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Definition 1.2. We say that a holomorphic map h : B 7→ X is pseudo-dissipative
if there is ε > 0 such that the convex hull of the set

Ωε(h) := {⟨h(z), z∗⟩, 1− ε < ∥z∥ < 1}
is not the whole plane C.

Remark 1.3. If h is uniformly continuous on B, then its pseudo-dissipativeness
actually means that the numerical range of h (see [11]) lies in a half-plane.

Remark 1.4. It is clear that the pseudo-dissipativeness of h is equivalent to the
following condition: there is ε > 0 such that

(1.1) Re eiθ⟨h(z), z∗⟩ ≤ a∥z∥2 + b
(
1− ∥z∥2

)
, 1− ε < ∥z∥ < 1,

for some real θ, a and b. For some technical reasons inequality (1.1) is more
convenient for our further considerations.

Let A : X 7→ X be a continuous linear operator. Then one defines

m(A) := inf{Re ⟨Av, v∗⟩ : ∥v∥ = 1}
and the numerical radius of A as

V (A) := sup{|⟨Av, v∗⟩| : ∥v∥ = 1}.
The main result of this paper is the following

Theorem 1.5. Let B be the unit ball in a complex Banach space X. Let F be
a pseudo-dissipative holomorphic map on B, i.e., for some real a, b, θ and ε > 0,
inequality (1.1) holds for z, 1− ε < ∥z∥ < 1. Then

(i) inequality (1.1) holds with b = ∥F (0)∥ and the same a and θ for all z ∈ B;
(ii) m(eiθA) ≤ a, where A = DF (0);
(iii) F has unit radius of boundedness. Moreover, for all z ∈ B the following

estimate holds:

∥F (z)− F (0)∥ ≤ ∥z∥
(
|a|+ eV (eiθA− a · id)

)
+ 4∥z∥2∥F (0)∥+ 8∥z∥2 1− ∥z∥ ln 2

(1− ∥z∥)2
(
a−m(eiθA)

)
< 4∥F (0)∥ · ∥z∥2 + |a| · α∥z∥

(1− ∥z∥)2
+ V (A) · β∥z∥

(1− ∥z∥)2
,

(1.2)

where α =
8(e ln 2 + ln 2 + 1− e)

8 ln 2− e− 1
< 3.8 and β =

8(e ln 2 + 2− e)

8 ln 2− e
< 3.3 .

Corollary 1.6. Let D be a domain in X, B ⊂ D, and let F : D 7→ D be pseudo-
dissipative on B such that F (0) = 0 and DF (0) = A. If operator eiθA − a · id is
power bounded, then there is a bounded neighborhood of the origin which is invariant
under F .

Let G : B 7→ X be holomorphic. The map G is called an infinitesimal generator
if the Cauchy problem {•

z (t) = G(z(t))

z(0) = z0
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has a solution [0,+∞) ∋ t 7→ z(t) for all z0 ∈ B.
We will see below (see Lemma 2.3) that a map G : B 7→ X is an infinitesimal

generator on B if and only if it satisfies the inequality

Re ⟨G(z), z∗⟩ ≤ b(1− ∥z∥2), 1− ε < ∥z∥ < 1,

for some ε > 0 and b ∈ R (cf., formula (2.1)). Therefore, we obtain from Theorem 1.5
that that each holomorphic generator satisfies the following inequality:

∥G(z)−G(0)∥ ≤ 4∥z∥2∥G(0)∥+ e∥z∥V (T )− 8m(T )∥z∥2 1− ∥z∥ ln 2
(1− ∥z∥)2

< 4∥z∥2∥G(0)∥+ β∥z∥
(1− ∥z∥)2

V (T ), where T = DG(0) and β < 3.3 .

(1.3)

In case X = Cn with some norm ∥ · ∥, under the conditions that G(0) = 0 and
m(T ) < 0, the last estimate has been proved in [7, Lemma 2.4] (generalizing the
previous result for the case T = id in [10, Theorem 1.2]). In [12, Theorem 8] a
similar growth estimate for holomorphic maps G : B 7→ X with bounded numerical
range and such that G(0) = 0, DG(0) = id is given. Note that estimate (1.3) is
more precise than those mentioned above.

Also, even in finite dimensional spaces, Theorem 1.5 has some interesting appli-
cations. For instance, it can be used to give an answer to the following natural
question.

Question: Let {Gn} be a family of infinitesimal generators on the unit ball
B of a complex Banach space. Which are the “minimal” possible conditions that
guarantee that the family contains a convergent subsequence?

In [4, Lemma 2.2] it is shown that if B = D is the unit disc in C, then {Gn}
contains a convergent subsequence if there exist two points z ̸= w ∈ D such that
{Gn} is equibounded at z and w. The argument there is strongly based on the so-
called Berkson-Porta formula. It is not clear whether and how a similar statement
can be prove in higher dimensions. However, Theorem 1.5 allows to prove the
following:

Corollary 1.7. Let D ⊂ Cn be a bounded balanced convex domain. Let {Gn} be a
family of infinitesimal generators on D. Suppose that there exists C > 0 such that

∥Gn(0)∥+ ∥G′
n(0))∥ ≤ C,

where here we denote by ∥G′
n(0)∥ the operator norm of the differential of Gn at 0.

Then there exists a subsequence of {Gn} which converges uniformly on compacta to
an infinitesimal generator.

This work started when the first and third authors where visiting the Mittag-
Leffler Institute during the program “Complex Analysis and Integrable Systems”
in Fall 2011. Both authors thank the organizers and the Institute for the kind
hospitality and the atmosphere experienced there.
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2. Proofs

If h is a holomorphic map on B, we will write its expansion at 0 as h(z) =
h(0)+Tz+

∑
j≥2Qj(z), where T : X 7→ X is the Fréchet differential of h at 0, and

Qj is a continuous homogeneous polynomial of degree j on X (see, e.g., [13]).
We begin by recalling (see [1, Theorem p.95] or [17]) that G : B 7→ X is an

infinitesimal generator if and only if

(2.1) Re ⟨G(z), z∗⟩ ≤ Re ⟨G(0), z∗⟩(1− ∥z∥2) for all z ∈ B.

Note that if the previous formula holds for some z∗, then it holds for all z∗.
The following lemma follows immediately from (2.1)

Lemma 2.1. Let G : B 7→ X be holomorphic. Then G is an infinitesimal generator
if and only if for all v ∈ X such that ∥v∥ = 1 the holomorphic map

D ∋ ζ 7→ ⟨G(ζv), v∗⟩,
is an infinitesimal generator in the unit disc D := {ζ ∈ C : |ζ| < 1}.

In case of strongly convex domains in Cn the previous lemma holds for the re-
striction to any complex geodesic (see [3, Proposition 4.5]).

Remark 2.2. By [1, Corollary 5], a holomorphic map g : D 7→ C is an infinitesimal
generator if and only if

g(ζ) = g(0)− g(0)ζ2 − ζq(ζ),

where Re q(ζ) ≥ 0 for all ζ ∈ D.

To prove our theorem we also need the following lemmata.

Lemma 2.3. Let F : B 7→ X be a pseudo-dissipative holomorphic map. Then
inequality (1.1) holds for some suitable θ, a and b for all z ∈ B. Moreover, the map
G : B 7→ X defined by

(2.2) G(z) = eiθF (z)− az

is an infinitesimal generator on B.

Proof. It follows from (2.2) and (1.1) that G satisfies the inequality

(2.3) Re ⟨G(z), z∗⟩ ≤ b
(
1− ∥z∥2

)
for all z with 1− ε < ∥z∥ < 1.

Fix any v ∈ ∂B and consider the function g defined by

g(ζ) = ⟨G(ζv), v∗⟩, ζ ∈ D.

Actually, according to Lemma 2.1, we have to show that g is an infinitesimal gen-
erator on D. To do this, fix any w ∈ D, choose s ∈ R with max(1− ε, |w|) < s < 1
and define

hr,t(ζ) = ζ − t (w + rg(ζ)) , r > 0, 0 ≤ t ≤ 1.

For all ζ on the circle |ζ| = s, we have by (2.3)

Re
(
hr,t(ζ)ζ̄

)
= |ζ|2 − tRe (wζ̄)− trRe ⟨G(ζ)v, (ζv)∗⟩ ≥ s2 − ts|w| − trb(1− s2).
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It is clear that for s close enough to 1, there is δ > 0 such that Re
(
hr,t(ζ)ζ̄

)
> δ

on the circle |ζ| = s. Therefore, hr,t has no null points on this circle. Then by the
logarithmic residue formula, the number of null points is a continuous in t function.
Since this function takes natural values, it is constant. Because of hr,0(ζ) = ζ, we
conclude that the function hr,1 = ζ −w− rg(ζ) has a unique null point in D. Then
Proposition 3.3.1 in [19] implies that g is a generator.

Now, by (2.1), we have the following inequality:

Re ⟨eiθF (z), z∗⟩ ≤ a∥z∥2 + ∥F (0)∥(1− ∥z∥2), z ∈ B,

which completes the proof. �

Lemma 2.4. Let G : B 7→ X be an infinitesimal generator with expansion G(z) =
G(0) + Tz +

∑
j≥2Qj(z). Let v ∈ X be such that ∥v∥ = 1 and let v∗ ∈ X∗ be such

that ⟨v, v∗⟩ = ∥v∥ = ∥v∗∥ = 1. Then

(2.4) Re ⟨Tv, v∗⟩ ≤ 0.

Moreover, if Re ⟨Tv, v∗⟩ = 0 then

⟨Q2(v), v
∗⟩ = −⟨G(0), v∗⟩,

⟨Qj(v), v
∗⟩ = 0, j ≥ 3.

Proof. let g : D 7→ C be defined as g(ζ) := ⟨G(ζv), v∗⟩. By Lemma 2.1 the holo-
morphic map g is an infinitesimal generator in D. By Remark 2.2 we can write
g(ζ) = g(0)− g(0)ζ2 − ζq(ζ), where Re q(ζ) ≥ 0 for all ζ ∈ D. From this we have

(2.5) −q(0) = g′(0) = ⟨Tv, v∗⟩,
and (2.4) follows from Re q(0) ≥ 0.

Now, let q(ζ) = q(0) +
∑

j≥1 ajζ
j . Expanding g we see that

g(0)− q(0)ζ − (a1 + g(0))ζ2 −
∑
j≥3

aj−1ζ
j = g(ζ)

= ⟨G(0), v∗⟩+ ⟨Tv, v∗⟩ζ +
∑
j≥2

⟨Qj(v), v
∗⟩ζj ,

(2.6)

from which it follows that

⟨Q2(v), v
∗⟩ = −

(
a1 + ⟨G(0), v∗⟩

)
,

⟨Qj(v), v
∗⟩ = −aj−1, j ≥ 3.

(2.7)

If Re ⟨Tv, v∗⟩ = 0 then Re q(0) = 0, hence q(ζ) = ia for some a ∈ R and aj = 0 for
all j ≥ 1, and the statement follows. �

Now we are in good shape to prove our main result:

Proof of Theorem 1.5. Assertion (i) is already proven in Lemma 2.3. Consider now
the map G : B 7→ X defined by G(z) = eiθF (z) − az. Then T (= DG(0)) =
eiθA− a · id, and assertion (ii) follows immediately by Lemma 2.4.

In order to prove assertion (iii), by using Lemma 2.3, it is sufficient to prove
inequality (1.3) for the same map G being an infinitesimal generator on B.
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For a fixed v ∈ X with ∥v∥ = 1, let v∗ ∈ X∗ be such that ⟨v, v∗⟩ = ∥v∥ = ∥v∗∥ =
1. It follows from Lemma 2.4 that Re ⟨Tv, v∗⟩ ≤ 0. Let g : D 7→ C be defined
as g(ζ) := ⟨G(ζv), v∗⟩. By Lemma 2.1, the holomorphic map g is an infinitesimal

generator in D. According to Remark 2.2, g(ζ) = g(0) − g(0)ζ2 − ζq(ζ), where
Re q(ζ) ≥ 0 for all ζ ∈ D. The Carathéodory inequalities ([5], see also [2]) imply
that |aj | ≤ 2Re q(0) for all j ≥ 1. Now by (2.7) and (2.5) we get

|⟨Q2(v), v
∗⟩| ≤∥G(0)∥ − 2Re ⟨Tv, v∗⟩,

|⟨Qj(v), v
∗⟩| ≤ − 2Re ⟨Tv, v∗⟩, j ≥ 3.

(2.8)

To proceed, we need L. Harris’ inequalities [11]. Namely, if Pm : X 7→ X is a
continuous homogeneous polynomial of degree m ≥ 1 then ∥Pm∥ ≤ kmV (Pm),

where km = mm/(m−1) for m ≥ 2, k1 = e and

V (Pm) = sup{|⟨Pm(v), v∗⟩| : ∥v∥ = 1}.
These estimates together with (2.8) imply that

∥Tz∥ ≤e∥z∥V (T ),

∥Q2(z)∥ ≤k2∥z∥2∥G(0)∥ − 2k2∥z∥2m(T ),

∥Qj(z)∥ ≤ − 2kj∥z∥jm(T ), j ≥ 3.

(2.9)

Now for all z ∈ B we have by (2.9)

∥G(z)−G(0)∥ ≤ ∥Tz∥+ ∥Q2(z)∥+
∑
j≥3

∥Qj(z)∥

≤ e∥z∥V (T ) + k2∥z∥2∥G(0)∥ − 2k2∥z∥2m(T )− 2m(T )
∑
j≥3

kj∥z∥j

≤ e∥z∥V (T ) + 4∥z∥2∥G(0)∥ − 2m(T )
∑
j≥2

kj∥z∥j .

(2.10)

In order to conclude, consider the function k(x) = xx/(x−1), x ≥ 2. Since k′′(x) < 0,
one concludes that k(x) ≤ k′(2)(x − 2) + k(2) = k′(2)x + 4 − 2k′(2) with k′(2) =
4(1− ln 2). Applying this simple fact, we get from (2.10)

∥G(z)−G(0)∥ ≤ e∥z∥V (T ) + 4∥z∥2∥G(0)∥ − 2m(T )
∑
j≥2

(
k′(2)j + 4− 2k′(2)

)
∥z∥j

≤ e∥z∥V (T ) + 4∥z∥2∥G(0)∥ − 2m(T )∥z∥2
(
k′(2)(2− ∥z∥)
(1− ∥z∥)2

+
4− 2k′(2)

1− ∥z∥

)
= 4∥z∥2∥G(0)∥+ e∥z∥V (T )− 8m(T )∥z∥2 1− ln 2 · ∥z∥

(1− ∥z∥)2
.

�
Proof of Corollary 1.7. By hypothesis, D is the unit ball in Cn for the Minkowski
norm defined by D. Therefore, Theorem 1.5 applies and Montel’s theorem implies
that the family {Gn} is normal. Thus, since it cannot be compactly divergent be-
cause it is bounded at the origin, there exists a subsequence {Gnk

} which converges
uniformly on compacta to a holomorphic map G : D 7→ Cn. Applying (2.1) to each
Gnk

and passing to the limit, we get the result. �
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