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lower semicontinuous and convex function, consider the problem

(CP ) inf f(x) subject tox ∈ C,

where C is a closed and convex set. Problem (CP ) can be reformulated as

inf
{
f(x1) + ιC(x2)

}
subject to (x1, x2) ∈ S = {(y1, y2) ∈ X ×X : y1 = y2},

where ιC is the indicator function of C.
Denote by v(P ) and v(D) the optimal values of (P ) and (D), respectively. In

the finite dimensional setting, Bertsekas proved in [3, Proposition 4.1] that a zero
duality gap holds for problems (P ) and (D) (i.e., p = v(P ) = v(D) = d) under the
following condition:

NS(x) +
(
∂εf1(x1), . . . , ∂εfm(xm)

)
is closed

for every ε > 0, (x1, . . . , xm) ∈ S and xi ∈ dom fi, ∀i ∈ {1, 2, . . . ,m},

where the sets ∂εfi(xi) are the epsilon-subdifferentials of the fi at xi (see (2.2) for
the definition). In [6, Theorem 3.2], Boţ and Csetnek extended this result to the
setting of separated locally convex spaces.
Burachik and Majeed [14] presented a zero duality gap property for a monotropic
programming problem in which the subspace constraint S in (P ) is replaced by a
closed cone C, and the orthogonal subspace S⊥ in (D) is replaced by the dual cone
C∗ := {x∗ | infc∈C⟨x∗, C⟩ ≥ 0}. Defining gi : X1 ×X2 × · · · ×Xm → ]−∞,+∞] by
gi(x1, . . . , xm) := fi(xi), we have

(P ) p = inf
( m∑

i=1

fi(xi)
)

subject to (x1, . . . , xm) ∈ C

= inf
(
ιC(x) +

m∑
i=1

gi(x)
)

(D) d = sup
(x∗

1,...,x
∗
m)∈C∗

m∑
i=1

−f∗i (x∗i ),

where C ⊆ X1 × X2 × · · · × Xm is a closed convex cone. In [14, Theorem 3.6],
Burachik and Majeed proved that

(1.1) if ∂ϵιC(x) +

m∑
i=1

∂εgi(x) is weak
∗ closed for every x ∈ C ∩

( m∩
i=1

dom gi

)
,

then v(p) = v(D). Note that ∂ϵιC(x) +
∑m

i=1 ∂εgi(x) = ∂ϵιC(x) +
(
∂εf1(x1), . . . ,

∂εfm(xm)
)
. Thence, Burachik and Majeed’s result extends Boţ and Csetnek’s result

and Bertsekas’ result to the case of cone constraints. From now on, we focus on a
more general form of condition (1.1), namely

(1.2)

m∑
i=1

∂εfi(x) is weak
∗ closed,

where fi : X → ]−∞,+∞] is a proper lower semicontinuous and convex function
for all i = 1, . . . ,m. We will refer to (1.2) as the Bertsekas Constraint Qualification.
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In none of these results, however, is there a direct link between (1.2) and the
zero duality gap property. One of the aims of this paper is to establish such a link
precisely.

Another constraint qualification is the so-called closed epigraph condition, which
was first introduced by Burachik and Jeyakumar in [11, Theorem 1] (see also [9, 20]).
This condition is stated as

(1.3) epi f∗1 + · · ·+ epi f∗m is weak∗ closed in the topology ω(X∗, X)× R.

Condition (1.3) does not imply (1.2). This was recently shown in [14, Example
3.1], in which (1.2) (and hence zero duality gap) holds, while (1.3) does not.

We recall from [19, Proposition 6.7.3] the following characterization of the zero
duality gap property for (P ) and (D), which uses the infimal convolution (see (2.3)
for its definition) of the conjugate functions f∗i .

(P ) p = inf
( m∑

i=1

fi(x)
)
= −

( m∑
i=1

fi

)∗
(0)

(D) d = − (f∗1� · · ·�f∗m) (0).

Hence, zero duality gap is tantamount to the equality( m∑
i=1

fi

)∗
(0) =

(
f∗1� · · ·�f∗m

)
(0).

In our main result (Theorem 3.2 below), we introduce a new closedness property,
stated as follows. There exists K > 0 such for every x ∈

∩m
i=1 dom fi and every

ε > 0,

(1.4)
[ m∑

i=1

∂εfi(x)
]w*

⊆
m∑
i=1

∂Kεfi(x).

Theorem 3.2 below proves that this property is equivalent to

(1.5)
( m∑

i=1

fi

)∗
(x∗) =

(
f∗1� · · ·�f∗m

)
(x∗), for all x∗ ∈ X∗.

Condition (1.4) is easily implied by (1.1), since the latter implies that (1.4) is true
for the choice K = 1. Hence, Theorem 3.2 shows exactly how and why (1.1)
implies a zero duality gap. Moreover, in view of [11, Theorem 1], we see that our
new condition (1.4) is strictly less restrictive than the closed epigraph condition.
Indeed, the latter implies not only (1.5) but also exactness of the infimal convolution
everywhere. Condition(1.5) with exactness is equivalent to (1.3). Condition (1.3),
in turn, is less restrictive than the interiority-type conditions.

In the present paper, we focus on the following kind of interiority condition:

(1.6) dom f1 ∩
( m∩

i=2

int dom fi

)
̸= ∅.



170 J. M. BORWEIN, R. S. BURACHIK, AND L. YAO

In summary, we have

Example 3.1 in [14] allows us to assert that the Bertsekas Constraint Qualification
is not more restrictive than the Closed Epigraph Condition. This example also
shows that our condition (1.4) does not imply the closed epigraph condition. It
is still an open question whether a more precise relationship can be established
between the closed epigraph condition and Bertsekas Constraint Qualification. The
arrow linking (1.6) to (1.3) has been established by Zălinescu in [30, 31]. All other
arrows are, as far as we know, new, and are established by us in this paper. Some
clarification is in order regarding the arrow from (1.6) to the Bertsekas Constraint
Qualification(1.2). It is clear that for every x0 ∈ dom f1 ∩

(∩m
i=2 int dom fi

)
, the

set
∑m

i=1 ∂εfi(x0) is weak
∗ closed. Indeed, this is true because the latter set is the

sum of a weak∗ compact set and a weak∗ closed set. Our Lemma 4.2 establishes
that, under assumption (1.6), the set

∑m
i=1 ∂εfi(x) is weak∗ closed for every point

x ∈
(∩m

i=1 dom fi
)
.

A well-known result, which is not easily found in the literature, is the equiva-
lence between (1.3) and the equality (1.5) with exactness of the infimal convolution
everywehere in X∗. For convenience and possible future use, we have included the
proof of this equivalence in the present paper (see Proposition 3.11).

The layout of our paper is as follows. The next section contains the necessary
preliminary material. Section 3 contains our main result, and gives its relation with
the Bertsekas Constraint Qualification (1.2), with the closed epigraph condition
(1.3), and with the interiority conditions (1.6). Still in this section we establish
stronger results for the important special case in which all fis are sublinear. We fin-
ish this section by showing that our closedness condition allows for a simplification
of the well-known Hiriart-Urruty and Phelps formula for the subdifferential of the
sum of convex functions. In Section 4 we show that (generalized) interiority condi-
tions imply (1.2), as well as (1.3). We also provide some additional consequences
of Corollary 4.3, including various forms of Rockafellar’s Fenchel duality result. At
the end of Section 4 we establish stronger results for the case involving polyhedral
functions. We end the paper with some conclusions and open questions.

2. Preliminaries

Let I be a directed set with a partial order ≼. A subset J of I is said to be
terminal if there exists j0 ∈ I such that every successor k ≽ j0 verifies k ∈ J . We
say that a net {sα}α∈I ⊆ R is eventually bounded if there exists a terminal set J
and R > 0 such that |sα| ≤ R for every α ∈ J .

We assume throughout that X is a separated (i.e., Hausdorff) locally convex
topological vector space and X∗ is its continuous dual endowed with the weak∗

topology ω(X∗, X). Given a subset C of X, intC is the interior of C. We next
recall standard notions from convex analysis, which can be found, e.g., in [2, 5, 10,
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21, 23, 26, 31]. For the set D ⊆ X∗, D
w*

is the weak∗ closure of D. The indicator
function of C, written as ιC , is defined at x ∈ X by

ιC(x) :=

{
0, if x ∈ C;

+∞, otherwise.
(2.1)

The normal cone operator of C at x is defined by NC(x) :={
x∗ ∈ X∗ | supc∈C⟨c− x, x∗⟩ ≤ 0

}
, if x ∈ C; and NC(x) := ∅, if x /∈ C. If S ⊆ X

is a subspace, we define S⊥ by S⊥ := {z∗ ∈ X∗ | ⟨z∗, s⟩ = 0, ∀s ∈ S}. Let
f : X → [−∞,+∞]. Then dom f := f−1 [−∞,+∞[ is the domain (or effective
domain) of f , and f∗ : X∗ → [−∞,+∞] : x∗ 7→ supx∈X{⟨x, x∗⟩ − f(x)} is the
Fenchel conjugate of f . The epigraph of f is epi f :=

{
(x, r) ∈ X × R | f(x) ≤ r

}
.

The lower semicontinuous hull of f is denoted by f . We say f is proper if
dom f ̸= ∅ and f > −∞. Given a function f , the subdifferential of f is the
point-to-set mapping ∂f : X ⇒ X∗ defined by

∂f(x) :=

{
{x∗ ∈ X∗ | (∀y ∈ X) ⟨y − x, x∗⟩+ f(x) ≤ f(y)} if f(x) ∈ R;
∅ otherwise.

Given ε ≥ 0, the ε−subdifferential of f is the point-to-set mapping ∂εf : X ⇒ X∗

defined by
(2.2)

∂εf(x) :=

{
{x∗ ∈ X∗ | (∀y ∈ X) ⟨y − x, x∗⟩+ f(x) ≤ f(y) + ε} if f(x) ∈ R;
∅ otherwise.

Thus, if f is not proper, then ∂εf(x) = ∅ for every ε ≥ 0 and x ∈ X. Note
also that if f is convex and there exists x0 ∈ X such that f(x0) = −∞, then
f(x) = −∞, ∀x ∈ dom f (see [13, Proposition 2.4] or [16, page 867]).

Let f : X → ]−∞,+∞]. We say f is a sublinear function if f(x+y) ≤ f(x)+f(y),
f(0) = 0, and f(tx) = tf(x) for every x, y ∈ dom f and t ≥ 0.

Let Z be a separated locally convex space and letm ∈ N. For a family of functions
ψ1, . . . , ψm such that ψi : Z → [−∞,+∞] for all i = 1, . . . ,m, we define its infimal
convolution as the function (ψ1� · · ·�ψm) : Z → [−∞,+∞] as

(2.3)
(
ψ1� · · ·�ψm

)
z = inf∑m

i=1 zi=z

{
ψ(z1) + · · ·+ ψm(zm)

}
.

We denote by ⇁w* the weak∗ convergence of nets in X∗.

3. Our main results

The following formula will be important in the proof of our main result.

Fact 3.1. (See [31, Corollary 2.6.7] or [6, Theorem 3.1].) Let f, g : X → ]−∞,+∞]
be proper lower semicontinuous and convex. Then for every x ∈ X and ε ≥ 0,

∂ε(f + g)(x) =
∩
η>0

[ ∪
ε1≥0,ε2≥0, ε1+ε2=ε+η

(
∂ε1f(x) + ∂ε2g(x)

)]w*

.

We now come to our main result. The proof in part follows that of [6, Theo-
rem 3.2].
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Theorem 3.2. Let m ∈ N, and fi : X → ]−∞,+∞] be proper convex with∩m
i=1 dom fi ̸= ∅, where i ∈ {1, 2, . . . ,m}. Suppose that fi = fi on

∩m
i=1 dom fi.

Then the following four conditions are equivalent.

(i) There exists K > 0 such that for every x ∈
∩m

i=1 dom fi, and every ε > 0,[ m∑
i=1

∂εfi(x)
]w*

⊆
m∑
i=1

∂Kεfi(x).

(ii)
( m∑

i=1

fi

)∗
= f∗1� · · ·�f∗m in X∗.

(iii) f∗1� · · ·�f∗m is weak∗ lower semicontinuous.
(iv) For every x ∈ X and ε ≥ 0,

∂ε(f1 + · · ·+ fm)(x) =
∩
η>0

[ ∪
εi≥0,

∑m
i=1 εi=ε+η

(
∂ε1f1(x) + · · ·+ ∂εmfm(x)

)]
.

Proof. First we show that our basic assumptions imply that fi is proper for every
i ∈ {1, 2, . . . ,m}. Let i ∈ {1, 2, . . . ,m}.

Since ∅ ̸=
(∩m

j=1 dom fj
)
⊆
(∩m

j=1 dom fj
)
, then

∩m
j=1 dom fj ̸= ∅. Let x0 ∈∩m

i=j dom fj . Suppose to the contrary that fi is not proper and thus there exists

y0 ∈ X such that fi(y0) = −∞. Then by [13, Proposition 2.4], fi(x0) = −∞.
By the assumption, fi(x0) = fi(x0) > −∞, which is a contradiction. Hence fi is
proper.

(i)⇒(ii): Let x∗ ∈ X∗. Clearly, we have (f∗1� · · ·�f∗m) (x∗) ≥
(∑m

i=1 fi

)∗
(x∗).

It suffices to show that(
m∑
i=1

fi

)∗

(x∗) ≥ (f∗1� · · ·�f∗m) (x∗).(3.1)

First we show that
m∑
i=1

fi(y) ≥
m∑
i=1

fi(y), ∀y ∈ X.(3.2)

Indeed, let y ∈ X. If y ̸∈
∩m

i=1 dom fi. Clearly, (3.2) holds. Now assume that

y ∈
∩m

i=1 dom fi. By our assumption fi(y) = fi(y), we conclude that (3.2) holds.
Combining both cases, we conclude that (3.2) holds everywhere.

Since
∑m

i=1 fi ≤
∑m

i=1 fi, (3.2) implies that
m∑
i=1

fi =
m∑
i=1

fi.(3.3)

Taking the lower semicontinuous hull in the equality above, we have
m∑
i=1

fi =

m∑
i=1

fi = f1 + · · ·+ fm.(3.4)

Clearly, if (
∑m

i=1 fi)
∗(x∗) = +∞, then (3.1) holds. Now assume that

(
∑m

i=1 fi)
∗(x∗) < +∞. Then we have (

∑m
i=1 fi)

∗(x∗) ∈ R and thus x∗ ∈
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dom(
∑m

i=1 fi)
∗. Since (

∑m
i=1 fi)

∗ is lower semicontinuous, given ε > 0, there exists
x ∈ X such that x ∈ ∂ε(

∑m
i=1 fi)

∗(x∗). Then( m∑
i=1

fi

)∗
(x∗) +

( m∑
i=1

fi

)
(x) =

( m∑
i=1

fi

)∗
(x∗) +

( m∑
i=1

fi

)∗∗
(x) ≤ ⟨x, x∗⟩+ ε.

By (3.4), we have( m∑
i=1

fi

)∗
(x∗) +

( m∑
i=1

fi

)
(x) =

( m∑
i=1

fi

)∗
(x∗) +

( m∑
i=1

fi

)
(x) ≤ ⟨x, x∗⟩+ ε.

Hence

x∗ ∈ ∂ε

( m∑
i=1

fi

)
(x) and x∗ ∈ ∂ε

( m∑
i=1

fi

)
(x).(3.5)

Next, we claim that there exists K > 0 such that

x∗ ∈
m∑
i=1

∂Kmεfi(x).(3.6)

Set f := f1, g := (
∑m

i=2 fi), and η = ε in Fact 3.1, and use (3.5) to write

x∗ ∈ ∂ε(

m∑
i=1

fi)(x) ⇒ x∗ ∈
[
∂2εf1(x) + ∂2ε

( m∑
i=2

fi

)
(x)
]w*

.

We repeat the same idea with f := f2, g := (
∑m

i=3 fi) in Fact 3.1, and continue
iteratively to obtain

⇒ x∗ ∈
[
∂2εf1(x) + ∂3εf2(x) + ∂3ε

( m∑
i=3

fi

)
(x)

w*]w*

⇒ x∗ ∈
[
∂2εf1(x) + ∂3εf2(x) + ∂3ε

( m∑
i=3

fi

)
(x)
]w*

· · ·

⇒ x∗ ∈
[
∂2εf1(x) + ∂3εf2(x) + · · ·+ ∂mεfm(x)

]w*

⇒ x∗ ∈
[
∂2εf1(x) + ∂3εf2(x) + · · ·+ ∂mεfm(x)

]w*

(by (3.5) and fi(x) = fi(x), ∀i)

⇒ x∗ ∈
[
∂mεf1(x) + ∂mεf2(x) + · · ·+ ∂mεfm(x)

]w*

.

By assumption (i), the last inclusion implies that there exists K > 0 such that

x∗ ∈ ∂Kmεf1(x) + ∂Kmεf2(x) + · · ·+ ∂Kmεfm(x)

Hence (3.6) holds. Thus, there exists y∗i ∈ ∂Kmεfi(x) such that x∗ =
∑m

i=1 y
∗
i and

f∗i (y
∗
i ) + fi(x) ≤ ⟨x, y∗i ⟩+Kmε, ∀i ∈ {1, 2, . . . ,m}.
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Thus,

(f∗1� · · ·�f∗m)(x∗) ≤
m∑
i=1

f∗i (y
∗
i ) ≤ −

m∑
i=1

fi(x) + ⟨x, x∗⟩+Km2ε

≤
( m∑

i=1

fi

)∗
(x∗) +Km2ε.

Letting ε −→ 0 in the above inequality, we have(
f∗1� · · ·�f∗m

)
(x∗) ≤

( m∑
i=1

fi

)∗
(x∗).

Hence (3.1) holds and so ( m∑
i=1

fi

)∗
= f∗1� · · ·�f∗m.(3.7)

(ii)⇒(iii): This clearly follows from the lower semicontinuity of (
∑m

i=1 fi)
∗.

(iii)⇒(i): Let x ∈
∩m

i=1 dom fi and ε > 0, and x∗ ∈ [
∑m

i=1 ∂εfi(x)]
w*
. Then for

each i = 1, . . . ,m there exists a net (x∗i,α)α∈I in ∂εfi(x) such that

m∑
i=1

x∗i,α⇁w* x
∗.(3.8)

We have

fi(x) + f∗i (x
∗
i,α) ≤ ⟨x, x∗i,α⟩+ ε, ∀i ∈ {1, 2, . . . ,m} ∀α ∈ I.(3.9)

Thus

(3.10)
m∑
i=1

fi(x)+(f∗1� · · ·�f∗m)
( m∑

i=1

x∗i,α

)
≤

m∑
i=1

fi(x)+

m∑
i=1

f∗i (x
∗
i,α) ≤

⟨
x,

m∑
i=1

x∗i,α

⟩
+mε,

∀α ∈ I.

Since f∗1� · · ·�f∗m is weak∗ lower semicontinuous, it follows from (3.10) and (3.8)
that

m∑
i=1

fi(x) + (f∗1� · · ·�f∗m)(x∗) ≤ ⟨x, x∗⟩+mε.(3.11)

There exists y∗i ∈ X∗ such that
∑m

i=1 y
∗
i = x∗ and

∑m
i=1 f

∗
i (y

∗
i ) ≤ (f∗1� · · ·�f∗m)(x∗)+

ε. Then by (3.11),

m∑
i=1

fi(x) +

m∑
i=1

f∗i (y
∗
i ) ≤ ⟨x, x∗⟩+ (m+ 1)ε.

Thus, we have

y∗i ∈ ∂(m+1)εfi(x), ∀i ∈ {1, 2, . . . ,m}.
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Hence

x∗ =
m∑
i=1

y∗i ∈
m∑
i=1

∂(m+1)εfi(x),

and the statement in (i) holds for K := (m+ 1).
(ii)⇒(iv): Let x ∈ X and ε ≥ 0.
We have ∩

η>0

[ ∪
εi≥0,

∑m
i=1 εi=ε+η

(
∂ε1f1(x) + · · ·+ ∂εmfm(x)

)]
⊆
∩
η>0

[ ∪
εi≥0,

∑m
i=1 εi=ε+η

∂∑m
i εi(f1 + · · ·+ fm)(x)

]
=
∩
η>0

∂ε+η(f1 + · · ·+ fm)(x)

= ∂ε(f1 + · · ·+ fm)(x).

Now we show the other inclusion:

∂ε(f1 + · · ·+ fm)(x) ⊆
( ∩

η>0

[ ∪
εi≥0,

∑m
i=1 εi=ε+η

(
∂ε1f1(x) + · · ·+ ∂εmfm(x)

)])
.

(3.12)

Let x∗ ∈ ∂ε(f1+ · · ·+fm)(x). Then we have
∑m

i=1 fi(x)+(
∑
fi)

∗(x∗) ≤ ⟨x, x∗⟩+ ε.
By (ii), we have

m∑
i=1

fi(x) +
(
f∗1� · · ·�f∗m

)
(x∗) ≤ ⟨x, x∗⟩+ ε.(3.13)

Let η > 0. Then there exists y∗i ∈ X∗ such that
∑m

i=1 y
∗
i = x∗ and

∑m
i=1 f

∗
i (y

∗
i ) ≤(

f∗1� · · ·�f∗m
)
(x∗) + η. Then by (3.13),

m∑
i=1

fi(x) +

m∑
i=1

f∗i (y
∗
i ) ≤ ⟨x, x∗⟩+ ε+ η.(3.14)

Set γi := fi(x) + f∗i (y
∗
i )− ⟨x, y∗i ⟩. Then γi ≥ 0 and y∗i ∈ ∂γifi(x). By (3.14),

⟨x, x∗⟩+
m∑
i=1

γi =

m∑
i=1

[
⟨x, y∗i ⟩+ γi

]
≤ ⟨x, x∗⟩+ ε+ η.(3.15)

Hence
∑m

i=1 γi ≤ ε + η. Set ε1 := ε + η −
∑m

i=2 γi and εi := γi for every i =
{2, 3, . . . ,m}. Then ε1 ≥ γ1 and we have

x∗ =
m∑
i=1

y∗i ∈
m∑
i=1

∂εifi(x).

Hence x∗ ∈
∪

εi≥0,
∑m

i=1 εi=ε+η

(
∂εifi(x)+ · · ·+∂εmfm(x)

)
and therefore (3.12) holds.
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(iv)⇒(i): Let x ∈
∩m

i=1 dom fi, ε > 0, and x∗ ∈ [
∑m

i=1 ∂εfi(x)]
w*
. Then for each

i = 1, . . . ,m there exists a net (x∗i,α)α∈I in ∂εfi(x) such that

m∑
i=1

x∗i,α⇁w* x
∗,(3.16)

and this implies that
m∑
i=1

x∗i,α ∈
( ∩

η>0

[ ∪
εi≥0,

∑m
i=1 εi=mε+η

(
∂ε1f1(x) + · · ·+ ∂εmfm(x)

)])
.(3.17)

Assumption (iv) yields
∑m

i=1 x
∗
i,α ∈ ∂mε(f1+· · ·+fm)(x). Since ∂mε(f1+· · ·+fm)(x)

is weak∗ closed, (3.16) shows that x∗ ∈ ∂mε(f1 + · · ·+ fm)(x). Using (iv) again for
η = ε, we conclude that x∗ ∈

(
∂(m+1)εfi(x) + · · ·+ ∂(m+1)εfm(x)

)
.

Therefore, statement (i) holds for K := m+ 1. �
Remark 3.3. (a) We point out that the proof of Theorem 3.2(i) actually shows

thatK = m+1, and this constant is independent of the functions f1, . . . , fm.
(b) Part (i) implies (ii) of Theorem 3.2 generalizes [3, Proposition 4.1], [6, The-

orem 3.2] by Boţ and Csetnek, and [14, Theorem 3.6] by Burachik and
Majeed.

(c) A result similar to Theorem 3.2(iii)⇔(iv) has been established in [7, Corol-
lary 3.9] by Boţ and Grad.

An immediate corollary follows:

Corollary 3.4. Let f, g : X → ]−∞,+∞] be proper convex with dom f∩dom g ̸= ∅.
Suppose that f = f and g = g on dom f ∩ dom g. Suppose also that for every
x ∈ dom f ∩ dom g and ε > 0,

∂εf(x) + ∂εg(x) is weak∗ closed.

Then (f + g)∗ = f∗�g∗ in X∗. Consequently, inf(f + g) = supx∗∈X∗{−f∗(x∗)−
g∗(−x∗)}.

Note that, for a linear subspace S ⊆ X, we have ∂ειS = S⊥. Taking this into
account we derive the Bertsekas Constraint Qualification result from Theorem 3.2.

Corollary 3.5 (Bertsekas). (See [3, Proposition 4.1].) Let m ∈ N and suppose
that Xi is a finite dimensional space, and let fi : Xi → ]−∞,+∞] be proper lower
semicontinuous and convex, where i ∈ {1, 2, . . . ,m}. Let S be a linear subspace of
X1×X2×· · ·×Xm with S ∩

(∩m
i=1 dom fi

)
̸= ∅. Define gi : X1×X2×· · ·×Xm →

]−∞,+∞] by gi(x1, . . . , xm) := fi(xi). Assume that for every x ∈ S∩
(∩m

i=1 dom fi
)

and for every ε > 0 we have that

S⊥ +
m∑
i=1

∂εgi(x) is closed.

Then v(P ) = infx∈S{
∑m

i=1 fi(x)} = supx∗∈S⊥{−
∑m

i=1 f
∗
i (x

∗)} = v(D).

The following example which is due to [14, Example 3.1] and [9, Example,
page 2798], shows that the infimal convolution in Corollary 3.4 is not always achieved
(exact).
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Example 3.6. Let X = R2, and f := ιC , g := ιD, where C := {(x, y) ∈ R2 |
2x + y2 ≤ 0} and D := {(x, y) ∈ R2 | x ≥ 0}. Then f and g are proper lower
semicontinuous and convex with dom f ∩ dom g = {(0, 0)}. For every ε > 0,
∂εf(0, 0) + ∂εg(0, 0) is closed. Hence (f + g)∗ = f∗�g∗. But f∗�g∗ is not ex-
act everywhere and ∂(f + g)(0) ̸= ∂f(0) + ∂g(0). Consequently, epi f∗ + epi g∗ is
not closed in the topology ω(X∗, X)× R.

Proof. Clearly, f and g are proper lower semicontinuous convex. Let ε > 0. Then
by [14, Example 3.1]

∂εf(0, 0) =
∪
u≥0

(
u×

[
−
√
2εu,

√
2εu
] )

and ∂εg(0, 0) = ]−∞, 0]× {0}.(3.18)

Thus, ∂εf(0, 0)+∂εg(0, 0) = R2 and then ∂εf(0, 0)+∂εg(0, 0) is closed. Corollary 3.4
implies that (f + g)∗ = f∗�g∗. [9, Example, page 2798] shows that (f∗�g∗) is not
exact at (1, 1) and ∂(f + g)(0) ̸= ∂f(0) + ∂g(0). By [11, 9], epi f∗ + epi g∗ is not
closed in the topology ω(X∗, X)× R. �

The following result is classical, we state and prove it here for more convenient
and clear future use.

Lemma 3.7 (Hiriart-Urruty). Let m ∈ N, and fi : X → ]−∞,+∞] be proper
convex with

∩m
i=1 dom fi ̸= ∅, where i ∈ {1, 2, . . . ,m}. Assume that (

∑m
i=1 fi)

∗ =
f∗1� · · ·�f∗m in X∗ and the infimal convolution is exact (attained) everywhere. Then

∂(f1 + f2 + · · ·+ fm) = ∂f1 + · · ·+ ∂fm.

Proof. Let x ∈ X. We always have ∂(f1+f2+ · · ·+fm)(x) ⊇ ∂f1(x)+ · · ·+∂fm(x).
So it suffices to show that

∂(f1 + f2 + · · ·+ fm)(x) ⊆ ∂f1(x) + · · ·+ ∂fm(x).(3.19)

Let w∗ ∈ ∂(f1 + f2 + · · ·+ fm)(x). Then

(f1 + f2 + · · ·+ fm)(x) + (f1 + f2 + · · ·+ fm)∗(w∗) = ⟨x,w∗⟩.

By the assumption, there exists w∗
i ∈ X∗ such that

∑m
i=1w

∗
i = w∗ and

f1(x) + f2(x) + · · ·+ fm(x) + f∗1 (w
∗
1) + · · ·+ f∗m(w∗

m) = ⟨x,w∗
1 + · · ·+ w∗

m⟩.

Hence

w∗
i ∈ ∂fi(wi), ∀i ∈ {1, 2, . . . ,m}.

Thus

w∗ =

m∑
i=1

w∗
i ∈

m∑
i=1

∂fi(wi),

and (3.19) holds. �

A less immediate corollary is:
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Corollary 3.8. (See [8, Theorem 3.5.8].) Let m ∈ N, and fi : X → ]−∞,+∞]
be proper convex with

∩m
i=1 dom fi ̸= ∅, where i ∈ {1, 2, . . . ,m}. Suppose that

fi = fi on
∩m

i=1 dom fi. Assume that epi f∗1 + · · · + epi f∗m is closed in the topology
ω(X∗, X)× R.

Then (
∑m

i=1 fi)
∗ = f∗1� · · ·�f∗m in X∗ and the infimal convolution is exact (at-

tained) everywhere. In consequence, we also have

∂(f1 + f2 + · · ·+ fm) = ∂f1 + · · ·+ ∂fm.

Proof. Let x ∈
∩m

i=1 dom fi, x
∗ ∈ [

∑m
i=1 ∂εfi(x)]

w*
and ε > 0. We will show that

x∗ ∈
m∑
i=1

∂mεfi(x).(3.20)

The assumption on x∗ implies that for each i = 1, . . . ,m there exists (x∗i,α)α∈I in

∂εfi(x) such that

m∑
i=1

x∗i,α⇁w* x
∗.(3.21)

We have

f∗i (x
∗
i,α) ≤ −fi(x) + ⟨x, x∗i,α⟩+ ε, ∀i ∈ {1, 2, . . . ,m} ∀α ∈ I.(3.22)

Thus (x∗i,α,−fi(x) + ⟨x, x∗i,α⟩+ ε) ∈ epi f∗i , ∀i and hence( m∑
i=1

x∗i,α,−
m∑
i=1

fi(x) + ⟨x,
m∑
i=1

x∗i,α⟩+mε
)
∈ epi f∗1 + · · ·+ epi f∗m.(3.23)

Now epi f∗1 + · · · + epi f∗m is closed in the topology ω(X∗, X) × R. Thus, by (3.21)
and (3.23), we have(

x∗,−
m∑
i=1

fi(x) + ⟨x, x∗⟩+mε
)
∈ epi f∗1 + · · ·+ epi f∗m.(3.24)

Consequently, there exists y∗i ∈ X∗ and ti ≥ 0 such that

x∗ =
m∑
i=1

y∗i(3.25)

−
m∑
i=1

fi(x) + ⟨x, x∗⟩+mε =
m∑
i=1

(f∗(y∗i ) + ti).

Hence

−
m∑
i=1

fi(x) + ⟨x, x∗⟩+mε ≥
m∑
i=1

f∗(y∗i ).(3.26)

Then we have

y∗i ∈ ∂mεfi(x), ∀i ∈ {1, 2, . . . ,m}.
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Thus by (3.25),

x∗ ∈
m∑
i=1

∂mεfi(x).

Hence (3.20) holds. Applying Theorem 3.2, part (i) implies (ii), we have

(

m∑
i=1

fi)
∗ = f∗1� · · ·�f∗m.(3.27)

Let z∗ ∈ X∗. Next we will show that (f∗1� · · ·�f∗m)(z∗) is achieved. If z∗ /∈
dom(

∑m
i=1 fi)

∗, then (f∗1� · · ·�f∗m)(x∗) = +∞ by (3.27) and hence (f∗1� · · ·�f∗m)(z∗)
is achieved.

Now suppose that z∗ ∈ dom(
∑m

i=1 fi)
∗ and then (

∑m
i=1 fi)

∗(z∗) ∈ R. By (3.27),
there exists (z∗i,n)n∈N such that

∑m
i=1 z

∗
i,n = z∗ and( m∑

i=1

fi

)∗
(z∗) ≤ f∗1 (z

∗
1,n) + f∗2 (z

∗
2,n) + · · ·+ f∗m(z∗m,n) ≤

( m∑
i=1

fi

)∗
(z∗) +

1

n
.

Then we have

f∗1 (z
∗
1,n) + f∗2 (z

∗
2,n) + · · ·+ f∗m(z∗m,n) −→

( m∑
i=1

fi

)∗
(z∗).(3.28)

Since
(
z∗,
∑m

i=1 f
∗
i (z

∗
i,n)
)
=
(∑m

i=1 z
∗
i,n,
∑m

i=1 f
∗
i (z

∗
i,n)
)
∈ epi f∗1 + · · · + epi f∗m and

epi f∗1 + · · ·+ epi f∗m is closed in the topology ω(X∗, X)× R, (3.28) implies that(
z∗,
( m∑

i=1

fi

)∗
(z∗)

)
∈ epi f∗1 + · · ·+ epi f∗m.

Thus, there exists v∗i ∈ X∗ such that
∑m

i=1 v
∗
i = z∗ and( m∑

i=1

fi

)∗
(z∗) ≥

m∑
i=1

f∗i (v
∗
i ) ≥ (f∗1� · · ·�f∗m)(z∗).(3.29)

Since (
∑m

i=1 fi)
∗(z∗) = (f∗1� · · ·�f∗m)(z∗) by (3.27), it follows from (3.29) that

(
∑m

i=1 fi)
∗(z∗) =

∑m
i=1 f

∗
i (v

∗
i ). Hence (f∗1� · · ·�f∗m)(z∗) is achieved.

The applying Lemma 3.7, we have ∂(f1 + f2 + · · ·+ fm) = ∂f1 + · · ·+ ∂fm. �

When there are precisely two functions this reduces to:

Corollary 3.9 (Boţ and Wanka). (See [9, Theorem 3.2].) Let f, g : X → ]−∞,+∞]
be proper lower semicontinuous and convex with dom f ∩ dom g ̸= ∅. Assume that
epi f∗+epi g∗ is closed in the topology ω(X∗, X)×R. Then (f +g)∗ = f∗�g∗ in X∗

and the infimal convolution is exact everywhere. In consequence, ∂(f+g) = ∂f+∂g.

Proof. Directly apply Corollary 3.8. �

Remark 3.10. In the setting of Banach space, Corollary 3.9 was first established by
Burachik and Jeyakumar [11]. Example 3.6 shows that the equality (f+g)∗ = f∗�g∗
is not a sufficient condition for epi f∗ + epi g∗ to be closed.
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The following result, stating the equivalence between the closed epigraph condi-
tion and condition (ii) in Theorem 3.2 with exactness, is well known but hard to
track down.

Proposition 3.11. Let m ∈ N, and fi : X → ]−∞,+∞] be proper lower semi-
continuous and convex with

∩m
i=1 dom fi ̸= ∅, where i ∈ {1, 2, . . . ,m}. Then

epi f∗1 +· · ·+epi f∗m is closed in the topology ω(X∗, X)×R if and only if (
∑m

i=1 fi)
∗ =

f∗1� · · ·�f∗m in X∗ and the infimal convolution is exact.

Proof. ⇒: This follows directly from Corollary 3.10.
⇐: Assume now that (

∑m
i=1 fi)

∗ = f∗1� · · ·�f∗m inX∗ and the infimal convolution
is always exact. Note that this assumption implies that the function f∗1� · · ·�f∗m is
lower semicontinuous in X∗. Let (w∗, r) ∈ X∗×R be in the closure of epi f∗1 + · · ·+
epi f∗m in the topology ω(X∗, X)×R. We will show that (w∗, r) ∈ epi f∗1+· · ·+epi f∗m.
The assumption on (w∗, r) implies that there exist (x∗i,α)α∈I in dom f∗i and (ri,α)α∈I
in R such that

w∗
α :=

m∑
i=1

x∗i,α⇁w*w
∗, f∗i (x

∗
i,α) ≤ ri,α , ∀ i, α and

m∑
i=1

ri,α −→ r.(3.30)

Then (
f∗1� · · ·�f∗m

)
(w∗

α) ≤
m∑
i=1

f∗i (x
∗
i,α) ≤

m∑
i=1

ri,α.(3.31)

Our assumption implies that f∗1� · · ·�f∗m is lower semicontinuous, hence by taking
limits in (3.31) and using (3.30) we obtain(

f∗1� · · ·�f∗m
)
(w∗) ≤ r.(3.32)

By assumption,
(
f∗1� · · ·�f∗m

)
(w∗) is exact. Therefore there exists w∗

i such that

w∗ =
∑m

i=1w
∗
i and

(
f∗1� · · ·�f∗m

)
(w∗) =

∑m
i=1 f

∗
i (w

∗
i ). The latter fact and (3.32)

show that (w∗, r) ∈ epi f∗1 + · · ·+ epi f∗m. �
We next dualize Corollary 3.8.

Corollary 3.12 (Dual conjugacy). Suppose that X is a reflexive Banach space.
Let m ∈ N, and fi : X → ]−∞,+∞] be proper lower semicontinuous and convex
with

∩m
i=1 dom f∗i ̸= ∅, where i ∈ {1, 2, . . . ,m}. Assume that epi fi + · · ·+ epi fm is

closed in the weak topology ω(X,X∗)× R.
Then (

∑m
i=1 f

∗
i )

∗ = f1� · · ·�fm in X and the infimal convolution is exact (at-
tained) everywhere. In consequence, we also have

∂(f∗1 + f∗2 + · · ·+ f∗m) = ∂f∗1 + · · ·+ ∂f∗m.

Proof. Apply Corollary 3.8 to the functions f∗i . �
In a Banach space we can add a general interiority condition for closure.

Remark 3.13 (Transversality). Suppose that X is a Banach space, and let f, g be
defined as in Corollary 3.9. If

∪
λ>0 λ [dom f − dom g] is a closed subspace, then

the Attouch-Brezis theorem implies that epi f∗ + epi g∗ is closed in the topology
ω(X∗, X)×R [1, 27, 9, 11]. This result works also in a locally convex Fréchet space
[4].
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The following result shows that sublinearity rules out the pathology of Exam-
ple 3.6 in Theorem 3.2(i).

Corollary 3.14 (Sublinear functions). Let m ∈ N, and fi : X → ]−∞,+∞] be
proper sublinear, where i ∈ {1, 2, . . . ,m}. Suppose that fi = fi on

∩m
i=1 dom fi.

Then the following eight conditions are equivalent.

(i) There exists K > 0 such that for every x ∈
∩m

i=1 dom fi, and every ε > 0,

[ m∑
i=1

∂εfi(x)
]w*

⊆
m∑
i=1

∂Kεfi(x).

(ii)

m∑
i=1

∂fi(0) is weak∗ closed.

(iii)
( m∑

i=1

fi

)∗
= f∗1� · · ·�f∗m in X∗.

(iv) f∗1� · · ·�f∗m is weak∗ lower semicontinuous.
(v) For every x ∈ X and ε ≥ 0,

∂ε(f1 + · · ·+ fm)(x) =
∩
η>0

[ ∪
εi≥0,

∑m
i=1 εi=ε+η

(
∂ε1f1(x) + · · ·+ ∂εmfm(x)

)]
.

(vi) epi f∗1 + · · ·+ epi f∗m is closed in the topology ω(X∗, X)× R.

(vii)
( m∑

i=1

fi

)∗
= f∗1� · · ·�f∗m in X∗ and the infimal convolution is exact

(attained) everywhere it is finite.
(viii)

∂(f1 + f2 + · · ·+ fm) = ∂f1 + · · ·+ ∂fm.

Proof. We first show that (i)⇔(ii)⇔(iii)⇔(iv)⇔(v). By Theorem 3.2, it suffices to
show that (i)⇔(ii).

(i)⇒(ii): Let x∗ ∈ [
∑m

i=1 ∂fi(0)]
w*
. Then x∗ ∈ [

∑m
i=1 ∂1fi(0)]

w*
. By (i), there

exists K > 0 such that x∗ ∈
∑m

i=1 ∂Kfi(0). [31, Theorem 2.4.14(iii)] shows that
x∗ ∈

∑m
i=1 ∂fi(0). Hence

∑m
i=1 ∂fi(0) is weak

∗ closed.

(ii)⇒(i): Let x ∈
∩m

i=1 dom fi and ε > 0, and x∗ ∈ [
∑m

i=1 ∂εfi(x)]
w*
. Then there

exists a net (x∗i,α)α∈I in ∂εfi(x) such that

m∑
i=1

x∗i,α⇁w* x
∗.(3.33)

Then by [31, Theorem 2.4.14(iii)], we have

x∗i,α ∈ ∂fi(0) and fi(x) ≤ ⟨x, x∗i,α⟩+ ε, ∀i ∈ {1, 2, . . . ,m} ∀α ∈ I.(3.34)

Hence
m∑
i=1

x∗i,α ∈
m∑
i=1

∂fi(0) and

m∑
i=1

fi(x) ≤
⟨
x,

m∑
i=1

x∗i,α

⟩
+mε, ∀α ∈ I.(3.35)
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Thus, by (3.33) and (3.35),

x∗ ∈
[ m∑

i=1

∂fi(0)
]w*

and

m∑
i=1

fi(x) ≤ ⟨x, x∗⟩+mε.(3.36)

Since
∑m

i=1 ∂fi(0) is weak∗ closed, by (3.36), x∗ ∈
∑m

i=1 ∂fi(0). Then there exists
y∗i ∈ ∂fi(0) such that

x∗ =

m∑
i=1

y∗i .(3.37)

By (3.36) and [31, Theorem 2.4.14(i)], we have

m∑
i=1

(
fi(x) + f∗i (y

∗
i )
)
=

m∑
i=1

(
fi(x) + ι∂fi(0)(y

∗
i )
)
≤ ⟨x, x∗⟩+mε

Hence

y∗i ∈ ∂mεfi(x), ∀i ∈ {1, 2, . . . ,m}.

Then by (3.37), x∗ ∈
∑m

i=1 ∂mεfi(x). Setting K := m, we obtain (i).
Hence (i)⇔(ii)⇔(iii) ⇔(iv)⇔(v).
(ii)⇔(vi): By [31, Theorem 2.4.14(i)], we have

epi f∗1 + · · ·+ epi f∗m =
(
∂f1(0) + · · ·+ ∂fm(0)

)
× {r | r ≥ 0}.

The rest is now clear.
(vi)⇒(vii): Apply Corollary 3.8.
(vii)⇒(viii): Apply Lemma 3.7 directly.
(viii)⇒(ii): Since

∑m
i=1 ∂fi(0) = ∂(f1 + f2 + · · · + fm)(0), we conclude that∑m

i=1 ∂fi(0) is weak
∗ closed �

Remark 3.15. By applying Corollary 3.14 to a single sublinear function, we con-
clude that f = f and is lower semicontinuous everywhere (see (3.3)). By [31,
Theorem 2.4.14], this implies existence of subdifferentials at 0 (as indeed can also
be deduced from Corollary 3.14).

Corollary 3.16 (Burachik, Jeyakumar and Wu). (See [12, Corollary 3.3].) Suppose
that X is a Banach space. Let f, g : X → ]−∞,+∞] be proper lower semicontinuous
and sublinear. Then the following are equivalent.

(i) epi f∗ + epi g∗ is closed in the topology ω(X∗, X)× R.
(ii) (f + g)∗ = f∗�g∗ in X∗ and the infimal convolution is exact (attained)

everywhere.
(iii) ∂(f + g) = ∂f + ∂g.

Proof. Apply Corollary 3.14 directly. �

We end this section with a corollary of our main result involving the subdiffer-
ential of the sum of convex functions. We recall that a formula known to hold in
general, without any constraint qualification, has been given by Hiriart-Urruty and
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Phelps in [18, Theorem 2.1] (see also [15, Corollary 5.1] and [17, Theorem 3.1]) and
is as follows.

(3.38) ∂(f1 + · · ·+ fm)(x) =
∩
η>0

[∂ηf1(x) + · · ·+ ∂ηfm(x)]
w*
.

Several constraint qualifications have been given in the literature to obtain simpler
expressions for the right hand side in (3.38). As we mentioned before, the closed
epigraph condition allows one to conclude the subdifferential sum formula, so both
the intersection symbol and the closure operator become superfluous under this
constraint qualification. Hence it is valid to ask whether our closedness condition
in Theorem 3.2(i) allows us to simplify the right hand side in (3.38). The following
corollary shows that this is indeed the case, and we are able to remove the weak∗

closure from (3.38).

Corollary 3.17. Let m ∈ N, and fi : X → ]−∞,+∞] be proper convex with∩m
i=1 dom fi ̸= ∅, where i ∈ {1, 2, . . . ,m}. Suppose that fi = fi on

∩m
i=1 dom fi.

Assuming any of the assumptions (i)-(iv) in Theorem 3.2, the following equality
holds for every x ∈ X,

∂(f1 + · · ·+ fm)(x) =
∩
η>0

[∂ηf1(x) + · · ·+ ∂ηfm(x)] .

Proof. By Theorem 3.2(iv), we have

∂(f1 + · · ·+ fm)(x) =
∩
η>0

[ ∪
εi≥0,

∑m
i=1 εi=η

(
∂ε1f1(x) + · · ·+ ∂εmfm(x)

)]

⊆
∩
η>0

( m∑
i=1

∂ηfi(x)
)
⊆
∩
η>0

(
∂mη

( m∑
i=1

fi

)
(x)
)
= ∂

( m∑
i=1

fi

)
(x).

Hence ∂(f1 + · · ·+ fm)(x) =
∩

η>0 [∂ηf1(x) + · · ·+ ∂ηfm(x)]. �

Without the constraint qualification in Theorem 3.2, Corollary 3.17 need not
hold, as shown in the following example. We denote by span{C} the closed linear
subspace spanned by a set C.

Example 3.18. Let N := {0, 1, 2, . . .}. Suppose that H is an infinite-dimensional
Hilbert space and let (en)n∈N be an orthonormal sequence in H. Set

C := span{e2n}n∈N and D := span{cos(θn)e2n + sin(θn)e2n+1}n∈N,

where (θn)n∈N is a sequence in
]
0, π2

]
such that

∑
n∈N sin2(θn) < +∞. Define

f, g : H → ]−∞,+∞] by

f := ιC⊥ and g := ιD⊥ .(3.39)

Then f and g are proper lower semicontinuous and convex, and constraint qualifi-
cations in Theorem 3.2 fail. Moreover,

∂(f + g)(x) ̸=
∩
η>0

[∂ηf(x) + ∂ηg(x)] , ∀x ∈ dom f ∩ dom g.
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Proof. Since C,D are closed linear subspaces, f and g are proper lower semicontinu-
ous and convex. Let x ∈ dom f∩dom g and η > 0. Then we have ∂ηf(x) = C⊥⊥ = C

and ∂ηg(x) = D⊥⊥ = D and thus ∂ηf(x) + ∂ηg(x) = C +D. Hence∩
η>0

[∂ηf(x) + ∂ηg(x)] = C +D.(3.40)

Then by [2, Example 3.34],
∩

η>0 [∂ηf(x) + ∂ηg(x)] is not norm closed and hence∩
η>0 [∂ηf(x) + ∂ηg(x)] is not weak∗ closed by [2, Theorem 3.32]. However, ∂(f +

g)(x) is weak∗ closed. Hence ∂(f + g)(x) ̸=
∩

η>0 [∂ηf(x) + ∂ηg(x)].

Note that ∂ηf(x) + ∂ηg(x)
w*

= C +D
w* * C + D = ∂εf(x) + ∂εg(x), ∀ε > 0.

Hence the constraint qualification in Theorem 3.2(i) fails. �

4. Further consequences of our main result

In this section, we will recapture various forms of Rockafellar’s Fenchel duality
theorem.

Lemma 4.1 (Interiority). Let m ∈ N, and εi ≥ 0 and let fi : X → ]−∞,+∞] be
proper convex, where i ∈ {1, 2, . . . ,m}. Assume that there exists x0 ∈

(∩m
i=1 dom fi

)
such that fi is continuous at x0 for every i ∈ {2, 3, . . . ,m}. Then for every x ∈(∩m

i=1 dom fi
)
, the set

∑m
i=1 ∂εifi(x) is weak∗ closed. Moreover, for every z ∈(∩m

i=1 dom fi
)
, the set

∑m
i=1 ∂εifi(z) is weak∗ closed.

Proof. We can and do suppose that x0 = 0. Then there exist a neighbourhood V
of 0 and K > max{0, f1(0)} such that V = −V (see [28, Theorem 1.14(a)]) and

V ⊆ dom fi and sup
y∈V

fi(y) ≤ sup
y∈V

fi(y) ≤ K, ∀i ∈ {2, 3, . . . ,m}.(4.1)

Let x ∈
∩m

i=1 dom fi, x
∗ ∈ [

∑m
i=1 ∂εifi(x)]

w*
. We will show that

x∗ ∈
m∑
i=1

∂εifi(x).(4.2)

Our assumption on x∗ implies that for every i = 1, . . . ,m there exists a net (x∗i,α)α∈I
in ∂εifi(x) such that

m∑
i=1

x∗i,α⇁w* x
∗.(4.3)

We have

f∗i (x
∗
i,α) ≤ −fi(x) + ⟨x, x∗i,α⟩+ εi, ∀i ∈ {1, 2, . . . ,m} ∀α ∈ I(4.4)

Now we claim that{ m∑
i=2

sup |⟨x∗i,α, V ⟩|
}
α∈I

=
{ m∑

i=2

sup⟨x∗i,α, V ⟩
}
α∈I

is eventually bounded.(4.5)

In other words, we will find a terminal set J ⊆ I and R > 0 such that
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i=2 sup⟨x∗i,α, V ⟩ ≤ R for all α ∈ J . Fix i ∈ {2, . . . ,m}. By (4.4), we have

−fi(x) + ⟨x, x∗i,α⟩+ εi ≥ sup
y∈V

{⟨x∗i,α, y⟩ − fi(y)} ≥ sup
y∈V

{⟨x∗i,α, y⟩ −K} (by (4.1))

= sup⟨x∗i,α, V ⟩ −K.(4.6)

Then we have

−
m∑
i=2

fi(x) +
⟨
x,

m∑
i=2

x∗i,α

⟩
+

m∑
i=2

εi ≥
m∑
i=2

sup⟨x∗i,α, V ⟩ − (m− 1)K, ∀α ∈ I.

(4.7)

Since 0 ∈ dom f1 and , f∗1 (x
∗
1,α) ≥ −f1(0) ≥ −K. Then by (4.4),

− f1(x) + ⟨x, x∗1,α⟩+ ε1 ≥ −K, ∀α ∈ I.(4.8)

Combining (4.7) and (4.8)

−
m∑
i=1

fi(x) +
⟨
x,

m∑
i=1

x∗i,α

⟩
+

m∑
i=1

εi ≥
m∑
i=2

sup⟨x∗i,α, V ⟩ −mK, ∀α ∈ I.

Then by (4.3),

−
m∑
i=1

fi(x) + ⟨x, x∗⟩+
m∑
i=1

εi ≥ lim sup
α∈I

m∑
i=2

sup⟨x∗i,α, V ⟩ −mK.(4.9)

Hence (4.5) holds.
Then by (4.5) and the Banach-Alaoglu Theorem (see [28, Theorem 3.15] or [31,

Theorem 1.1.10]), there exists a weak* convergent subnet (x∗i,γ)γ∈Γ of (x∗i,α)α∈I such
that

x∗i,γ ⇁w* x
∗
i,∞ ∈ X∗, i ∈ {2, . . . ,m}.(4.10)

Since ∂εifi(x) is weak
∗ closed by [31, Theorem 2.4.2], then

x∗i,∞ ∈ ∂εifi(x), ∀i ∈ {2, . . . ,m}.(4.11)

Then by (4.3),

x∗ −
m∑
i=2

x∗i,∞ ∈ ∂ε1f1(x).(4.12)

Combining the above two equations, we have

x∗ ∈
m∑
i=1

∂εifi(x).

Hence
∑m

i=1 ∂εifi(x) is weak
∗ closed.

Similarly, the set
∑m

i=1 ∂εifi(z) is weak
∗ closed for every z ∈

(∩m
i=1 dom fi

)
. �

Lemma 4.2. Suppose that X is a Banach space. Let m ∈ N, and εi ≥ 0 and fi :
X → ]−∞,+∞] be proper lower semicontinuous and convex, where i ∈ {1, 2, . . . ,m}.
Assume that

dom f1 ∩
( m∩

i=2

int dom fi

)
̸= ∅.
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Then for every x ∈
∩m

i=1 dom fi, the set
∑m

i=1 ∂εifi(x) is weak∗ closed.

Proof. By [21, Proposition 3.3], we conclude that fi is continuous for i ∈ {2, . . . ,m}.
Apply now Lemma 4.1 directly. �

The following results recapture various known exactness results as consequences
of our main results.

Corollary 4.3. (See [8, Theorem 3.5.8].) Let m ∈ N, and εi ≥ 0 and fi : X →
]−∞,+∞] be proper convex, where i ∈ {1, 2, . . . ,m}. Assume that there exists x0 ∈(∩m

i=1 dom fi
)
such that fi is continuous at x0 for every i ∈ {2, 3, . . . ,m}. Then

(
∑m

i=1 fi)
∗ = f∗1� · · ·�f∗m in X∗ and the infimal convolution is exact everywhere.

Furthermore, ∂(f1 + f2 + · · ·+ fm) = ∂f1 + · · ·+ ∂fm.

Proof. By [16, Lemma 15],

f1 + f2 . . .+ fm = f1 + f2 . . .+ fm = . . . = f1 + f2 + · · ·+ fm.(4.13)

By the assumption, we have x0 ∈ dom f1 ∩
(∩m

i=2 int dom fi
)
and fi is proper for

every i ∈ {2, 3, . . . ,m} by [31, Theorem 2.3.4(ii)].
We consider two cases.
Case 1 : f1 is proper.
By (4.13), Lemma 4.1 and Theorem 3.2 (applied to fi), we have

( m∑
i=1

fi
)∗

=
( m∑
i=1

fi

)∗
=
( m∑

i=1

fi

)∗
= f1

∗� · · ·�fm
∗
= f∗1� · · ·�f∗m.(4.14)

Let x∗ ∈ X∗. Next we will show that (f∗1� · · ·�f∗m)(x∗) is achieved. This is clear
when x∗ /∈ dom(

∑m
i=1 fi)

∗ by (4.14). Now suppose that x∗ ∈ dom(
∑m

i=1 fi)
∗ and

then (
∑m

i=1 fi)
∗(x∗) ∈ R. By (4.14), there exists (x∗i,n)n∈N such that

∑m
i=1 x

∗
i,n = x∗

and

f∗1 (x
∗
1,n) + f∗2 (x

∗
2,n) + · · ·+ f∗m(x∗m,n) ≤

( m∑
i=1

fi

)∗
(x∗) +

1

2n
.(4.15)

Since x∗ ∈ dom(
∑m

i=1 fi)
∗, there exists x ∈ X such that x ∈ ∂ 1

2n
(
∑m

i=1 fi)
∗(x∗).

Then by (4.13),( m∑
i=1

fi

)∗
(x∗) +

( m∑
i=1

fi

)
(x) =

( m∑
i=1

fi

)∗
(x∗) +

( m∑
i=1

fi

)
(x)

=
( m∑

i=1

fi

)∗
(x∗) +

( m∑
i=1

fi

)∗∗
(x)

≤ ⟨x, x∗⟩+ 1

2n
.

Then by (4.15),

f∗1 (x
∗
1,n) + f∗2 (x

∗
2,n) + · · ·+ f∗m(x∗m,n) +

( m∑
i=1

fi

)
(x) ≤ ⟨x, x∗⟩+ 1

n
.
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Hence

x∗i,n ∈ ∂ 1
n
fi(x), ∀i ∈ {1, 2, . . . ,m}, ∀n ∈ N.(4.16)

By the assumptions, there exist a neighbourhood V of 0 and K > max{0, f1(0)}
such that V = −V (see [28, Theorem 1.14(a)]) and

V ⊆ dom fi and sup fi(V ) ≤ sup fi(V ) ≤ K, ∀i ∈ {2, 3, . . . ,m}.

As in the proof of Lemma 4.1,
(∑m

i=2 sup |⟨x∗i,n, V ⟩|
)
n∈N is bounded and then there

exists a weak* convergent subnet (x∗i,γ)γ∈Γ of (x∗i,n)n∈N such that

x∗i,γ ⇁w* x
∗
i,∞ ∈ X∗, i ∈ {2, . . . ,m}

x∗1,γ ⇁w* x
∗ −

m∑
i=2

x∗i,∞ ∈ X∗.(4.17)

Combining (4.17) and taking the limit along the subnets in (4.15), we have

f∗1

(
x∗ −

m∑
i=2

x∗i,∞

)
+ f∗2 (x

∗
2,∞) + · · ·+ f∗m(x∗m,∞) ≤

( m∑
i=1

fi

)∗
(x∗).(4.18)

By (4.14) again and (4.18),

f∗1

(
x∗ −

m∑
i=2

x∗i,∞

)
+ f∗2 (x

∗
2,∞) + · · ·+ f∗m(x∗m,∞) = (f∗1� · · ·�f∗m)(x∗).

Hence f∗1� · · ·�f∗m is achieved at x∗.
By Lemma 3.7, we have ∂(f1 + f2 + · · ·+ fm) = ∂f1 + · · ·+ ∂fm
Case 2 : f1 is not proper.
Since x0 ∈ dom f1, we have there exists y0 ∈ X such that f1(y0) = −∞ and thus

f1(x) = −∞ for every x ∈ dom f1 by [13, Proposition 2.4]. Thus by (4.13),

(f1 + f2 . . .+ fm)(x0) = f1(x0) + f2(x0) + · · ·+ fm(x0) = −∞(4.19)

since fi is proper for every ∈ {2, 3, . . . ,m} and x0 ∈ dom f1 ∩
(∩m

i=2 int dom fi
)
.

We also have f∗1 = +∞ and then

f∗1� · · ·�f∗m = +∞.(4.20)

Then by (4.19), we have

(

m∑
i=1

fi)
∗ =

( m∑
i=1

fi

)∗
= +∞ = f∗1� · · ·�f∗m.

Hence f∗1� · · ·�f∗m is exact everywhere.
Apply Lemma 3.7 directly to obtain that ∂(f1+f2+ · · ·+fm) = ∂f1+ · · ·+∂fm.
Combining the above two cases, the result holds. �

Corollary 4.4. Suppose that X is a Banach space. Let m ∈ N, and fi : X →
]−∞,+∞] be proper lower semicontinuous and convex with dom f1∩

(∩m
i=2 int dom fi

)
̸= ∅, where i ∈ {1, 2, . . . ,m}. Then (

∑m
i=1 fi)

∗ = f∗1� · · ·�f∗m in X∗ and the infimal
convolution is exact everywhere. Furthermore, ∂(f1+f2+· · ·+fm) = ∂f1+· · ·+∂fm.
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Proof. By [21, Proposition 3.3], fi is continuous on int dom fi for i ∈ {2, . . . ,m}.
Then apply Corollary 4.3 directly. �
Corollary 4.5 (Rockafellar). (See [5, Theorem 4.1.19] [22, Theorem 3], or [31,
Theorem 2.8.7(iii)].) Let f, g : X → ]−∞,+∞] be proper convex. Assume that there
exists x0 ∈ dom f ∩ dom g such that f is continuous at x0. Then (f + g)∗ = f∗�g∗
in X∗ and the infimal convolution is exact everywhere. Furthermore, ∂(f + g) =
∂f + ∂g.

Proof. Apply Corollary 4.3 directly. �
A polyhedral set is a subset of a Banach space defined as a finite intersection of

halfspaces. A function f : X → ]−∞,+∞] is said to be polyhedrally convex if epi f
is a polyhedral set.

Corollary 4.6. Let m, k, d ∈ N and suppose that X = Rd, let fi : X → ]−∞,+∞]
be a polyhedrally convex function for i ∈ {1, 2, . . . , k}. Let fj : X → ]−∞,+∞]
be proper convex for every j ∈ {k + 1, k + 2, . . . ,m}. Assume that there exists
x0 ∈

∩m
i=1 dom fi such that fi is continuous at x0 for every i ∈ {k+1, k+2, . . . ,m}.

Then (
∑m

i=1 fi)
∗ = f∗1� · · ·�f∗m in X∗ and the infimal convolution is exact ev-

erywhere. Furthermore, ∂(f1 + f2 + · · ·+ fm) = ∂f1 + · · ·+ ∂fm.

Proof. Set g1 :=
∑k

i=1 fi and g2 :=
∑m

i=k+1 fi. By [23, Corollary 19.1.2], fi is lower
semicontinuous for every i ∈ {1, 2, . . . , k}, so is g1. By Corollary 4.5, (g1 + g2)

∗ =
g∗1�g∗2 with the exact infimal convolution and ∂(g1 + g2) = ∂g1 + ∂g2.

Let i ∈ {1, 2, . . . , k}. By [23, Theorem 19.2], f∗i is a polyhedrally convex func-
tion. Hence f∗1� · · ·�f∗m is polyhedrally convex by [23, Corollary 19.3.4] and hence∑m

i=1 epi f
∗
i is closed by [31, Theorem 2.1.3(ix)] and [23, Theorem 19.1]. Then

applying Corollary 3.8, we have g∗1 = f∗1� · · ·�f∗k with the infimal convolution is
exact everywhere. Using now Lemma 3.7 we obtain ∂g1 = ∂(f1 + f2 + · · · + fk) =
∂f1 + · · ·+ ∂fk.

By Corollary 4.3, we have g∗2 = f∗k+1� · · ·�f∗m with exact infimal convolution,
and ∂g2 = ∂(fk+1 + fk+2 + · · ·+ fm) = ∂fk+1 + · · ·+ ∂fm.

Combining the above results, we have (
∑m

i=1 fi)
∗ = (g1 + g2)

∗ = f∗1� · · ·�f∗m
with exact infimal convolution, and ∂(f1 + f2 + · · ·+ fm) = ∂f1 + · · ·+ ∂fm. �

5. Conclusion

We have introduced a new dual condition for zero duality gap in convex program-
ming. We have proved that our condition is less restrictive than all other conditions
in the literature, and we have related it with (a) Bertsekas constraint qualification,
(b) the closed epigraph condition, and (c) the interiority conditions. We have used
our closedness condition to simplify the well-known expression for the subdifferen-
tial of the sum of convex functions. Our study has motivated the following open
questions.

(1) Does the Closed Epigraph Condition imply Bertsekas Constraint Qualifica-
tion?

(2) Are the conditions of Theorem 3.2 strictly more restrictive than Bertsekas
Constraint Qualification?
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(3) How do these results extend when, instead of the sum of convex functions,
the objective of the primal problem has the form f+g◦A, where f, g convex
and A a linear operator?
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[6] R.I. Boţ and E. R. Csetnek, On a zero duality gap result in extended monotropic programming,

Journal of Optimization Theory and Applications 147 (2010), 473–482.
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[30] C. Zălinescu, A comparison of constraint qualifications in infinite-dimensional convex program-

ming revisited, Australian Mathematical Society. Journal. Series B. Applied Mathematics 40
(1999), 353–378.
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