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138 S. R. BECKER AND P. L. COMBETTES

is the parallel sum of Bk and Dk, and C : H → H is a Lipschitzian monotone oper-
ator. More recent developments concerning splitting methods for models featuring
parallel sums can be found in [4, 5, 13, 25]. In the present paper, motivated by
variational problems arising in image recovery, we consider a new type of inclusions
that involve both parallel sum and “parallel composition” operations in the sense
we introduce below.

Definition 1.1. Let H and G be real Hilbert spaces, let A : H → 2H, and let
L ∈ B (H,G). The parallel composition of A by L is

(1.5) L ◃A =
(
L ◦A−1 ◦ L∗)−1.

The primal-dual inclusion problem under consideration will be the following (our
notation is standard, see Section 2.1 for details).

Problem 1.2. Let H be a real Hilbert space, let r be a strictly positive integer, let
z ∈ H, let A : H → 2H be maximally monotone, and let C : H → H be monotone
and µ-Lipschitzian for some µ ∈ [0,+∞[. For every integer k ∈ {1, . . . , r}, let Gk

and Kk be real Hilbert spaces, let Bk : Gk → 2Gk and Dk : Kk → 2Kk be maximally
monotone, and let Lk ∈ B (H,Gk) and Mk ∈ B (H,Kk). It is assumed that

(1.6) β = µ+

√√√√ r∑
k=1

∥Lk∥2 + max
16k6r

(
∥Lk∥2 + ∥Mk∥2

)
> 0

and that the inclusion

(1.7) find x ∈ H such that z ∈ Ax+

r∑
k=1

(
(L∗

k ◦Bk ◦Lk)� (M∗
k ◦Dk ◦Mk)

)
x+Cx

possesses at least one solution. Solve (1.7) together with the dual problem

(1.8) find v1 ∈ G1, . . . , vr ∈ Gr such that (∀k ∈ {1, . . . , r})

0 ∈ −Lk

(
(A+ C)−1

(
z −

r∑
l=1

L∗
l vl

))
+B−1

k vk + Lk

((
M∗

k ◃D−1
k

)
(L∗

kvk)
)
.

The paper is organized as follows. In Section 2 we define our notation and provide
preliminary results. In particular, we establish some basic properties of the parallel
composition operation introduced in Definition 1.1 and discuss an algorithm recently
proposed in [10] that will serve as a basis for our splitting method. In Section 3,
our algorithm is presented and weak and strong convergence results are established.
Section 4 is devoted to the application of this algorithm to convex minimization
problems. Finally, in Section 5, we propose applications of the results of Section 4
to a concrete problem in image recovery, along with numerical results.

2. Notation and preliminary results

2.1. Notation and definitions. The following notation will be used throughout.
H, G, and K are real Hilbert spaces. We denote the scalar product of a Hilbert
space by ⟨· | ·⟩ and the associated norm by ∥ · ∥. The symbols ⇀ and → denote,
respectively, weak and strong convergence. B (H,G) is the space of bounded linear
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operators from H to G. The Hilbert direct sum of H and G is denoted by H ⊕ G.
Given two sequences (xn)n∈N and (yn)n∈N in H, it will be convenient to use the
notation

(2.1)
[
(∀n ∈ N) xn ≈ yn

]
⇔

∑
n∈N

∥xn − yn∥ < +∞

to model the tolerance to errors in the implementation of the algorithms.
The power set of H is denoted by 2H. Let A : H → 2H be a set-valued operator.

We denote by ranA =
{
u ∈ H

∣∣ (∃x ∈ H) u ∈ Ax
}
the range of A, by domA ={

x ∈ H
∣∣ Ax ̸= ∅

}
the domain of A, by graA =

{
(x, u) ∈ H ×H

∣∣ u ∈ Ax
}

the

graph of A, and by A−1 the inverse of A, i.e., the set-valued operator with graph{
(u, x) ∈ H ×H

∣∣ u ∈ Ax
}
. The resolvent of A is JA = (Id +A)−1. Moreover, A is

monotone if

(2.2) (∀(x, y) ∈ H ×H)(∀(u, v) ∈ Ax×Ay) ⟨x− y | u− v⟩ > 0,

and maximally monotone if there exists no monotone operator B : H → 2H such that
graA ⊂ graB ̸= graA. In this case, JA is a single-valued, nonexpansive operator
defined everywhere in H. We say that A is uniformly monotone at x ∈ domA if
there exists an increasing function ϕ : [0,+∞[ → [0,+∞] that vanishes only at 0
such that

(2.3) (∀u ∈ Ax)(∀(y, v) ∈ graA) ⟨x− y | u− v⟩ > ϕ(∥x− y∥).
We denote by Γ0(H) the class of lower semicontinuous convex functions f : H →
]−∞,+∞] such that dom f =

{
x ∈ H

∣∣ f(x) < +∞
}
̸= ∅. Let f ∈ Γ0(H). The

conjugate of f is the function f∗ ∈ Γ0(H) defined by f∗ : u 7→ supx∈H(⟨x | u⟩−f(x)).
For every x ∈ H, f + ∥x− ·∥2/2 possesses a unique minimizer, which is denoted by
proxfx. The operator proxf can also be defined as a resolvent, namely

(2.4) proxf = (Id +∂f)−1 = J∂f ,

where ∂f : H → 2H : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) ⟨y − x | u⟩+ f(x) 6 f(y)
}

is the
subdifferential of f , which is maximally monotone. We say that f uniformly convex
at x ∈ dom f if there exists an increasing function ϕ : [0,+∞[ → [0,+∞] that
vanishes only at 0 such that
(2.5)
(∀y ∈ dom f)(∀α ∈ ]0, 1[) f(αx+(1−α)y)+α(1−α)ϕ(∥x−y∥) 6 αf(x)+(1−α)f(y).

The infimal convolution of two functions f1 and f2 from H to ]−∞,+∞] is

(2.6) f1� f2 : H → [−∞,+∞] : x 7→ inf
y∈H

(
f1(x− y) + f2(y)

)
,

and the infimal postcomposition of f : H → [−∞,+∞] by L : H → G is

(2.7) L ◃ f : G → [−∞,+∞] : y 7→ inf f
(
L−1{y}

)
= inf

x∈H
Lx=y

f(x).

Let C be a convex subset of H. The indicator function of C is denoted by ιC , and
the strong relative interior of C, i.e., the set of points x ∈ C such that the cone
generated by −x+ C is a closed vector subspace of H, by sriC.

For a detailed account of the above concepts, see [2].
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2.2. Parallel composition. In this section we explore some basic properties of the
parallel composition operation introduced in Definition 1.1 which are of interest in
their own right. First, we justify the terminology via the following connection with
the parallel sum.

Lemma 2.1. Let A : H → 2H, let B : H → 2H, and let L : H ⊕H → H : (x, y) 7→
x+ y. Then L ◃ (A×B) = A�B.

Proof. Since L∗ : H → H⊕H : x 7→ (x, x), the announced identity is an immediate
consequence of (1.4) and (1.5). �
Lemma 2.2. Let A : H → 2H, let B : G → 2G, and let L ∈ B (H,G). Then the
following hold.

(i) ((L ◃A)�B)−1 = L ◦A−1 ◦ L∗ +B−1.
(ii) Suppose that A and B are monotone. Then (L ◃A)�B is monotone.
(iii) Suppose that A and B are maximally monotone and that the cone generated

by L∗(ranB) − ranA is a closed vector subspace. Then (L ◃A)�B is
maximally monotone.

(iv) Suppose that A is maximally monotone and that the cone generated by
ranL∗+ranA is a closed vector subspace. Then L ◃A is maximally mono-
tone.

Proof. (i): This follows easily from (1.4) and (1.5).
(ii): By (i), ((L ◃A)�B)−1 = L◦A−1 ◦L∗+B−1. Since A−1 and B−1 are mono-

tone and monotonicity is preserved under inversion and this type of transformation
[2, Proposition 20.10], the assertion is proved.

(iii): The operators A−1 and B−1 are maximally monotone [2, Proposition 20.22]
and L∗(ranB) − ranA = L∗(domB−1) − domA−1. Hence, L ◦ A−1 ◦ L∗ + B−1 is
maximally monotone [3, Section 24] and so is its inverse which, in view of (i), is
(L ◃A)�B. This result can also be derived from [22, Theorems 16 and 21].

(iv): Set B = {0}−1 in (iii). �
Lemma 2.3. Let A : H → 2H, let B : H → 2H, and let L ∈ B (H,G). Then
L ◃ (A�B) = (L ◃A)� (L ◃B).

Proof. It follows from (1.4) and (1.5) that

L ◃ (A�B) =
(
L ◦ (A�B)−1 ◦ L∗)−1

=
(
L ◦ (A−1 +B−1) ◦ L∗)−1

=
(
L ◦A−1 ◦ L∗ + L ◦B−1 ◦ L∗)−1

=
(
(L ◃A)−1 + (L ◃B)−1

)−1

= (L ◃A)� (L ◃B),(2.8)

which proves the announced identity. �
Lemma 2.4. Let A : H → 2H, let L ∈ B (H,G), and let M ∈ B (G,K). Then
M ◃ (L ◃A) = (M ◦ L) ◃A.

Proof. Indeed, M ◃ (L ◃A) = (M ◦(L ◃A)−1◦M∗)−1 = (M ◦L◦A−1◦L∗◦M∗)−1 =
(M ◦ L) ◃A. �
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Finally, in the next lemma we draw connections with the infimal convolution and
postcomposition operations of (2.6) and (2.7).

Lemma 2.5. Let f ∈ Γ0(H), let g ∈ Γ0(G), and let L ∈ B (H,G) be such that
0 ∈ sri (L∗(dom g∗)− dom f∗). Then the following hold.

(i) (L ◃ f)� g ∈ Γ0(G).
(ii) ∂

(
(L ◃ f)� g

)
= (L ◃ ∂f)�∂g.

Proof. (i): Since 0 ∈ L∗(dom g∗)− dom f∗ and, by the Fenchel-Moreau theorem [2,
Theorem 13.32], f∗ ∈ Γ0(H) and g∗ ∈ Γ0(G), we have f∗ ◦ L∗ + g∗ ∈ Γ0(G). Hence
(f∗ ◦L∗+ g∗)∗ ∈ Γ0(G). However, in view of [2, Theorem 15.27(i)], the assumptions
also imply that (f∗ ◦ L∗ + g∗)∗ = (L ◃ f)� g.

(ii): Let y and v be in G. Then (i), [2, Corollary 16.24, Proposition 13.21(i)&(iv),
and Theorem 16.37(i)] enable us to write

v ∈ ∂
(
(L ◃ f)� g

)
(y) ⇔ y ∈

(
∂
(
(L ◃ f)� g

))−1
(v)

⇔ y ∈ ∂
(
(L ◃ f)� g

)∗
(v)

⇔ y ∈ ∂(f∗ ◦ L∗ + g∗)(v)

⇔ y ∈ (L ◦ (∂f∗) ◦ L∗ + ∂g∗)(v)

⇔ y ∈
(
L ◦ (∂f)−1 ◦ L∗ + (∂g)−1

)
(v)

⇔ v ∈
(
(L ◃ ∂f)�∂g

)
y,(2.9)

which establishes the announced identity. �

Corollary 2.6. Let f ∈ Γ0(H) and let L ∈ B (H,G) be such that 0 ∈ sri (ranL∗ −
dom f∗). Then the following hold.

(i) L ◃ f ∈ Γ0(G).
(ii) ∂(L ◃ f) = L ◃ ∂f .

Proof. Set g = ι{0} in Lemma 2.5. �

2.3. An inclusion problem. Our main result in Section 3 will hinge on rewriting
Problem 1.2 as an instance of the following formulation.

Problem 2.7. Let m and K be strictly positive integers, let (Hi)16i6m and
(Gk)16k6K be real Hilbert spaces, and let (µi)16i6m ∈ [0,+∞[m. For every i ∈
{1, . . . ,m} and k ∈ {1, . . . ,K}, let Ci : Hi → Hi be monotone and µi-Lipschitzian,
let Ai : Hi → 2Hi and Bk : Gk → 2Gk be maximally monotone, let zi ∈ Hi, and let
Lki ∈ B (Hi,Gk). It is assumed that
(2.10)

β =
√
λ+ max

16i6m
µi > 0, where λ ∈

[
sup∑m

i=1 ∥xi∥261

K∑
k=1

∥∥∥∥ m∑
i=1

Lkixi

∥∥∥∥2,+∞

[
,

and that the system of coupled inclusions

(2.11) find x1 ∈ H1, . . . , xm ∈ Hm such that
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z1 ∈ A1x1 +

K∑
k=1

L∗
k1

(
Bk

( m∑
i=1

Lkixi

))
+ C1x1

...

zm ∈ Amxm +

K∑
k=1

L∗
km

(
Bk

( m∑
i=1

Lkixi

))
+ Cmxm

possesses at least one solution. Solve (2.11) together with the dual problem

(2.12) find v1 ∈ G1, . . . , vK ∈ GK such that
0 ∈ −

m∑
i=1

L1i

(
Ai + Ci

)−1
(
zi −

K∑
k=1

L∗
kivk

)
+B−1

1 v1

...

0 ∈ −
m∑
i=1

LKi

(
Ai + Ci

)−1
(
zi −

K∑
k=1

L∗
kivk

)
+B−1

K vK .

The following result is a special case of [10, Theorem 2.4(iii)]. We use the notation
(2.1) to model the possibility of inexactly evaluating the operators involved.

Theorem 2.8. Consider the setting of Problem 2.7. Let x1,0 ∈ H1, . . . , xm,0 ∈ Hm,
v1,0 ∈ G1, . . . , vK,0 ∈ GK , let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence in
[ε, (1− ε)/β], and set

(2.13)

for n = 0, 1, . . .

for i = 1, . . . ,m⌊
s1,i,n ≈ xi,n − γn

(
Cixi,n +

∑K
k=1 L

∗
kivk,n

)
p1,i,n ≈ JγnAi(s1,i,n + γnzi)

for k = 1, . . . ,K
s2,k,n ≈ vk,n + γn

∑m
i=1 Lkixi,n

p2,k,n ≈ s2,k,n − γnJγ−1
n Bk

(γ−1
n s2,k,n)

q2,k,n ≈ p2,k,n + γn
∑m

i=1 Lkip1,i,n
vk,n+1 = vk,n − s2,k,n + q2,k,n

for i = 1, . . . ,m⌊
q1,i,n ≈ p1,i,n − γn

(
Cip1,i,n +

∑K
k=1 L

∗
kip2,k,n

)
xi,n+1 = xi,n − s1,i,n + q1,i,n.

Then there exist a solution (x1, . . . , xm) to (2.11) and a solution (v1, . . . , vK) to
(2.12) such that the following hold.

(i) (∀i ∈ {1, . . . ,m}) zi −
∑K

k=1 L
∗
kivk ∈ Aixi + Cixi.

(ii) (∀k ∈ {1, . . . ,K})
∑m

i=1 Lkixi ∈ B−1
k vk.

(iii) (∀i ∈ {1, . . . ,m}) xi,n ⇀ xi.
(iv) (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk.
(v) Suppose that A1 or C1 is uniformly monotone at x1. Then x1,n → x1.

(vi) Suppose that, for some k ∈ {1, . . . ,K}, B−1
k is uniformly monotone at vk.

Then vk,n → vk.
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3. Main algorithm

We start with the following facts.

Proposition 3.1. Let H be a real Hilbert space, let r be a strictly positive integer,
let z ∈ H, let A : H → 2H, and let C : H → H. For every integer k ∈ {1, . . . , r},
let Gk and Kk be real Hilbert spaces, let Bk : Gk → 2Gk and Dk : Kk → 2Kk , and let
Lk ∈ B (H,Gk) and Mk ∈ B (H,Kk). Set

(3.1) H =

r⊕
k=1

H, G =

r⊕
k=1

Gk, K =

r⊕
k=1

Kk,

and
(3.2)
A : H → 2H : (x, y1, . . . , yr) 7→ (Ax+ Cx− z)× {0} × · · · × {0}
B : G ⊕K → 2G⊕K : (s1, . . . , sr, t1, . . . , tr) 7→ B1s1 ×· · ·×Brsr ×D1t1 ×· · ·×Drtr

L : H → G ⊕K : (x, y1, . . . , yr) 7→ (L1x− L1y1, . . . , Lrx− Lryr,M1y1, . . . ,Mryr).

Furthermore, suppose that

(3.3)
(
∃x = (x, y1, . . . , yr) ∈ H

)
0 ∈ Ax+L∗(B(Lx)

)
.

Then the following hold for some (v1, . . . , vr) ∈ G and (w1, . . . , wr) ∈ K.

(i) z −
∑r

k=1 L
∗
kvk ∈ Ax+ Cx.

(ii) (∀k ∈ {1, . . . , r}) L∗
kvk = M∗

kwk, Lkx − Lkyk ∈ B−1
k vk, and Mkyk ∈

D−1
k wk.

(iii) x solves (1.7).
(iv) (v1, . . . , vr) solves (1.8).

Proof. (i) and (ii): It follows from (3.3) that there exists v = (v1, . . . , vr, w1, . . . , wr) ∈
G ⊕K such that −L∗v ∈ Ax and v ∈ B(Lx), i.e.,

(3.4) −L∗v ∈ Ax and Lx ∈ B−1v.

Since

(3.5) L∗ : G ⊕K → H : (v1, . . . , vr, w1, . . . , wr) 7→( r∑
k=1

L∗
kvk,M

∗
1w1 − L∗

1v1, . . . ,M
∗
rwr − L∗

rvr

)
,

it follows from (3.2) that (3.4) can be rewritten as

(3.6) z−
r∑

k=1

L∗
kvk ∈ Ax+Cx and (∀k ∈ {1, . . . , r})


L∗
kvk = M∗

kwk

Lkx− Lkyk ∈ B−1
k vk

Mkyk ∈ D−1
k wk.

(iii): For every k ∈ {1, . . . , r},

(ii) ⇒


L∗
kvk = M∗

kwk

vk ∈ Bk(Lkx− Lkyk)

wk ∈ Dk(Mkyk)

(3.7)
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⇒


L∗
kvk = M∗

kwk

L∗
kvk ∈ L∗

k

(
Bk(Lkx− Lkyk)

)
M∗

kwk ∈ M∗
k

(
Dk(Mkyk)

)
⇔


L∗
kvk = M∗

kwk

x− yk ∈ (L∗
k ◦Bk ◦ Lk)

−1(L∗
kvk)

yk ∈ (M∗
k ◦Dk ◦Mk)

−1(M∗
kwk)

(3.8)

⇒ x ∈ (L∗
k ◦Bk ◦ Lk)

−1(L∗
kvk) + (M∗

k ◦Dk ◦Mk)
−1(L∗

kvk)

⇔ L∗
kvk ∈

(
(L∗

k ◦Bk ◦ Lk)� (M∗
k ◦Dk ◦Mk)

)
(x).(3.9)

Hence,

(3.10)

r∑
k=1

L∗
kvk ∈

r∑
k=1

(
(L∗

k ◦Bk ◦ Lk)� (M∗
k ◦Dk ◦Mk)

)
(x).

Adding this inclusion to that of (i) shows that x solves (1.7).
(iv): It follows from (i) that

(3.11) (∀k ∈ {1, . . . , r}) −Lkx ∈ −Lk

(
(A+ C)−1

(
z −

r∑
l=1

L∗
l vl

))
.

On the other hand, (ii) yields

(∀k ∈ {1, . . . , r}) Lkx− Lkyk ∈ B−1
k vk,(3.12)

while (3.8) yields

(∀k ∈ {1, . . . , r}) Lkyk ∈ Lk

(
(M∗

k ◦Dk ◦Mk)
−1(M∗

kwk)
)

= Lk

(
(M∗

k ◦Dk ◦Mk)
−1(L∗

kvk)
)

= Lk

(
(M∗

k ◃D−1
k )(L∗

kvk)
)
.(3.13)

Upon adding (3.11), (3.12), and (3.13), we obtain

(3.14) (∀k ∈ {1, . . . , r}) 0 ∈ −Lk

(
(A+ C)−1

(
z −

r∑
l=1

L∗
l vl

))
+B−1

k vk + Lk

(
(M∗

k ◃D−1
k )(L∗

kvk)
)
,

which proves that (v1, . . . , vr) solves (1.8). �

We are now in a position to present our main result.

Theorem 3.2. Consider the setting of Problem 1.2. Let x0 ∈ H, y1,0 ∈ H, . . . ,
yr,0 ∈ H, v1,0 ∈ G1, . . . , vr,0 ∈ Gr, w1,0 ∈ K1, . . . , wr,0 ∈ Kr, let ε ∈ ]0, 1/(β + 1)[,
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let (γn)n∈N be a sequence in [ε, (1− ε)/β], and set

(3.15)

for n = 0, 1, . . .

s1,1,n ≈ xn − γn(Cxn +
∑r

k=1 L
∗
kvk,n)

p1,1,n ≈ JγnA(s1,1,n + γnz)

for k = 1, . . . , r

p1,k+1,n ≈ yk,n + γn(L
∗
kvk,n −M∗

kwk,n)

s2,k,n ≈ vk,n + γnLk(xn − yk,n)

p2,k,n ≈ s2,k,n − γnJγ−1
n Bk

(γ−1
n s2,k,n)

q2,k,n ≈ p2,k,n + γnLk(p1,1,n − p1,k+1,n)

vk,n+1 = vk,n − s2,k,n + q2,k,n

s2,k+r,n ≈ wk,n + γnMkyk,n

p2,k+r,n ≈ s2,k+r,n − γn
(
Jγ−1

n Dk
(γ−1

n s2,k+r,n)
)

q1,k+1,n ≈ p1,k+1,n + γn(L
∗
kp2,k,n −M∗

kp2,k+r,n)

q2,k+r,n ≈ p2,k+r,n + γnMkp1,k+1,n

wk,n+1 = wk,n − s2,k+r,n + q2,k+r,n

q1,1,n ≈ p1,1,n − γn(Cp1,1,n +
∑r

k=1 L
∗
kp2,k,n)

xn+1 = xn − s1,1,n + q1,1,n

for k = 1, . . . , r⌊
yk,n+1 = yk,n − p1,k+1,n + q1,k+1,n.

Then the following hold for some solution x to (1.7) and some solution (v1, . . . , vr)
to (1.8).

(i) xn ⇀ x and (∀k ∈ {1, . . . , r}) vk,n ⇀ vk.
(ii) Suppose that A or C is uniformly monotone at x. Then xn → x.
(iii) Suppose that, for some k ∈ {1, . . . , r}, B−1

k is uniformly monotone at vk.
Then vk,n → vk.

Proof. We introduce the auxiliary problem

(3.16) find x ∈ H, y1 ∈ H, . . . , yr ∈ H such that
z ∈ Ax+

∑r
k=1 L

∗
k

(
Bk(Lkx− Lkyk)

)
+ Cx

0 ∈ −L∗
1

(
B1(L1x− L1y1)

)
+M∗

1

(
D1(M1y1)

)
...

0 ∈ −L∗
r

(
Br(Lrx− Lryr)

)
+M∗

r

(
Dr(Mryr)

)
.

Let x ∈ H. Then

x solves (1.7) ⇔ z ∈ Ax+

r∑
k=1

(
(L∗

k ◦Bk ◦ Lk)� (M∗
k ◦Dk ◦Mk)

)
x+ Cx



146 S. R. BECKER AND P. L. COMBETTES

⇔
(
∃ (uk)16k6r ∈ Hr

)


z ∈ Ax+
∑r

k=1 uk + Cx

u1 ∈
(
(L∗

1 ◦B1 ◦ L1)� (M∗
1 ◦D1 ◦M1)

)
x

...

ur ∈
(
(L∗

r ◦Br ◦ Lr)� (M∗
r ◦Dr ◦Mr)

)
x

⇔
(
∃ (uk)16k6r ∈ Hr

)


z ∈ Ax+
∑r

k=1 uk + Cx

x ∈ (L∗
1 ◦B1 ◦ L1)

−1u1 + (M∗
1 ◦D1 ◦M1)

−1u1
...

x ∈ (L∗
r ◦Br ◦ Lr)

−1ur + (M∗
r ◦Dr ◦Mr)

−1ur

⇔
(
∃ (uk)16k6r ∈ Hr

)(
∃ (yk)16k6r ∈ Hr

)


z ∈ Ax+
∑r

k=1 uk + Cx

x− y1 ∈ (L∗
1 ◦B1 ◦ L1)

−1u1

y1 ∈ (M∗
1 ◦D1 ◦M1)

−1u1
...

x− yr ∈ (L∗
r ◦Br ◦ Lr)

−1ur

yr ∈ (M∗
r ◦Dr ◦Mr)

−1ur

⇔
(
∃ (uk)16k6r ∈ Hr

)(
∃ (yk)16k6r ∈ Hr

)


z ∈ Ax+
∑r

k=1 uk + Cx

u1 ∈ (L∗
1 ◦B1 ◦ L1)(x− y1)

u1 ∈ (M∗
1 ◦D1 ◦M1)y1

...

ur ∈ (L∗
r ◦Br ◦ Lr)(x− yr)

ur ∈ (M∗
r ◦Dr ◦Mr)yr

⇒
(
∃ (yk)16k6r ∈ Hr

)

z ∈ Ax+
∑r

k=1 L
∗
k

(
Bk(Lkx− Lkyk)

)
+ Cx

0 ∈ −L∗
1

(
B1(L1x− L1y1)

)
+M∗

1

(
D1(M1y1)

)
...

0 ∈ −L∗
r

(
Br(Lrx− Lryr)

)
+M∗

r

(
Dr(Mryr)

)
.

(3.17)

Hence since, by assumption, (1.7) has at least one solution,

(3.18) (3.16) has at least one solution.
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Next, we set

(3.19)



m = r + 1

K = 2r

H1 = H
A1 = A

C1 = C

µ1 = µ

z1 = z

and (∀k ∈ {1, . . . , r})



Hk+1 = H
Ak+1 = 0

Bk+r = Dk

Ck+1 = 0

µk+1 = 0

zk+1 = 0.

We also define

(3.20) (∀k ∈ {1, . . . , r}) Gk+r = Kk and

(∀i ∈ {1, . . . ,m}) Lki =


Lk, if 1 6 k 6 r and i = 1;

−Lk, if 1 6 k 6 r and i = k + 1;

Mk−r, if r + 1 6 k 6 2r and i = k − r + 1;

0, otherwise.

We observe that in this setting

(3.21) (3.16) is a special case of (2.11).

Moreover, if we set λ =
∑r

k=1 ∥Lk∥2 +max16k6r(∥Lk∥2 + ∥Mk∥2), we deduce from
the Cauchy-Schwarz inequality in R2 that, for every (xi)16i6m = (x, y1, . . . , yr) ∈⊕m

i=1H,

K∑
k=1

∥∥∥∥ m∑
i=1

Lkixi

∥∥∥∥2 = ∥(L1x− L1y1, . . . , Lrx− Lryr,M1y1, . . . ,Mryr)∥2

6
(
∥(L1x, . . . , Lrx)∥+ ∥(L1y1, . . . , Lryr,M1y1, . . . ,Mryr)∥

)2
=

√√√√ r∑
k=1

∥Lkx∥2 +

√√√√ r∑
k=1

(
∥Lkyk∥2 + ∥Mkyk∥2

)2

6

√√√√ r∑
k=1

∥Lk∥2 ∥x∥+

√√√√ r∑
k=1

(∥Lk∥2 + ∥Mk∥2) ∥yk∥2

2

6

√√√√ r∑
k=1

∥Lk∥2 ∥x∥+ max
16k6r

√
∥Lk∥2 + ∥Mk∥2 ∥(y1, . . . , yr)∥

2

6
(

r∑
k=1

∥Lk∥2 + max
16k6r

(
∥Lk∥2 + ∥Mk∥2

)) (
∥x∥2 + ∥(y1, . . . , yr)∥2

)
= λ

m∑
i=1

∥xi∥2.(3.22)
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Thus,

(3.23) (1.6) is a special case of (2.10).

Now, let us define

(3.24) (∀n ∈ N) x1,n = xn and (∀k ∈ {1, . . . , r})

{
xk+1,n = yk,n

vk+r,n = wk,n.

Then it follows from (3.19) that

(3.25) (3.15) is a special case of (2.13).

Altogether, Theorem 2.8(i)–(iv) asserts that there exist a solution x = (x1, . . . , xm) =
(x, y1, . . . , yr) to (2.11) and a solution (v1, . . . , vK) = (v1, . . . , vr, w1, . . . , wr) to
(2.12) which satisfy

(3.26) xn ⇀ x and (∀k ∈ {1, . . . , r})

{
vk,n ⇀ vk

wk,n ⇀ wk,

together with the inclusions

(3.27)

z −
r∑

k=1

L∗
kvk ∈ Ax + Cx and (∀k ∈ {1, . . . , r})


L∗
kvk = M∗

kwk

Lkx− Lkyk ∈ B−1
k vk

Mkyk ∈ D−1
k wk.

Using the notation (3.2), we can rewrite (3.27) as

(3.28) 0 ∈ Ax+L∗(B(Lx)
)
.

In turn, it follows from Proposition 3.1(iii)–(iv) that

(3.29) x solves (1.7) and (v1, . . . , vr) solves (1.8).

This and (3.26) prove (i). Finally, (ii) and (iii) follow from (3.19) and Theo-
rem 2.8(v)–(vi). �
Remark 3.3. In the spirit of the splitting methods of [10, 12], the algorithm de-
scribed in (3.15) achieves full decomposition in that every operator is used individ-
ually at each iteration.

4. Application to convex minimization

In this section we consider a structured minimization problem of the following
format.

Problem 4.1. Let H be a real Hilbert space, let r be a strictly positive integer, let
z ∈ H, let f ∈ Γ0(H), and let ℓ : H → R be a differentiable convex function such
that ∇ℓ is µ-Lipschitzian for some µ ∈ [0,+∞[. For every integer k ∈ {1, . . . , r},
let Gk and Kk be real Hilbert spaces, let gk ∈ Γ0(Gk) and hk ∈ Γ0(Kk), and let
Lk ∈ B (H,Gk) and Mk ∈ B (H,Kk). It is assumed that

(4.1) β = µ+

√√√√ r∑
k=1

∥Lk∥2 + max
16k6r

(
∥Lk∥2 + ∥Mk∥2

)
> 0,
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that

(4.2) (∀k ∈ {1, . . . , r}) 0 ∈ sri
(
dom (gk ◦ Lk)

∗ −M∗
k (domh∗k)

)
,

that

(4.3) (∀k ∈ {1, . . . , r}) 0 ∈ sri
(
ranMk − domhk

)
,

and that

(4.4) z ∈ ran

(
∂f +

r∑
k=1

(
(L∗

k ◦ (∂gk) ◦ Lk)� (M∗
k ◦ (∂hk) ◦Mk)

)
+∇ℓ

)
.

Solve the primal problem

(4.5) minimize
x∈H

f(x) +

r∑
k=1

(
(gk ◦ Lk)� (hk ◦Mk)

)
(x) + ℓ(x)− ⟨x | z⟩,

together with the dual problem

(4.6) minimize
v1∈G1,..., vr∈Gr

(f∗� ℓ∗)

(
z −

r∑
k=1

L∗
kvk

)
+

r∑
k=1

(
g∗k(vk) + (M∗

k ◃ h∗k)(L
∗
kvk)

)
.

Special cases when (4.2) and (4.3) are satisfied can be derived from [2, Proposi-
tion 15.24]. The next proposition describes scenarios in which (4.4) holds.

Proposition 4.2. Consider the same setting as in Problem 4.1 with the exception
that assumption (4.4) is not made and is replaced by the assumptions that

(4.7)

E =
{(

L1(x−y1)−s1, . . . , Lr(x−yr)−sr,M1y1− t1, . . . ,Mryr− tr
) ∣∣∣ x ∈ dom f,

y1 ∈ H, . . . , yr ∈ H, s1 ∈ dom g1, . . . , sr ∈ dom gr, t1 ∈ domh1, . . . , tr ∈ domhr

}
̸= ∅

and that (4.5) has a solution. Then (4.4) is satisfied in each of the following cases.

(i) 0 ∈ sriE.
(ii) E is a closed vector subspace.
(iii) f is real-valued and, for every k ∈ {1, . . . , r}, the operators Lk and Mk are

surjective.
(iv) For every k ∈ {1, . . . , r}, gk and hk are real-valued.
(v) H, (Gk)16k6r, and (Kk)16k6r are finite-dimensional, and

(4.8) (∃x ∈ ri dom f)(∀k ∈ {1, . . . , r})(∃ yk ∈ H)

{
Lk(x− yk) ∈ ri dom gk

Mkyk ∈ ri domhk.

Proof. Let us define H, G, and K as in (3.1), L as in (3.2), and let us set
(4.9){
f : H → ]−∞,+∞] : x = (x, y1, . . . , yr) 7→ f(x) + ℓ(x)− ⟨x | z⟩
g : G ⊕K → ]−∞,+∞] : s = (s1, . . . , sr, t1, . . . , tr) 7→

∑r
k=1

(
gk(sk) + hk(tk)

)
.

Then we can rewrite (4.7) as

(4.10) E = L(domf)− dom g.
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(i): Since E ̸= ∅, the functions (gk ◦ Lk)16k6r and (hk ◦ Mk)16k6r are proper
and therefore in Γ0(H). In turn, the Fenchel-Moreau theorem [2, Theorem 13.32]
asserts that the functions ((gk ◦Lk)

∗)16k6r and ((hk ◦Mk)
∗)16k6r are in Γ0(H). On

the other hand, since (4.3) and [2, Corollary 15.28(i)] imply that

(4.11) (∀k ∈ {1, . . . , r}) (hk ◦Mk)
∗ = M∗

k ◃ h∗k,

(4.2) and [2, Proposition 12.34(i)] yield

(∀k ∈ {1, . . . , r}) 0 ∈ sri
(
dom (gk ◦ Lk)

∗ −M∗
k (domh∗k)

)
= sri

(
dom (gk ◦ Lk)

∗ − dom (M∗
k ◃ h∗k)

)
= sri

(
dom (gk ◦ Lk)

∗ − dom (hk ◦Mk)
∗).(4.12)

Hence, we derive from [2, Proposition 15.7] that

(4.13) (∀k ∈ {1, . . . , r})(∀x ∈ H)(∃ yk ∈ H)(
(gk ◦ Lk)� (hk ◦Mk)

)
(x) = gk(Lkx− Lkyk) + hk(Mkyk),

which allows us to rewrite (4.5) as a minimization problem on H, namely

(4.14) minimize
x∈H,y1∈H,...,yr∈H

f(x) + ℓ(x)− ⟨x | z⟩+
r∑

k=1

(
gk(Lkx− Lkyk) + hk(Mkyk)

)
or, equivalently,

(4.15) minimize
x∈H

f(x) + g(Lx).

It follows from (4.10) that 0 ∈ sri
(
L(domf)− dom g

)
and therefore from [2, The-

orem 16.37(i)], that

(4.16) ∂(f + g ◦L) = ∂f +L∗ ◦ (∂g) ◦L.
Since, by assumption, (4.5) has a solution, so does (4.15). By Fermat’s rule [2,
Theorem 16.2], this means that 0 ∈ ran ∂(f + g ◦L). Thus (4.16) yields
(4.17) 0 ∈ ran

(
∂f +L∗ ◦ (∂g) ◦L

)
.

Let us introduce the operators

(4.18) A = ∂f, C = ∇ℓ, and (∀k ∈ {1, . . . , r})

{
Bk = ∂gk

Dk = ∂hk.

We derive from [2, Proposition 17.10] that C is monotone and from [2, Theo-
rem 20.40] that the operators A, (Bk)16k6r, and (Dk)16k6r are maximally mono-
tone. Next, let us define A and B as in (3.2). Then it follows from (4.17) and [2,
Proposition 16.8] that (3.3) holds. In turn, Proposition 3.1(iii) asserts that (4.4) is
satisfied.

(ii)⇒(i): This follows from [2, Proposition 6.19(i)].
(iii)⇒(i) and (iv)⇒(i): In both cases E = G ⊕K.
(v)⇒(i): Since H, G, and K are finite-dimensional, (4.10) and [2, Corollary 6.15]

imply that

(4.8) ⇔ (∃x ∈ ri domf) Lx ∈ ri dom g
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⇔ 0 ∈
(
L(ri domf)− ri dom g

)
⇔ 0 ∈ ri

(
L(domf)− dom g

)
⇔ 0 ∈ riE

⇔ 0 ∈ sriE,(4.19)

which completes the proof. �

Next, we propose our algorithm for solving Problem 4.1.

Theorem 4.3. Consider the setting of Problem 4.1. Let x0 ∈ H, y1,0 ∈ H, . . . ,
yr,0 ∈ H, v1,0 ∈ G1, . . . , vr,0 ∈ Gr, w1,0 ∈ K1, . . . , wr,0 ∈ Kr, let ε ∈ ]0, 1/(β + 1)[,
let (γn)n∈N be a sequence in [ε, (1− ε)/β], and set

(4.20)

for n = 0, 1, . . .

s1,1,n ≈ xn − γn(∇ℓ(xn) +
∑r

k=1 L
∗
kvk,n)

p1,1,n ≈ proxγnf (s1,1,n + γnz)

for k = 1, . . . , r

p1,k+1,n ≈ yk,n + γn(L
∗
kvk,n −M∗

kwk,n)

s2,k,n ≈ vk,n + γnLk(xn − yk,n)

p2,k,n ≈ s2,k,n − γnproxγ−1
n gk

(γ−1
n s2,k,n)

q2,k,n ≈ p2,k,n + γnLk(p1,1,n − p1,k+1,n)

vk,n+1 = vk,n − s2,k,n + q2,k,n

s2,k+r,n ≈ wk,n + γnMkyk,n

p2,k+r,n ≈ s2,k+r,n − γn
(
proxγ−1

n hk
(γ−1

n s2,k+r,n)
)

q1,k+1,n ≈ p1,k+1,n + γn(L
∗
kp2,k,n −M∗

kp2,k+r,n)

q2,k+r,n ≈ p2,k+r,n + γnMkp1,k+1,n

wk,n+1 = wk,n − s2,k+r,n + q2,k+r,n

q1,1,n ≈ p1,1,n − γn(∇ℓ(p1,1,n) +
∑r

k=1 L
∗
kp2,k,n)

xn+1 = xn − s1,1,n + q1,1,n

for k = 1, . . . , r⌊
yk,n+1 = yk,n − p1,k+1,n + q1,k+1,n.

Then the following hold for some solution x to (4.5) and some solution (v1, . . . , vr)
to (4.6).

(i) xn ⇀ x and (∀k ∈ {1, . . . , r}) vk,n ⇀ vk.
(ii) Suppose that f or ℓ is uniformly convex at x. Then xn → x.
(iii) Suppose that, for some k ∈ {1, . . . , r}, g∗k is uniformly convex at vk. Then

vk,n → vk.

Proof. Set

(4.21) A = ∂f, C = ∇ℓ, and (∀k ∈ {1, . . . , r})

{
Bk = ∂gk

Dk = ∂hk.
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We derive from [2, Proposition 17.10] that C is monotone. Furthermore, [2, Theo-
rem 20.40 and Corollary 16.24] assert that the operatorsA, (Bk)16k6r, and (Dk)16k6r

are maximally monotone with inverses respectively given by ∂f∗, (∂g∗k)16k6r, and
(∂h∗k)16k6r. Moreover, (4.4) implies that (1.7) has a solution. Now let x and
v = (vk)16k6r be, respectively, the solutions to (1.7) and (1.8) produced by Theo-
rem 3.2. Since the uniform convexity of a function at a point implies the uniform
monotonicity of its subdifferential at that point [27, Section 3.4] and since, in the
setting of (4.21), (4.20) reduces to (3.15) thanks to (2.4), it is enough to show that
x solves (4.5) and v solves (4.6). To this end, we first derive from (4.12) and [2,
Propositions 16.5(ii) and 24.27] that

(∀k ∈ {1, . . . , r})
(
L∗
k ◦ (∂gk) ◦ Lk

)
�
(
M∗

k ◦ (∂hk) ◦Mk

)
⊂ ∂(gk ◦ Lk)�∂(hk ◦Mk)

= ∂
(
(gk ◦ Lk)� (hk ◦Mk)

)
.(4.22)

Hence, it follows from (4.21) and Fermat’s rule [2, Theorem 16.2] that

x solves (1.7) ⇒ z ∈ ∂f(x) +
r∑

k=1

(
(L∗

k ◦ (∂gk) ◦ Lk)� (M∗
k ◦ (∂hk) ◦Mk)

)
x+∇ℓ(x)

⇒ z ∈ ∂f(x) +
r∑

k=1

∂
(
(gk ◦ Lk)� (hk ◦Mk)

)
x+ ∂ℓ(x)

⇒ 0 ∈ ∂
(
f +

r∑
k=1

(
(gk ◦ Lk)� (hk ◦Mk)

)
+ ℓ− ⟨· | z⟩

)
(x)

⇒ x solves (4.5).(4.23)

On the other hand, (4.3) and Corollary 2.6(ii) yield

(4.24) (∀k ∈ {1, . . . , r}) M∗
k ◃ ∂h∗k = ∂(M∗

k ◃ h∗k),

while [2, Proposition 16.5(ii)] yields

(4.25) (∀k ∈ {1, . . . , r}) ∂g∗k +Lk ◦
(
∂(M∗

k ◃ h∗k)
)
◦L∗

k ⊂ ∂
(
g∗k + (M∗

k ◃ h∗k) ◦L∗
k

)
.

Now define G as in (3.1) and

(4.26)


φ : H → ]−∞,+∞] : u 7→ (f∗� ℓ∗)(z + u)

ψ : G → ]−∞,+∞] : v 7→
∑r

k=1

(
g∗k(vk) + (M∗

k ◃ h∗k)(L
∗
kvk)

)
M : G → H : v 7→ −

∑r
k=1 L

∗
kvk.

Then
(4.27)

(∀v ∈ G) φ(Mv)+ψ(v) = (f∗� ℓ∗)

(
z−

r∑
k=1

L∗
kvk

)
+

r∑
k=1

(
g∗k(vk)+(M∗

k ◃ h∗k)(L
∗
kvk)

)
.

Invoking successively (4.21), (4.24), (4.25), [2, Proposition 16.8], (4.26), (4.27), and
Fermat’s rule, we get

v solves (1.8) ⇒ (∀k ∈ {1, . . . , r}) 0 ∈ −Lk

(
∂(f + ℓ)∗

(
z −

r∑
l=1

L∗
l vl

))



SPLITTING PARALLEL SUMS OF LINEARLY COMPOSED OPERATORS 153

+ ∂g∗k(vk) + Lk

((
M∗

k ◃ ∂h∗k
)
(L∗

kvk)
)

⇒ (∀k ∈ {1, . . . , r}) 0 ∈ −Lk

(
∂(f∗� ℓ∗)

(
z −

r∑
l=1

L∗
l vl

))
+ ∂

(
g∗k + (M∗

k ◃ h∗k) ◦ L∗
k

)
(vk)

⇒ 0 ∈
(
M∗ ◦ (∂φ) ◦M

)
(v) + ∂ψ(v)

⇒ 0 ∈ ∂
(
φ ◦M +ψ

)
(v)

⇒ v solves (4.6),(4.28)

which completes the proof. �

Theorem 4.3 enables us to solve a new class of structured minimization problems
featuring both infimal convolutions and postcompositions. The special cases of
this model which arise in the area of image recovery [7, 21] initially motivated our
investigation. Such applications are considered in the next section.

5. Image restoration application

5.1. Image restoration. Proximal splitting methods were introduced in the field
of image recovery in [14] for variational models of the form

(5.1) minimize
x∈H

f(x) + ℓ(x),

where f and ℓ are as in Problem 4.1 (see [11] for recent developments in this appli-
cation area). In this section we show a full fledged implementation of the algorithm
in Theorem 4.3 in the Euclidean setting (H = RN ) which goes much beyond (5.1).
For this purpose, we consider the problem of image restoration from a blurred image
[1]. Imaging devices, such as cameras, microscopes, and telescopes, distort the light
field due to both optical imperfections and diffraction; another source of blur is rel-
ative movement of the scene and the device during the exposure, as happens when
taking a photo in low-light without a tripod or when a telescope observes the stars
with imperfect motion compensation. The effect is that the recorded image is the
convolution of the true scene with a function known as the point-spread function.
The resulting convolution operator T is called the blur operator.

The original N -pixel (N = 5122) image shown in Fig. 1 (a) is degraded by a
linear blurring operator T associated with a 21-pixel long point-spread function
corresponding to motion blur, followed by addition of a noise component w. Images
in their natural matrix form are converted to vectors x ∈ RN by stacking columns
together. We write the coefficients of x as x = (ξi)16i6N , but when we wish to make

use of the 2-dimensional nature of the image (as a
√
N ×

√
N image), we use the

convention ξi,j = ξ(j−1)
√
N+i for every i and j in {1, . . . ,

√
N}, so that i and j refer

to the row and column indices, respectively. The degraded image

(5.2) y = Tx+ w

is shown in Fig. 1 (b). The noise level is chosen to give y a signal-to-noise ratio of
45 dB relative to Tx. The variational formulation we propose to recover x is an
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instantiation of Problem 4.1 with r = 2, namely,

(5.3) minimize
x∈C

(
(α∥ · ∥1,2 ◦D(1))� (β∥ · ∥1,2 ◦D(2))

)
(x) + γ∥Wx∥1 +

1

2
∥Tx− y∥22

or, equivalently,

(5.4) minimize
x∈H

ιC︸︷︷︸
f

(x) +
(
(α∥ · ∥1,2 ◦D(1))︸ ︷︷ ︸

g1◦L1

� (β∥ · ∥1,2 ◦D(2))︸ ︷︷ ︸
h1◦M1

)
(x)

+
(
γ∥W · ∥1︸ ︷︷ ︸

g2◦L2

� (ι{0} ◦ Id )︸ ︷︷ ︸
h2◦M2

)
(x) +

1

2
∥T · −y∥22︸ ︷︷ ︸

ℓ

(x).

In this model, α, β, and γ are strictly positive constants, and C is a constraint
set modeling the known amplitude bounds on pixel values; here C = [0, 1]N . To
promote the piecewise smoothness of x we use an inf-convolution term mixing first-
and second-order total variation potentials, in a fashion initially advocated in [7]
and further explored in [21]. First-order total variation is commonly used in image
processing, but suffers from staircase effects (see, e.g., [7]), which are reduced by

using the inf-convolution model. The operators D(1) and D(2) are, respectively, first
and second order discrete gradient operators that map RN to RN×M for M = 2 and
M = 3, respectively (see section 5.2 for details). The functions g1 and h1 are the
usual mixed norms defined on RN×M as

(5.5) ∥ · ∥1,2 : x 7→
N∑
i=1

√√√√ M∑
j=1

ξ2i,j ,

which is the sum of the norm of the rows of x. The potential

(5.6) x 7→ ∥Wx∥1,
where W is the analysis operator of a weighted 9/7 biorthogonal wavelet frame [8],
is intended to promote sparsity of the wavelet coefficients of x. Since natural images
are known to have approximately sparse wavelet representations, this term penalizes
noise, which does not have a sparse wavelet representation. Such wavelet terms are
standard in the literature, and are often used in conjunction with a first-order TV
term [19]. Finally, data fidelity is promoted by the potential

(5.7) ℓ : x 7→ 1

2
∥Tx− y∥2.

Remark 5.1. Here are some comments on the implementation of the algorithm
from Theorem 4.3 in the setting of (5.4).

(i) The proximity operator of f = ιC is simply the projector onto a hypercube,
which is straightforward.

(ii) By [2, Example 14.5], for every x ∈ Hr {0},

(5.8) prox∥·∥x =

(
1− 1

∥x∥

)
x

and prox∥·∥0 = 0. Since ∥x∥1,2 is separable in the rows of x, prox∥·∥1,2x is

computed by applying (5.8) to each row.
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(iii) The gradient of ℓ is ∇ℓ : x 7→ T⊤(Tx − y), which is Lipschitz continuous
with constant ∥T∥2.

(iv) The proximity operator of ∥·∥1 is implemented by soft-thresholding of each
component [11].

(v) No special assumption is required on the structure of W (e.g., the frame
need not be tight or, in particular, an orthonormal basis). Without as-
sumptions on W , there is no known closed-form proximity operator of
x 7→ γ∥Wx∥1, which is why it is important to treat ∥ · ∥1 and W sepa-
rately.

(vi) We have used only one hard constraint set C, but it is clear that our
framework can accommodate an arbitrary number of constraint sets, hence
permitting one to inject easily a priori information in the restoration pro-
cess. Each additional hard constraint of the type Lkx ∈ Ck can be handled
by setting gk = ιCk

, hk = ι{0}, and Mk = Id .

Remark 5.2. Remark 5.1 shows that the computation of proximity operators for
each function involved in (5.4) is implementable. It is also possible to compute
proximity operators for scaled versions of the above functions. Let ρ ∈ ]0,+∞[.
Then given φ ∈ Γ0(H) and φ̃ : x 7→ φ(ρx), [2, Corollary 23.24] implies that

(5.9) (∀x ∈ H) proxφ̃ x = ρ−1proxρ2φ(ρx).

This gives the possibility of writing f(Lx) as f̃(L̃x) for L̃ = ρ−1L. Our implemen-
tation will exploit this flexibility in order to rescale all Lk and Mk operators to have
unit operator norm. Numerical evidence suggests that this improves convergence
profiles since all dual variables (vk)16k6r and (wk)16k6r are approximately of the
same scale.

5.2. Total variation. Total variation can be defined for mathematical objects such
as measures and functions [28]. In a discrete setting, there are many possible defi-
nitions of total variation. We use the standard isotropic discretization,

tv(x) =

√
N−1∑
i=1

√
N−1∑
j=1

√
(ξi+1,j − ξi,j)

2 + (ξi,j+1 − ξi,j)
2,(5.10)

x = (ξk)16k6N , ξi,j = ξ(j−1)
√
N+i,

originally advocated in [20]. There is no known closed form expression for the
proximity operator of (5.10).

Infimal-convolution with a second-order total variation term was first suggested
in [7]. We use the particular second-order total variation term corresponding to
“D2,b” (with weights b = (1, 1/2, 1)) from [21]. We now show how to recover the

relation tv(x) = ∥D(1)x∥1,2. Define the horizontal finite-difference operator by

D↔ : RN → R
√
N×

√
N : x 7→ z = (ζi,j)16i,j6

√
N ,(5.11)

ζi,j =

{
ξi,j+1 − ξi,j , if 1 6 j <

√
N ;

0, if j =
√
N,
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and the vertical operator D↕ by D↕ : x 7→ (D↔(x⊤))⊤. Let vec(·) be the mapping

that re-orders a matrix by stacking the columns together, and define D(1) : x 7→
(vec(D↔(x)), vec(D↕(x))). Then by comparing (5.5) with (5.10), we observe that

tv(x) = ∥D(1)x∥1,2.
The second-order total variation potential makes use of an additional set of first-

order difference operators that have different boundary conditions, namely

D̃↔ : RN → R
√
N×

√
N : x 7→ z = (ζi,j)16i,j6

√
N ,(5.12)

ζi,j =


ξi,j − ξi,j−1, if 1 < j <

√
N ;

ξi,j , if j = 1;

−ξi,j−1, if j =
√
N,

and D̃↕ : x 7→ (D̃↔(x⊤))⊤. Then define
(5.13)

D(2) : x 7→

(
vec(D̃↔(D↔x)),

vec(D̃↔(D↕x)) + vec(D̃↕(D↔x))
√
2

, vec(D̃↕(D↕x))

)
.

The second-order total variation potential is defined as x 7→ ∥D(2)x∥1,2.

5.3. Constraint qualifications. To apply the results of Theorem 4.3, we need to
check that the constraint qualifications (4.2), (4.3), and (4.4) hold. Starting with
(4.2), for each k ∈ {1, 2} we have

sri
(
dom (gk ◦ Lk)

∗ −M∗
k (domh∗k)

)
= sri

(
dom (L∗

k ◃ g∗k)−M∗
k (domh∗k)

)
= sri

(
L∗
k(dom g∗k)−M∗

k (domh∗k)
)

= L∗
k

(
ri dom g∗k)−M∗

k (ri domh∗k
)
,(5.14)

where the first line follows from [2, Proposition 15.28] and the fact that gk has full
domain, the second line follows from [2, Proposition 12.34(i)], and the third line
follows from [2, Corollary 6.15]. Since g1, g2, and h1 are coercive, their conjugates
all include 0 in the interior of their domain [2, Theorem 14.17]. Furthermore, the
conjugate of h2 = ι{0} is h∗2 = 0 which has full domain. Thus,

(5.15) (∀k ∈ {1, 2}) 0 ∈ L∗
k(ri dom g∗k) and 0 ∈ M∗

k (ri domh∗k).

Altogether, (5.14) is satisfied for each k ∈ {1, 2} and hence so is (4.2). The quali-
fication (4.3) holds for k = 1 since h1 = ∥ · ∥1,2 has full domain. For k = 2, since
h2 = ι{0}, using [2, Corollary 6.15] and the linearity of M2, we obtain

(5.16) sri (ranM2 − domh2) = sri (ranM2) = ri (ranM2) = ranM2.

Thus, since 0 ∈ ranM2, (4.3) is satisfied. On the other hand, since H is finite-
dimensional, the constraint qualification (4.4) is implied by Proposition 4.2(v). Both
g1 and h1 are norms and therefore have full domain, so (4.8) is satisfied for k = 1.
For k = 2, g2 is a norm and has full domain while h2 = ι{0}, so 0 ∈ ri domh2 and
hence (4.8) holds for k = 2.

To apply Proposition 4.2, the primal problem must have a solution. Here exis-
tence of a solution follows from the compactness of C [2, Proposition 11.14(ii)].
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Figure 1. Original, blurred, and restored images.

Table 1. Quantitative measurements of performance.

Method Peak signal-to-noise ratio Structural similarity index

Blurred and noisy image 20.32 dB 0.545
Restoration 25.42 dB 0.803

5.4. Numerical experiments. Experiments are made on a quad-core 1.60 GHz
Intel i7 laptop, with the algorithms and analysis implemented using the free software
package GNU Octave [16]. The authors are grateful for the support of the Octave
development community.

Note that in (4.20), the update for s1,1,n and for p1,k+1,n both involve L∗
kvk,n,

hence it is possible to prevent redundant computation by storing L∗
kvk,n as a tem-

porary variable. Similarly, the updates for q1,1,n and q1,k+1,n both involve L∗
kp2,k,n,

which can also be stored as a temporary variable for savings. With this approach,
each Lk and Mk is applied exactly twice per iteration, and each L∗

k and M∗
k is also

applied exactly twice. The restored image is displayed in Fig. 1 (c). The algo-
rithm uses all variables initialized to 0. The values of the parameters are as follows:
α = β = γ = 10−2. Figures of merit relative to these experiments are provided
in Table 1. Given a reference image x and an estimate x = (ξi)16i6N , the peak
signal-to-noise ratio (PSNR), a standard measure of image quality, is defined by

(5.17) PSNRx(x) = 10 log10

(
N max16i6N ξ2i∑N

i=1(ξi − ξi)
2

)
and reported in units of decibels (dB). The structural similarity index attempts to
quantify human visual response to images; details can be found in [26].
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