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Observe that if the sequence is well defined, then

(1.6) C0 ⊇ C1 ⊇ · · ·Cn ⊇ Cn+1 ⊇ · · ·

and so

(1.7) ∥x0 − xn∥ = d(x0, Cn) ≤ d(x0, Cn+1) = ∥x0 − xn+1∥

for every n ∈ N. It then follows that

(1.8) β := lim
n∈N

∥x0 − xn∥ = sup
n∈N

∥x0 − xn∥ ∈ [0,+∞]

is well defined. Furthermore, if m < n, then xn ∈ Cm which implies

(1.9) ⟨xn − xm, x0 − xm⟩ ≤ 0

as well as

(1.10) ∥ym − xn∥ ≤ ∥xm − xn∥

because xn ∈ Cn ⊆ Cm+1 ⊆ H(xm, ym).

Lemma 1.2. Suppose that the sequence (xn)n∈N is generated by Algorithm 1.1.
Suppose also that for every subsequence (xkn)n∈N of (xn), we have

(1.11)
xkn → x̄

xkn − ykn → 0

}
⇒ x̄ ∈ C.

Then every bounded subsequence of (xn)n∈N must converge to a point in C.

Proof. Let (xkn)n∈N be a bounded subsequence of (xn)n∈N. It follows from (1.7)
that β < +∞. Let n > m. Using (1.9), we obtain

∥xkn − xkm∥2 = ∥xkn − x0∥2 − ∥xkm − x0∥2 + 2 ⟨xkn − xkm , x0 − xkm⟩(1.12a)

≤ ∥xkn − x0∥2 − ∥xkm − x0∥2(1.12b)

→ β2 − β2 = 0 as n ≥ m → +∞.(1.12c)

Hence (xkn)n∈N is a Cauchy sequence. Thus, there exists x̄ ∈ X such that xkn → x̄.
Now, from (1.10), we obtain ∥ykn −xkn+1∥ ≤ ∥xkn −xkn+1∥ → ∥x̄− x̄∥ = 0 and thus
ykn − xkn+1 → 0. It follows that xkn − ykn = (xkn − xkn+1) + (xkn+1 − ykn) → 0.
Now apply (1.11). �

The previous result allows us to derive the following dichotomy result.

Theorem 1.3 (dichotomy). Suppose that (xn)n∈N is generated by Algorithm 1.1,
that (∀n ∈ N) C ⊆ Cn, and that for every subsequence (xkn)n∈N of (xn), we have

(1.13)
xkn → x̄

xkn − ykn → 0

}
⇒ x̄ ∈ C.

Then exactly one of the following holds:

(i) C ̸= ∅ and xn → PCx0.
(ii) C = ∅ and ∥xn∥ → +∞.
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Proof. Note that

(1.14) (∀n ∈ N) ∥x0 − xn∥ = d(x0, Cn) ≤ d(x0, C).

(i): Assume that C ̸= ∅. Then (xn)n∈N is bounded by (1.14). By Lemma 1.2,
x̄ := limn∈N xn ∈ C. In turn, (1.14) yields ∥x0 − x̄∥ ≤ d(x0, C). Therefore, x̄ =
PCx0, as claimed.

(ii): Suppose that ∥xn∥ ̸→ +∞. Then (xn)n∈N contains a bounded subsequence
which, by Lemma 1.2, must converge to a point in C. Hence if C = ∅, then
∥xn∥ → +∞. �
Remark 1.4. Several comments regarding Theorem 1.3 are in order.

(i) Algorithm 1.1 is related to a method studied by Takahashi et al in [13,
Theorem 4.1]. (See also [11, 12, Theorem 2] for Bregman-distance based
variants.) While that method is more flexible in some ways, our method has
the advantage of requiring neither nonexpansiveness of the given operator
nor the nonemptiness of the target set.

(ii) Our proofs are different because we establish strong convergence directly via
a Cauchy sequence argument. The proofs mentioned in the previous item
are based on a Kadec-Klee property or on Opial’s property. (We expect
that our proof will generalize to Bregman distances, possibly incorporating
errors and families of operators.)

(iii) As we shall see in Section 3 below, our framework encompasses subgradient
projectors which are important in optimization.

(iv) The computation of the sequence (xn)n∈N requires to compute projections
of the same initial point x0 onto polyhedra (intersections of finitely many
halfspaces). While this is not necessarily an easy task, this is considered
to be a standard quadratic programming problem in convex optimization.
Moreover, since Cn+1 is constructed from Cn by intersecting with the halfs-
pace H(xn, yn), it seems plausible to apply active set methods (with a warm
start) to solve these projections. While a detailed excursion on this matter
is beyond the scope of this paper, we do refer the reader to [1, 9, 10] for
references on computing projections onto polyhedra.

2. An application to finding nearest fixed points

Recall that T : X → X is called nonexpansive if

(2.1) (∀x ∈ X)(∀y ∈ X) ∥Tx− Ty∥ ≤ ∥x− y∥;
moreover, T is quasi nonexpansive if

(2.2) (∀x ∈ X)(∀y ∈ FixT ) ∥Tx− y∥ ≤ ∥x− y∥,
where FixT :=

{
x ∈ X

∣∣ x = Tx
}
. See [7, 8, 5] for further information on the fixed

point theory of nonexpansive mappings.
The next result is readily checked.

Lemma 2.1. Let T : X → X be quasi nonexpansive. Consider the following prop-
erties:

(i) T is nonexpansive.
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(ii) T is continuous.
(iii) T is fixed-point closed, i.e., if xn → x̄ and xn − Txn → 0, then x̄ ∈ FixT .

Then (i)⇒(ii)⇒(iii).

Remark 2.2. It is well known that if T : X → X is nonexpansive, then

(2.3)
xn ⇀ x̄

xn − Txn → 0

}
⇒ x̄ ∈ FixT ;

this is the famous demiclosedness principle — to be precise, this states that Id−T
is demiclosed at 0. For recent results on this principle, see [2] and the references
therein. It is clear that demiclosedness of Id−T at 0 implies that T is fixed-point
closed; the converse, however, is false (see Example 3.2 below).

Our main result now yields easily the following result, which by Lemma 2.1 is
applicable in particular when T is nonexpansive. (See also [13, Theorem 4.1] for
extensions in the nonexpansive case.)

Theorem 2.3 (trichotomy). Let T : X → X be quasi nonexpansive and fixed-point
closed, let x0 ∈ X, and set C0 := X. Given n ∈ N and xn, set

(2.4) Cn+1 := Cn ∩H(xn, Txn) and xn+1 = PCn+1x0.

Then exactly one of the following holds:

(i) FixT ̸= ∅ and xn → PFixTx0.
(ii) FixT = ∅ and ∥xn∥ → +∞.
(iii) FixT = ∅ and the sequence is not well defined (i.e., Cn+1 is empty for

some n).

Proof. Set C = FixT , and (yn)n∈N = (Txn)n∈N provided that (xn)n∈N is well
defined. In this case, it is clear that (1.11) holds because T is fixed-point closed.

(i): Assume that C ̸= ∅. If Cn ̸= ∅ and C ⊆ Cn, then (∀c ∈ C) ∥Txn − c∥ ≤
∥xn−c∥ and so c ∈ H(xn, Txn). It follows that C ⊆ Cn+1 and the sequence (xn)n∈N
is well defined. The conclusion thus follows from Theorem 1.3.

(ii)&(iii): Assume that C = ∅. If (xn)n∈N is not well defined, then (iii) happens.
Finally, if (xn)n∈N is well defined, then (ii) occurs again by Theorem 1.3. �

Let us now illustrate the three alternatives in Theorem 2.3.

Example 2.4. Suppose that X = R and set T := α Id, where α ∈ [0, 1[. Then
T is nonexpansive with FixT = {0}. Let x0 ≥ 0. Then Tx0 = αx0 and C1 =
]−∞, (α+ 1)/2x0]. Thus, x1 = (α + 1)/2x0. It follows inductively that (xn)n∈N is
well defined and

(2.5) (∀n ∈ N) xn =
(
(α+ 1)/2

)n
x0 → 0 = PFixTx0,

as is also guaranteed by Theorem 2.3(i).

Example 2.5. Suppose that X = R and set T : X → X : x 7→ x+ α, where α > 0.
Clearly, T is nonexpansive and FixT = ∅. One checks that xn = x0+nα/2; hence,
|xn| → +∞.
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Example 2.6. Suppose X = R, let σ : X → {−1,+1}, and set Tσ : X 7→ X : x 7→
x + σ(x). For trivial reasons, Tσ is quasi nonexpansive (since FixTσ = ∅) and
Tσ is fixed-point closed (since ran(Id−Tσ) ⊆ {+1,−1}). We now assume that
σ(0) = 1 and σ(1/2) = −1. Let x0 = 0. Then C1 = [1/2,+∞[, x1 = 1/2 and
C2 = C1 ∩ ]−∞, 0] = ∅, which means the algorithm terminates.

3. Subgradient projector

The astute reader will ask whether the fairly general assumptions on T in The-
orem 2.3, i.e., that “T be quasi nonexpansive and fixed-point closed”, are really
needed in applications. In this section, we provide an example that not only re-
quires this generality but that also does not satisfy the usual demiclosedness type
assumptions seen in this area.

To this end, let

(3.1) f : X → R

be convex, continuous, and Gâteaux differentiable such that f ≥ 0 and

(3.2) C :=
{
x ∈ X

∣∣ f(x) ≤ 0
}
= {0}.

Write g := ∇f for convenience. The subgradient projector in this case is defined by

(3.3) T : X → X : x 7→

{
x, if x = 0;

x− f(x)
∥g(x)∥2 g(x), if x ̸= 0.

Then it follows (from e.g., [4, Proposition 2.3]) that T is quasi firmly nonexpansive,
i.e.,

(3.4) (∀x ∈ X)(∀y ∈ FixT ) ∥Tx− y∥2 + ∥x− Tx∥2 ≤ ∥x− y∥2.

Lemma 3.1. The following hold:

(i) T is quasi nonexpansive.
(ii) T is fixed-point closed.
(iii) T is continuous at 0.
(iv) If f is Fréchet differentiable, then T is continuous.

Proof. (i): This follows immediately from (3.4).
(ii): Let (xn)n∈N be a sequence in X such that xn → x̄ and xn − Txn → 0. We

assume that x̄ ̸= 0 (for if x̄ = 0, then the conclusion is trivially true) and that
(xn)n∈N lies in X r {0}. To reach the required contradiction, observe first that the
continuity of f yields f(xn) → f(x̄) > 0. Now xn − Txn → 0 ⇔ ∥xn − Txn∥ → 0
⇔ f(xn)/g(xn) → 0; thus,

(3.5) lim
n∈N

∥g(xn)∥ = +∞.

On the other hand, g is strong-to-weak continuous (see, e.g., [5, Proposition 17.31]);
therefore, the sequence (g(xn))n∈N converges weakly to g(x̄). In particular,
(g(xn))n∈N is bounded — but this contradicts (3.5).

(iii): Convexity yields (∀x ∈ Xr{0}) ⟨0− x,∇f(x)⟩ ≤ f(0)−f(x), which implies
f(x) ≤ ⟨x, g(x)⟩ ≤ ∥x∥∥g(x)∥; thus, f(x)/∥g(x)∥ ≤ ∥x∥. Hence limx→0 Tx = 0 =
T0, as claimed.



134 H. H. BAUSCHKE, J. CHEN, AND X. WANG

(iv): If f is Fréchet differentiable, then g is strong-to-strong continuous (see, e.g.,
[5, Proposition 17.32]), which in turn yields the continuity of T on{

x ∈ X
∣∣ g(x) ̸= 0

}
= X r {0}.

�

Note that Lemma 3.1 guarantees the applicability of Theorem 2.3 to the subgra-
dient projector T .

Example 3.2. Suppose that X = ℓ2 =
{
x = (xn)n≥1

∣∣ ∑
n≥1 |xn|2 < +∞

}
and set

(3.6) f : X → R : x = (xn)n≥1 7→
∑
n≥1

nx2nn .

Then f is well defined, convex, and continuous (see [3, Example 7.11]). Moreover, f
is Gâteaux differentiable with g(x) = ∇f(x) = (2n2x2n−1

n )n≥1. Denote the sequence
of standard unit vectors by (en)n≥1, and set

(3.7) (∀n ≥ 1) xn := e1 + en ⇀ e1

For n ≥ 2, we have f(xn) = 1+n, g(xn) = 2e1+2n2en; hence ∥g(xn)∥ =
√
4 + 4n4

and thus f(xn)/∥g(xn)∥ → 0. It follows that xn − T (xn) → 0. Since

(3.8)
xn ⇀ e1

xn − T (xn) → 0

}
̸⇒ e1 = 0,

we see that Id−T is not demiclosed at 0 and that T is not weak-to-weak continuous
however, T is fixed-point closed by Lemma 3.1(ii).

Remark 3.3. Some comments regarding Example 3.2 are in order.

(i) This example illustrates that some of the sufficient conditions demi-
closedness type conditions provided in the literature (see, e.g., [6, Proposi-
tion 2.2]) to guarantee convergence are actually not applicable to the sub-
gradient projector T of the function f defined in Example 3.2. However,
Theorem 2.3 is applicable with T because of Lemma 3.1.

(ii) Some additional work (which we omit here) shows that f is actually Fréchet
differentiable on X. Thus, by Lemma 3.1(iv), T is actually strong-to-strong
continuous.

(iii) It also follows from the classical demiclosedness principle that T is not
nonexpansive.
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