k

∥wnk
− Tx∥ = lim sup

k
∥Txnk

− Tx∥ ≤ lim sup
k

∥xnk
− x∥

for each x ∈ A(C, {wnk
}). It is easy to observe that

A(C, {wnk
}) = (B(w1, r(C, {wnk

})× {w2}) ∩ C = B1 × {w2},
where B(w1, r(C, {wnk

}) is a closed ball in (X1, ∥ · ∥1). Therefore the set B1 ⊂ X1

is nonempty, convex, sequentially compact in T1, T (·, w2)-invariant and T2(B1 ×
{w2}) = {w2}. By Theorem 3.1, the nonexpansive mapping T1(·, w2) : B1 → B1

has a fixed point w̄1 ∈ B1 and hence the point w̄ = (w̄1, w2) ∈ C is a fixed point of
T . This completes the proof. �
Theorem 3.4. Let (X1, ∥ · ∥1) and (X2, ∥ · ∥2) be Banach spaces with the Haus-
dorff vector topologies T1 and T2, respectively. Let the norms ∥ · ∥1 and ∥ · ∥2 be
lower semicontinuous with respect to the topologies T1 and T2, respectively, and let
nonempty bounded convex sets C1 ⊂ X1 and C2 ⊂ X2 be compact in T1 and T2,
respectively. Let C1 have the T1-Opial property for nets and C2 have the T2-Opial
property for nets. If a nonempty and convex subset C of C1 × C2 is closed in the
topology T1 × T2, then C has FPP for nonexpansive mappings and for each nonex-
pansive mapping T : C → C a fixed point set FixT is a nonexpansive retract of
T .

Proof. Let T = (T1, T2) : C → C be a nonexpansive mapping. For each x =
(x1, x2) ∈ C and for each n ∈ N there exists a unique F (x, n) = (F1(x, n), F2(x, n)) ∈
C such that

F (x, n) =
1

n
x+

(
1− 1

n

)
T (F (x, n)).

Each mapping F (·, n) : C → C is nonexpansive. The set N of all natural numbers
can be treated as a sequence {n}n∈N. Hence it has a subnet {nα}α∈I which is an
ultranet (see [11] and [18] for properties of ultranets). Then for each x ∈ C we
get convergence of {F (x, nα)}α∈I to y(x) = (y1(x), y2(x)) ∈ C (in the topology
T1 ×T2). By lower semicontinuity of norms ∥ · ∥1 and ∥ · ∥1 in the topologies T1 and
T2, respectively, the mapping y(·) : C → C is nonexpansive. Next, by the Opial
property for nets, we get y(x) ∈ A(C, {F (x, nα)}α∈I) and

lim
α

∥T (F (x, nα))− F (x, nα)∥ = 0,

∥F (x, nα)− F (x̃, nα)∥ ≤ ∥x− x̃∥
for each x, x̃ ∈ C, and

lim sup
α

∥F (x, nα)−T (z)∥ = lim sup
k

∥T (F (x, nα))−T (z))∥ ≤ lim sup
k

∥F (x, nα)− z∥
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for each z ∈A(C, {F (x, nα}α∈I), i.e., T (A(C, {F (x, nα)}α∈I)) ⊂A(C, {F (x, nα)}α∈I)
for each x ∈ C. Let us observe that now we have two cases: either

lim sup
α

∥F (x, nα)− y(x)∥

= max{lim sup
α

∥F1(x, nα)− y1(x)∥1, lim sup
α

∥F2(x, nα)− y2(x)∥2}

= lim sup
α

∥F1(x, nα)− y1(x)∥1
or

lim sup
α

∥F (x, nα)− y(x)∥

= max{lim sup
α

∥F1(x, nα)− y1(x)∥1, lim sup
α

∥F2(x, nα)− y2(x)∥2}

= lim sup
α

∥F2(x, nα)− y2(x)∥2.

Then (by the Opial property for nets) we get

A(C, {F (x, nα)}α) = {y1(x)} ×D2

in the first case and

(A(C, {F (x, nα)}α) = D1 × {y1(x)})

in the second one, where D2 (D1) is a nonempty, convex and norm-closed subset of
C2 (C1). The asymptotic center A(C, {F (x, nα)}α) is T -invariant and therefore for
each n ∈ N there exists a unique G(x, n) = (G1(x, n), G2(x, n)) ∈ A(C, {F (x, nα)}α)
such that

G(x, n) = F (y(x), n) =
1

n
y(x) +

(
1− 1

n

)
TF (y(x), n)

=
1

n
y(x) +

(
1− 1

n

)
TG(x, n).

Then ∥TG(x, n)−G(x, n)∥→n0. Taking an ultranet {G(x, nα)}α∈I , which tends (in
the topology T1 × T2) to

w(x) = (w1(x), w2(x)) = (y1(x), w2(x)) ∈ C

in the first case and to

w(x) = (w1(x), w2(x)) = (w1(x), y2(x)) ∈ C

in the second case, we obtain w(x) ∈ A(C, {G(x, nα)}α∈I) (by the Opial property
for nets). Next, we have

lim sup
α

∥G(x, nα)− Tz∥ = lim sup
α

∥T (G(x, nα)− Tz∥ ≤ lim sup
α

∥G(x, nα)− z∥

for each z ∈ A(C, {G(x, nα)}α∈I). As in the first part of this proof we can show that
each mapping G(·, n) : C → C and the mapping w(·) : C → C are nonexpansive. It
is easy to observe that

A(C, {G(x, nα)}α∈I) = (B(w1, r(C, {G(x, nα)}α∈I))× {w2(x)}) ∩ C

= B1(x)× {w2(x)}
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in the first case and

A(C, {G(x, nα)}α∈I) = ({w1(x)} × (B(w2, r(C, {G(x, nα)}α∈I)) ∩ C

= {w1(x)} ×B2(x)

in the second one. Therefore the set B1(x) ⊂ X1 (B2(x) ⊂ X2) is nonempty, convex,
compact in T1 (T2) and T1(·, w2(x))-invariant (T2(w1(x), ·)-invariant). Additionally,
we have T2(B1(x) × {w2(x)}) = {w2(x)} (T1({w1(x)} × B2(x)) = {w1(x)}). Once
more we take a sequence {H(x, n)} such that

H(x, n) = (H1(x, n),H2(x, n)) ∈ A(C, {G(x, nα)}α) = B1(x)× {w2(x)}

or, respectively,

H(x, n) = (H1(x, n),H2(x, n)) ∈ A(C, {G(x, nα)}α) = {w1(x)} ×B2(x)

and

H(x, n) = F (w(x), n) =
1

n
w(x) +

(
1− 1

n

)
TF (w(x), n)

=
1

n
w(x) +

(
1− 1

n

)
TH(x, n)

for n ∈ N. Then the ultranet {H(x, nα)}α∈I tends to

r(x) = (r1(x), r2(x)) = (r1(x), w2(x)) ∈ A(C, {H(x, nα)}α) = B1(x)× {w2(x)}

or, respectively, to

r(x) = (r1(x), r2(x)) = (w1(x), r2(x)) ∈ A(C, {H(x, nα)}α) = {w2(x)} ×B2(x)

in the topology T1 × T2. By the Opial property for nets we obtain

{r(x)} = A(A(C, {G(x, nα)}α), {H(x, nα)}α∈I)
= A(B1(x)× {w2(x)}, {H(x, nα)}α∈I)

in the first case and

{r(x)} = A(A(C, {G(x, nα)}α), {H(x, nα)}α∈I)
= A({w1(x)} ×B2(x), {H(x, nα)}α∈I)

in the second one. Since

A(A(C, {G(x, nα)}α), {H(x, nα)}α∈I)

is T -invariant, we have T (r(x)) = r(x). It is obvious that if x ∈ FixT , then
T (r(x)) = x. As in the previous step we can prove that the mappings H(·, n) and
r(·) : C → C are nonexpansive. This completes the proof. �

4. The case of families of mappings

We begin this part of the paper with a result about a finite family of nonexpansive
retracts in a more general setting. The idea of this theorem and its proof are due
to R. E. Bruck [2].
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Theorem 4.1. Let C be a subset of a Banach space X with the FPP and for each
nonexpansive T : C → C let the fixed point set FixT be a nonexpansive retract
of C. Then every finite family {T1, . . . , Tm} of commuting nonexpansive mappings
from C to C has a nonempty common fixed point set FixT1 ∩ · · · ∩FixTn, which is
a nonexpansive retract of C.

Our first result in this section is the following.

Theorem 4.2. Let (X, ∥ · ∥) be a Banach space with the Hausdorff vector topology
T such that (X, ∥ · ∥) has the T -Opial property for nets. Let the norm ∥ · ∥ be lower
semicontinuous with respect to the topology T . If a nonempty bounded convex set
C ⊂ X is compact in T , then for any infinite family M = {Tα}α∈I of commuting
nonexpansive self-mappings of C the set Fix(M) =

∩
α∈I Fix(Tα) of common fixed

points of M is a nonempty nonexpansive retract of C.

Proof. Let J be the set of all finite subsets of I. To each j ∈ J there corresponds
a subset {α1, ..., αm}, and by Theorems 3.4 and 4.1, there exists a nonexpansive
retraction rj : C →

∩m
i=1 Fix(Tαi). The set J is directed by inclusion and can be

considered as a net itself. Let (jβ)β∈J ′ be an ultranet in J . For each x ∈ C consider
the ultranet (rjβ (x))β∈J ′ . By the T -compactness of C this ultranet tends in T to
r(x) ∈ C. By the lower semicontinuity of the norm ∥·∥ with respect to the topology
T the mapping r : C → C is nonexpansive. Moreover, for each x ∈ C and each
α ∈ I we obtain

lim sup
β∈J ′

∥Tα(r(x))− rjβ (x)∥ = lim sup
β∈J ′

∥Tα(r(x))− Tα(rjβ (x))∥

≤ lim sup
β∈J ′

∥r(x)− rjβ (x)∥,

which combined with the Opial property for nets gives

Tα(r(x)) = r(x).

It then follows that the set of common fixed points
∩

α∈I Fix(Tα) is nonempty.
Next, we have r(x) = x for each x ∈ Fix(T ) =

∩
α∈I Fix(Tα). Hence

r(C) =
∩
α∈I

Fix(Tα)

and r is the desired retraction. �

Now we consider the Cartesian product of two Banach spaces.

Theorem 4.3. Let (X1, ∥ · ∥1) and (X2, ∥ · ∥2) be Banach spaces with the Haus-
dorff vector topologies T1 and T2, respectively. Let the norms ∥ · ∥1 and ∥ · ∥2 be
lower semicontinuous with respect to the topologies T1 and T2, respectively, and let
nonempty bounded convex sets C1 ⊂ X1 and C2 ⊂ X2 be compact in T1 and T2,
respectively. Let C1 have the T1-Opial property for nets and C2 have the T2-Opial
property for nets. If a nonempty and convex subset C of C1 × C2 is closed in the
topology T1 × T2, then for any infinite family M = {Tα}α∈I of commuting nonex-
pansive self-mappings of C the set Fix(M) =

∩
α∈I Fix(Tα) of common fixed points

of M is a nonempty nonexpansive retract of C.
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Proof. As in the previous proof we consider the set J of all finite subsets of I. To
each j ∈ J there corresponds a subset {α1, ..., αm}, and by Theorems 4.1 and 4.2,
there exists a nonexpansive retraction rj = (r1j , r2j) : C →

∩m
i=1 Fix(Tαi). Once

more the set J is directed by inclusion and can be considered as a net itself. Let
(jβ)β∈J ′ be an ultranet in J . Choose x ∈ C. For this x consider the ultranet
{rjβ (x)}β∈J ′ . By the T1 × T2-compactness of C this ultranet tends in T1 × T2
to y(x) = (y1(x), y2(x)) ∈ C. Now we use the asymptotic center method. The
asymptotic center of {rjβ (x)}β∈J ′ with respect to C is a nonempty, closed in norm
and convex subset of C. Next, it is easy to note that if j ∈ J, β ∈ J ′ and j ≤ jβ,
then

rj
(
rjβ (x)

)
= rjβ (x)

and hence the inequality

r
(
rj (z) , {rjβ (x)}β∈J ′

)
= lim sup

β
∥rj (z)− rjβ (x)∥

≤ lim sup
β

∥z − rjβ (x)∥

= r
(
z, {rjβ (x)}β∈J ′

)
is valid for each j ∈ J and each z ∈ C. This implies that the asymptotic center
A
(
C, {rjβ (x)}β∈J ′

)
is rj-invariant for each j ∈ J . Moreover, by the Opial property

for nets, the asymptotic center A
(
C, {rjβ (x)}β∈J ′

)
is equal either to the Cartesian

product

{y1(x)} ×D2(x)

or to the Cartesian product

D1 × {y2(x)},
where D1 and D2 are nonempty, convex and norm- closed subsets of C. This
procedure defines the mapping y(·) : C → C which is nonexpansive (by lower
semicontinuity of the norms ∥ · ∥1 and ∥ · ∥2 in the topologies T1 and T2, respec-
tively). Now, we repeat the above reasoning. Namely, we consider the ultranet
{rjβ (y(x))}β∈J ′ and asymptotic center A(C, {rjβ (y(x))}β∈J ′) of this net with re-
spect to the set C. The ultranet {rjβ (y(x))}β∈J ′ tends to w(x) = (w1(x), w2(x)) =
(y1(x), w2(x)) ∈ C (w(x) = (w1(x), w2(x)) = (w1(x), y2(x)) ∈ C in the second
case) in the topology T1 × T2. Again, by the Opial property for nets, we obtain
w(x) ∈ A(C, {rjβ (y(x))}β∈J ′) and next

r
(
rj (z) , {rjβ (y(x))}β∈J ′

)
= lim sup

β
∥rj (z)− rjβ (y(x))∥

≤ lim sup
β

∥z − rjβ (y(x))∥

= r
(
z, {rjβ (y(x))}β∈J ′

)
is valid for each j ∈ J and each z ∈ C. This implies that the asymptotic center
A
(
C, {rjβ (y(x))}β∈J ′

)
is rj-invariant for each j ∈ J . Likewise, we can prove that

the mapping w(·) : C → C is nonexpansive. Now, it is easy to observe that we have

A
(
C, {rjβ (y(x))}β∈J ′

)
= (B(w1(x), r(C, {G(x, nα)}α∈I))× {w2(x)}) ∩ C

= B1(x)× {w2(x)}
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in the first case and

A
(
C, {rjβ (y(x))}β∈J ′

)
=

(
{w1(x)} × (B(w2(x), r(C, {rjβ (y(x))}β∈J ′)

)
∩ C

= {w1(x)} ×B2(x)

in the second case. The set B1(x) ⊂ X1 (B2(x) ⊂ X2) is nonempty, convex,
compact in T1 (T2) and r1j(·, w2(x))-invariant (r2j(w1(x), ·)-invariant) for each j ∈
J . Additionally, we have r2j(B1(x)× {w2(x)}) = {w2(x)} (r1j({w1(x)} ×B2(x)) =
{w1(x)}) for each j ∈ J . Once more we take the ultranet {rjβ (w(x))}β∈J ′ which
tends (in the topology T1 × T2) to

R(x) = (R1(x), R2(x)) = (R1(x), w2(x)) ∈ A(C, {rjβ (w(x))}β∈J ′)

= B1(x)× {w2(x)}

in the first case and to

R(x) = (R1(x), R2(x)) = (w1(x), r2(x)) ∈ A(C, {rjβ (w(x))}β∈J ′)

= {w2(x)} ×B2(x)

in the second case. By the Opial property for nets we obtain, respectively,

{R(x)} = A(A(C, {rjβ (y(x))}β∈J ′), {rjβ (w(x))}β∈J ′)

= A(B1(x)× {w2(x)}, {rjβ (y(x))}β∈J ′)

and

{R(x)} = A(A(C, {rjβ (y(x))}β∈J ′), {rjβ (w(x))}β∈J ′)

= A({w1(x)} ×B2(x), {rjβ (y(x))}β∈J ′).

Now, since A(A(C, {rjβ (y(x))}β∈J ′), {rjβ (y(x))}β∈J ′) is rj-invariant for each j ∈ J ,
we have rj(R(x)) = R(x). It is obvious that if x ∈ Fix(M) =

∩
α∈I Fix(Tα), then

rj(R(x)) = x. As in the previous step we can prove that the mapping R(·) : C → C
is nonexpansive. This completes the proof. �
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[14] K. Goebel, T. Sȩkowski and A. Stachura, Uniform convexity of the hyperbolic metric and fixed

points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4 (1980), 1011–1021.
[15] J.-P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for

nonexpansive mappings, Pacific J. Math. 40 (1972), 565–573.
[16] W. Kaczor, T. Kuczumow and M. Michalska, Convergence of ergodic means of orbits of semi-

groups of nonexpansive mappings in sets with Γ-Opial property, Nonlinear Analysis 67 (2007),
2122–2130.

[17] W. Kaczor and S. Prus, Asymptotical smoothness and its applications, Bull. Austral. Math.
Soc. 66 (2002), 405–418.

[18] J. L. Kelley, General Topology, Springer, New York, 1975.
[19] M. A. Khamsi, On uniform Opial condition and uniform Kadec-Klee property in Banach and

metric spaces, Nonlinear Analysis 26 (1996), 1733–1748.
[20] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory,

Pure and Applied Mathematics (New York), John Willey & Sons, Inc., New York, 2001.
[21] T. Kuczumow, Opial’s modulus and fixed points of semigroups of mappings, Proc. Amer. Math

Soc. 127 (1999), 2671–2678.
[22] T. Kuczumow and S. Reich, Opial’s property and James’ quasi-reflexive space, Comment.

Math. Univ. Carolinae 35 (1994), 283–289.
[23] T. Kuczumow and S. Reich, An application of Opial’s modulus to the fixed point theory of

semigroups of Lipschitzian mappings, Ann. Univ. Mariae Curie Sk lodowska 51 (1997), 185–
192.

[24] T. Kuczumow, S. Reich and M. Schmidt, A fixed point property of l1-product spaces, Proc.
Amer. Math. Soc. 119 (1993), 457–463.

[25] T. Kuczumow, S. Reich and D. Shoikhet, Fixed points of holomorphic mappings: a metric
approach, Handbook of Metric Fixed Point Theory (Eds. W. A. Kirk and B. Sims), Kluwer
Academic Publishers, Dordrecht, 2001, pp. 437-515.

[26] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive
mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.

[27] S. Prus, Geometrical background of metric fixed point theory, Handbook of Metric Fixed Point
Theory (Eds. W. A. Kirk and B. Sims), Kluwer Acad. Publ., Dordrecht, 2001, 93-132.

[28] B. Sims, A support map characterization of the Opial conditions, Miniconference on Linear
Analysis and Function Spaces (Canberra, 1984), Proc. Centre Math. Anal. Austral. Nat. Univ.,
9, Austral. Nat. Univ., Canberra, 1985, pp. 259–264.

[29] T. Suzuki, Some remarks on the set of common fixed points of one-parameter semigroups of
nonexpansive mappings in Banach spaces with the Opial property, Nonlinear Anal. 58 (2004),
441–458.

[30] D. Van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J.
London Math. Soc. 25 (1982), 139–144.
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