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to study optimality conditions for maximality only since the corresponding results
for the other can be easily derived from them.

We pay our main attention to the following two general classes of constrained
multiobjective optimization problems. The first one concerns multiobjective opti-
mization problems with geometric constraints (MOPGC in short) given by{

Θ-maximize F (x)

subject to x ∈ Ω,
(1.2)

where the cost F : X →→ Z is a set-valued mapping between Banach spaces with
the range space Z ordered by a convex and closed cone Θ ⊂ Z, and where Ω ⊂ X is
a nonempty constraint set. The second class consists of multiobjective optimization
problems with equilibrium constraints (MOPEC in short) written as

Θ-maximize F (x)

subject to 0 ∈ G(x, y) +Q(x, y),

x ∈ Ω.

(1.3)

We see that, in addition to geometric constraints, MOPEC (1.3) contain “equilib-
rium constraints” modeled by the extended generalized equations (EGE)

0 ∈ G(x, y) +Q(x, y),(1.4)

where the set-valued mappings G : X × Y →→ W and Q : X × Y →→ W are between
Banach spaces. For convenience we use the terms base and field referring to the
mappings G and Q of EGE (1.4), respectively, which are commonly used for the
single-valued function g : X × Y → W and a set-valued mapping Q. In the latter
case, they play essentially distinct roles; cf. [23] for more discussions. Model (1.4)
is a base set-valued extension of the generalized equation formalism by Robinson
[27] well recognized in optimization theory and applications. This extension has
been suggested in [2] in order to describe solution mappings to certain classes of
nonsmooth optimization problems including bilevel programming with nonsmooth
lower-level problems, set-valued parametric variational inequalities, etc. Then it
has been further discussed in [3, 7] that the EGE framework (1.4) is a convenient
formalism to model important classes of constraints in optimization, namely:

• Solution maps y ∈ S(x) for various equilibrium constraints [20, 23, 24] can
be converted to the EGE form with G(x, y) := −y and Q(x, y) := S(x).

• Parametric generalized equations of the type 0 ∈ g(x, y) + Q(x, y) with
single-valued base mappings g : X × Y → W depending on the decision
variable y ∈ Y and the parameter x ∈ X are specifications of (1.4) with
G = g : X × Y →W .

• Generalized equations of the variational types described via a normal cone
operator 0 ∈ g(x, y)+N(y; Ω) or via a subdifferential operator 0 ∈ g(x, y)+
∂φ(y) are (1.4) with G = g : X × Y → Y ∗ and Q(x, y) := N(·; Ω) : Y →→ Y ∗

or Q(x, y) := ∂φ(·) : Y →→ Y ∗. Robinson’s original framework [27] corre-
sponds to the normal cone form Q(y) = N(y; Ω) with a convex set Ω. This
covers classical variational inequalities and complementarity problems, KKT
systems in nonlinear programming, etc.
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• Operator constraints of the type x ∈ G−1(Λ) ⇐⇒ G(x) ∩ Λ ̸= ∅ with a set-
valued mapping G : X →→W and a subset Λ ⊂W can be formulated in form
(1.4) with both set-valued mappings G(x, y) := G(x) and Q(x, y) ≡ −Λ.

• Fixed-point constraints x ∈ Q(x) with a set-valued mapping Q : X →→ X can
be written in form (1.4) with Q(x) and G(x) := −x.

• Inequality constraints of φi(x) ≤ 0, i = 1, . . . ,m, are given by (1.4) with

G(x) :=

m∏
i=1

[
φi(x),∞

)
and Q(x) := IRm

+ .

• Equality constraints of φi(x) = 0, i = 1, . . . , p, can be combined to one
extended equation (1.4) with the problem data

G(x) :=
(
φm+1(x), . . . , φm+r(x)

)
and Q(x) := {0} ∈ IRp.

• Geometric constraints of the type x ∈ Ω, where Ω is a subset of a Banach
space X, can be considered in form (1.4) with G(x) := {−x} and Q(x) ≡ Ω.

The last observation indicates the possibility to exclude explicit geometric con-
straints from the formulation of MOPEC (1.3). However, the results obtained in
this paper show that keeping the MOPEC form as in (1.3) allows us to treat geo-
metric constraints more efficiently; in particular, in infinite-dimensional settings,
where a certain Lipschitzian behavior of cost mappings allows us to avoid restric-
tive compactness assumptions on geometric constraints.

Since MOPGC (1.2) is obviously a special case of MOPEC (1.3), it seems natural
to focus on the study of the latter problem. However, we choose the opposite way
concentrating first on the study of the simpler problem (1.2) and then deriving
the corresponding results for (1.3) from those for (1.2). This approach has been
employed in [3] to obtain necessary optimality conditions for general MOPEC (1.3)
by implementing extensive calculus for the generalized differential constructions
involved; see Section 2. In this paper we proceed in a similar way to derive sufficient
optimality conditions.

To motivate our interest to the study of MOPEC, recall that in the case of real-
valued cost functions F = φ : X → IR problems (1.3) reduce to the well-recognized
in optimization theory class of mathematical programs with equilibrium constraints
(MPEC), which is challenging theoretically while having numerous applications to
operations research, engineering, mechanics, economics, multilevel games, and other
areas; see [14, 20, 24, 26] for more details and discussions. One of the most impor-
tant sources of MPEC in optimization theory relates to problems of parametric
optimization

(1.5) minimize
y

φ(x, y) subject to y ∈ Ξ(x) ⊂ Y,

where y is the decision variable and x is the parameter. If φ is differentiable in y,
the corresponding KKT system is given by the equilibrium constraint

(1.6) 0 ∈ ∇yφ(x, y) +N
(
y; Ξ(x)

)
expressed via the appropriate normal cone to the moving constraint set Ξ(x); see
Section 2. If the set Ξ is parameter-independent and convex, the KKT system (1.6)
amounts to the classical variational inequalities as in the original Robinson’s model,
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while the case of moving convex sets in (1.6) relates to the study of quasi-variational
inequalities in the way initiated by Outrata; see [26] and also [25] for more details.
Considering in this way the parametric problem (1.5) with a nonsmooth cost φ
brings us to the generalized KKT system

(1.7) 0 ∈ ∂yφ(x, y) +N
(
y; Ξ(x)

)
,

which is of the EGE type (1.4); see [2, 3]. Note that more general fields in (1.4)
in comparison with (1.6) and (1.7) are given in the composite subdifferential forms
(cf. [23, Chapter 4]):

• Q := ∂(ψ ◦ g) with g : X × Y →W and ψ :W → IR ∪ {∞}.
• Q := (∂ψ ◦ g) with g : X × Y →W and ψ :W → IR ∪ {∞}.

In this paper we develop a dual-space approach to study multiobjective optimiza-
tion problems as MOPGC and MOPEC by employing the basic constructions of
generalized differentiation in variational analysis discussed in Section 2. Elements
of this approach concerning necessary optimality conditions for various classes of
multiobjective problems can be found in [1–8, 11, 12, 16, 24, 30] and the references
therein. In contrast to the aforementioned works we concentrate now on deriving
sufficient optimality conditions for the appropriate classes of MOPGC and MOPEC
considered below. Some results in this direction can be found in [8,9] for weak Pareto
solutions to MOPGC models. Now we address the Pareto optimality, concerning
global Pareto maximizers without interiority assumptions on the ordering cone in
both MOPGC and MOPEC models; this is more challenging theoretically and much
more important for applications.

The rest of the paper is organized as follows. Section 2 contains some basic
definitions and preliminary results on generalized differentiation, which are widely
used in the sequel. In Section 3 we establish new sufficient optimality conditions for
Pareto maximizers of the multiobjective problem (1.2). It is important to emphasize
that the study of Pareto optimality is much more involved, especially in infinite-
dimensional spaces, in comparison with the weak Pareto counterpart considered
in [9]. Indeed, in the Pareto case we do not have the nonempty interiority property
of ordering cones, which allows us to employ separation theorems for nonconvex sets
in primal-space approaches to vector optimization or automatically ensures some
kinds of compactness in the dual space used in the dual-space developments. The
approach of this paper is based on variational principles and related calculus rules
of generalized differentiation. Generalized differential calculus is instrumental in
deriving sufficient conditions for Pareto maximizers in the main class of MOPEC
(1.3) considered in Section 4. The final Section 5 contains concluding remarks and
some open questions of the future research.

2. Tools of variational analysis and generalized differentiation

Throughout the paper we use the conventional notation of variational analysis
and generalized differentiation; see, e.g., [23, 29]. Given a Banach space X, denote
its norm by ∥ · ∥, its dual space equipped with the weak∗ topology w∗ by X∗, and
the canonical pairing between X and X∗ by ⟨·, ·⟩. The symbols B and B∗ stand
for the closed unit balls of the space in question and its topological dual. Given
a set Ω in X, the expressions cl Ω, bdΩ, and intΩ signify the closure, boundary,
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and interior of Ω, respectively. We use the notation x
Ω−→ x̄ to indicate that x → x̄

with x ∈ Ω. For a set-valued mapping F : X →→ Z between two Banach spaces, its
domain and graph are given by

domF :=
{
x ∈ X

∣∣ F (x) ̸= ∅
}

and gphF :=
{
(x, z) ∈ X × Z

∣∣ z ∈ F (x)
}
,

respectively. The inverse mapping of F is defined by F−1(z) := {x ∈ X| z ∈ F (x)}.
Recall that a Banach space X is Asplund if any of its separable subspace has a

separable dual. This is a broad subclass of Banach spaces including, in particular,
every reflexive space; see, e.g., [23] and the references therein. The classical spaces
c0, ℓ

p, and Lp[0, 1] with 1 < p <∞ are Asplund spaces while C[0, 1], ℓ1, and ℓ∞ are
not. Since the main results of this paper hold in Asplund spaces, we assume that
all the spaces under consideration are Asplund.

Following [23], let us begin with the definition of the basic construction of gen-
eralized normals to nonempty sets. Given a set ∅ ̸= Ω ⊂ X, the prenormal cone
(known also as the regular or Fréchet normal cone) to Ω at x̄ ∈ Ω is defined by

N̂(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup

x
Ω−→x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≤ 0
}

and the normal cone to Ω at x̄, known also as the basic/limiting/Mordukhovich
normal cone, is defined by

N(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣∣ ∃xk Ω→ x̄ and x∗k
w∗
→ x∗ as k → ∞

with x∗k ∈ N̂(xk; Ω) for all k ∈ N := {1, 2, . . .}
}
.

(2.1)

When Ω = IRn and the set Ω is locally closed around x̄, by [23, Theorem 1.6], the
cone (2.1) can be equivalently described as

N(x̄; Ω) =
{
v ∈ IRn

∣∣∣ ∃ sequences xk → x̄, αk ≥ 0, wk ∈ Π(xk; Ω)

such that αk(xk − wk) → v as k → ∞
}
,

via the Euclidean projector Π(x; Ω) of Ω; this was in fact the original definition
in [21]. Note that the normal cone (2.1) and the associated coderivative and sub-
differential constructions for mappings presented below are often nonconvex while
enjoying full calculus based on variational/extremal principles of variational analy-
sis; see [23,29] and the references therein.

Given a set-valued mapping F : X →→ Z between arbitrary (Asplund) spaces,
consider two limiting coderivative constructions reduced to the original one [22] in
finite dimensions; see [23] for more details. The normal coderivative D∗

NF (x̄, z̄) :
Z∗ →→ X∗ of F at (x̄, z̄) is defined by

D∗
NF (x̄, z̄)(z

∗) :=
{
x∗ ∈ X∗∣∣ (x∗,−z∗) ∈ N

(
(x̄, z̄); gphF

)
}

=
{
x∗ ∈ X∗

∣∣∣ ∃ (xk, zk)
gphF−→ (x̄, z̄), (x∗k, z

∗
k)

w∗
−→ (x∗, z∗)

with (x∗k,−z∗k) ∈ N̂
(
(xk, zk); gphF

)
for all k ∈ N

}
.

(2.2)

The mixed coderivative D∗
MF (x̄, z̄) : Z

∗ →→ X∗ of F at (x̄, z̄) is defined by replacing
the weak∗ convergence for sequences of dual elements in Z∗ in (2.2) with the norm
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convergence of them, namely:

D∗
MF (x̄, z̄)(z

∗) :=
{
x∗ ∈ X∗

∣∣∣ ∃ (xk, zk)
gphF−→ (x̄, z̄), x∗k

w∗
−→ x∗,

z∗k
∥·∥−→ z∗ with (x∗k,−z∗k) ∈ N̂

(
(xk, zk); gphF

)
for all k ∈ N

}
.

(2.3)

We omit z̄ = f(x̄) in the coderivative notation if F = f : X → Z is single-valued.
It immediately follows from definitions (2.2) and (2.3) that

D∗
MF (x̄, z̄)(z

∗) ⊂ D∗
NF (x̄, z̄)(z

∗) for all z∗ ∈ Z∗,(2.4)

where the equality surely holds when dimZ < ∞ while not in general. We say
that F is strongly coderivatively normal at (x̄, z̄) if inclusion (2.4) holds as equality.
Some classes of strongly coderivatively normal mappings with images in infinite-
dimensional spaces are listed in [23, Proposition 4.9].

Let now the image space Z of F be ordered by some order relation ≤Θ from (1.1)
via a closed and convex ordering cone Θ ⊂ Z. This setting allows us to formulate the
following subdifferential notions for set-valued mappings defined and studied in [3–5]
as vector counterparts of the corresponding subdifferentials by Mordukhovich [21,23]
for scalar (extended-real-valued) functions. Given F : X →→ Z with Z ordered by
Θ, consider first the epigraph of F with respect to Θ given by

epiF :=
{
(x, z) ∈ X × Z

∣∣ z ∈ F (x) + Θ
}

and observe that epiF = gphF if Θ = {0} while gphF ⊂ epiF otherwise. Let
EF : X →→ Z be the epigraphical multifunction associated with F by EF (x) :=
F (x) + Θ. We obviously have gph EF = epiF and then omit Θ in the epigraph
notation epiΘF and the epigraphical multifunction EF,Θ for simplicity. Applying
the coderivative operators to the epigraphical multifunction EF , define the following:

• The basic subdifferential of F at (x̄, z̄) ∈ epiF in direction z∗ (∥z∗∥ = 1) is

∂F (x̄, z̄)(z∗) := D∗
NEF (x̄, z̄)(z∗)

=
{
x∗ ∈ X∗∣∣ (x∗,−z∗) ∈ N

(
(x̄, z̄); epiF

)
}.

(2.5)

• The basic subdifferential of F at (x̄, z̄) is

∂F (x̄, z̄) :=
∪

∥z∗∥=1

∂F (x̄, z̄)(z∗)

=
∪{

∂F (x̄, z̄)(z∗) | − z∗ ∈ N(0; Θ), ∥z∗∥ = 1
}
.

(2.6)

• The singular subdifferential of F at (x̄, z̄) is

∂∞F (x̄, z̄) := D∗
MEF (x̄, z̄)(0).(2.7)

As usual, we drop z̄ = f(x̄) in the subdifferential notation if F = f : X → Z is single-
valued and do not mention the ordering cone Θ therein for simplicity. It follows
from [23, Theorem 4.10] that ∂∞F (x̄, z̄) = {0} if F is epigraphically Lipschitz-like
(ELL) around this point, which means that its epigraphical multifunction EF is
Lipschitz-like around this point. The Lipschitz-like (known also Aubin or pseudo-
Lipschitz) property has been recognized as a fundamental property of set-valued
mappings equivalent to metric regularity and linear openness of the inverses; see
[23,29] and the references therein for more details.
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It is not hard to check the validity of the implication

∂F (x̄, z̄)(z∗) ̸= ∅ =⇒ −z∗ ∈ N(0; Θ),(2.8)

which shows that the requirement −z∗ ∈ N(0; Θ) in construction (2.6) is abundant.
Observe also that [7, Proposition 3.2] ensures the relationships

∂f(x̄, z̄)(z∗) ⊂ ∂f
(
x̄, f(x̄)

)
(z∗) ⊂ D∗

Nf(x̄)(z
∗)

for all (x̄, z̄) ∈ epi f and z∗ ∈ Z∗ in the case of single-valued mappings f : X → Z.
In some results below we impose as an alternative assumption the following prop-

erty: F : X →→ Z exhibits singular subdifferential regularity at (x̄, z̄) ∈ epiF if the
mixed coderivative in (2.7) can be replaced by the normal one, i.e.,

(2.9) ∂∞F (x̄, z̄) = D∗
NEF (x̄, z̄)(0).

This is automatic provided that the ordering cone Θ is SNC at the origin (see
below); in particular, either dimZ <∞ or intΘ ̸= ∅. To justify it, observe that

∂∞F (x̄, z̄) = D∗
MEF (x̄, z̄)(0) ⊂ D∗

NEF (x̄, z̄)(0).
Hence it remains to show that D∗

NEF (x̄, z̄)(0) ⊂ D∗
MEF (x̄, z̄)(0). Pick any x∗ ∈

D∗
NEF (x̄, z̄)(0), which is equivalent to (x∗,0) ∈ N

(
(x̄, z̄); epiF

)
. By the definition

of limiting normals there are sequences {(xk, zk, x∗k, z∗k)} such that

(xk, zk)
epi F−→ (x̄, z̄), (x∗k, z

∗
k) ∈ N̂

(
(xk, zk); epiF

)
with (x∗k, z

∗
k)

w∗
→ (x∗,0),(2.10)

which ensure the relationships

z∗k ∈ N̂(0; Θ) with z∗k
w∗
→ 0

due to (2.8). Taking into account the SNC property of Θ at 0, we obtain ∥z∗k∥ → 0
as k → ∞. The strong convergence of the sequence {z∗k} together with (2.10) clearly
justifies that x∗ ∈ D∗

MEF (x̄, z̄)(0).
Next we recall several “sequential normal compactness” properties of sets and

mappings, which are automatic in finite dimensions while being a crucial ingredient
of variational analysis in infinite dimensions; see the books [23,24] for a comprehen-
sive theory and numerous applications of various properties of this type. Let Ω be
a subset of the product space X × Z. Then:

• Ω is sequentially normally compact (SNC) at v̄ := (x̄, z̄) ∈ Ω if for any se-
quences

vk
Ω→ v̄ and (x∗k, z

∗
k) ∈ N̂(vk; Ω), ∀ k ∈ N,(2.11)

we have the implication (x∗k, z
∗
k)

w∗
−→ 0 =⇒ (x∗k, z

∗
k)

∥ · ∥−→ 0 as k → ∞.

• Ω is partially SNC (PSNC) with respect to X at v̄ ∈ Ω if for any sequences
(vk, x

∗
k, z

∗
k) satisfying (2.11) we have the implication[

x∗k
w∗
→ 0 and z∗k

∥ · ∥−→ 0
]
=⇒ x∗k

∥ · ∥−→ 0 as k → ∞.

• Ω is strongly PSNC with respect to X at v̄ ∈ Ω if for any sequences (vk, x
∗
k, z

∗
k)

satisfying (2.11) we have the implication[
(x∗k, z

∗
k)

w∗
→ 0

]
=⇒ x∗k

∥ · ∥−→ 0 as k → ∞.
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If F : X →→ Z is a general mapping, its SNC and PSNC properties at (x̄, z̄) ∈
gphF are induced by those for its graph. When in addition Z is ordered by the
cone Θ, we can involve the epigraph of F and get the following versions:

• F is sequentially normally epigraphically compact (SNEC) at (x̄, z̄) ∈ epiF if
the epigraphical multifunction EF of F with respect to Θ is SNC at (x̄, z̄).

• F is partially SNEC (PSNEC) at (x̄, z̄) ∈ epiF if EF is PSNC at (x̄, z̄).

It follows from [23, Theorem 4.10] that F is PSNC at (x̄, z̄) ∈ gphF (resp. PSNEC
at (x̄, z̄) ∈ epiF ) provided that F is Lipschitz-like (resp. epigraphically Lipschitz-
like) around this point. Note finally that F is SNEC at (x̄, z̄) ∈ epiF if and only if
Θ is SNC at the origin and F is PSNEC at (x̄, z̄); see Remark (iii) below.

To conclude this section, we list calculus rules from [23,24], which are needed in
the proofs of our main results in Sections 3 and 4:

• [23, Theorem 1.44] mixed coderivatives of Lipschitzian mappings;
• [23, Theorem 3.4] basic normals to set intersections in product spaces;
• [23, Corollary 3.5] intersection rule under the SNC condition;
• [23, Corollary 3.80] PSNC sets in products of two spaces;
• [23, Corollary 3.81] SNC property of set intersections;
• [23, Theorem 4.10] pointbased characterizations of Lipschitz-like property;
• [24, Proposition 5.3] lower subdifferential conditions for local minima under
geometric constraints.

3. Sufficient conditions in set-valued optimization with geometric
constraints

In this section we derive new sufficient optimality conditions for Pareto maximiz-
ers of multiobjective optimization problems with geometric constraints described
in (1.2), where the definition of Pareto maximization is understood in the sense
described in what follows.

Let F : X →→ Z be a set-valued cost in (1.2), where Z is ordered by the ordering
relation ≤Θ from (1.1) generated by an ordering cone Θ ⊂ Z. In contrast to single-
valued costs (there is at most one output for each input), for each x̄ ∈ domF the
image F (x̄) of F at x̄ is not singleton in general. Therefore we need to specify a
z̄ ∈ F (x̄) and consider a pair of input and output (x̄, z̄) as a feasible solution of F .
Then a pair (x̄, z̄) ∈ gphF is a (global Pareto) maximizer of F over Ω—or simply
a maximizer of the constrained problem (1.2)—if z̄ ∈ Max

(
F (Ω);Θ

)
, i.e., z̄ is a

maximal point of the image set of F over Ω, or equivalently

(z̄ +Θ) ∩ F (Ω) = {z̄} with F (Ω) := ∪ {F (x) | x ∈ Ω}.(3.1)

When Ω = X, the pair (x̄, z̄) is said to be a maximizer of F . When F = f : X → Z
is single-valued, we omit z̄ = f(x̄) in the notion of maximizers, i.e., we simply
say that x̄ is a maximizer of f instead of (x̄, f(x̄)) is a maximizer of f . We add
the adjective “local” to maximizers if there is a neighborhood U of x̄ such that
z̄ ∈ Max

(
F (Ω ∩ U);Θ

)
. In this way the pair (x̄, z̄) is a local minimizer of the

constrained problem (1.2) if z̄ ∈ Max
(
F (Ω∩U);−Θ

)
or −z̄ ∈ Max (−F (Ω∩U); Θ).

Some sufficient conditions for weak Pareto maximizers of MOPGC (1.2) have been
obtained in our recent papers [8,9] under the assumption on the nonempty interior
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of the ordering cone Θ. Now we drop this assumption and address proper Pareto
maximizers by further developing our dual-space variational approach involving
more advanced results of generalized differential and SNC calculi.

First recall the following technical assumption on geometric constraints intro-
duced and discussed in [9].

Definition 3.1. (normal independence). Let X be a Fréchet smooth space (i.e.,
there exists an equivalent norm ∥ · ∥ on X that is Fréchet differentiable at nonzero
points). A subset Ω ⊂ X has the normal independence property if for any x ∈ Ω
we have the condition

−∇∥ · −x∥(u) ̸∈ N(u; Ω) whenever u ∈ Ω \ {x}.(3.2)

It is easy to check that every closed and convex subset of a Fréchet smooth space
has the normal independence property; see [9, Proposition 3.1]. On the other hand,
there are many nonconvex sets enjoying this property; e.g., {(x, y) ∈ IR2 | y ≥ −|x |}
and {(x, y) ∈ IR2 | y ≥ x3}.

The standing assumptions of this paper are as follows.

(H1) (ordering cone assumptions) Θ ⊂ Z is a closed and convex cone with
Θ \ (−Θ) ̸= ∅, i.e., Θ is not a subspace of Z.

(H2) (cost assumptions) F : X →→ Z is an epiclosed mapping from a Fréchet
smooth space X to an Asplund space Z, i.e., epiF is a closed set in X ×Z.

(H3) (geometric constraint assumptions) Ω is a closed subset of X satisfying
the normal independence property in the sense of Definition 3.1.

Now we are ready to formulate and prove the main result of this section providing
sufficient conditions for global Pareto maximizers in MOPGC (1.2). The following
theorem is given under the most general assumptions holding in more common and
standard settings; see the discussions and consequences below. Recall again that
the imposed SNC requirements are automatic in finite dimensions.

Theorem 3.2. (sufficient conditions for global maximizers of MOPGC). Consider
the constrained multiobjective problem (1.2) under the standing assumptions (H1)–
(H3) and fix (x̄, z̄) ∈ gphF such that

0 ̸∈ ∂F (ū, z̄) +N(ū; Ω) whenever ū ∈ Ω with z̄ ∈ EF (ū);(3.3)

this automatically holds when the pair (ū, z̄) is not a local minimizer of (1.2). As-
sume that the z̄-level set

levΩ(F ; z̄) := lev (F ; z̄) ∩ Ω =
{
x ∈ Ω | F (x) ∩ (z̄ −Θ) ̸= ∅

}
(3.4)

is compact in X and impose the implication[
v̄ ∈ F (t̄), v̄ ̸= z̄, z̄ ≤Θ v̄

]
=⇒

[
t̄ ̸∈ levΩ(F ; z̄)

]
,(3.5)

which holds automatically for single-valued mappings. Suppose finally that for any
ū ∈ Ω with z̄ ∈ EF (ū) the problem data F and Ω satisfy the qualification condition

∂∞F (ū, z̄) ∩
(
−N(ū; Ω)

)
= {0},(3.6)

which is automatic when F is ELL around (ū, z̄), and that either one of the following
requirements (a)–(c) of the SNC type holds in the infinite dimensions:



114 T. Q. BAO AND B. S. MORDUKHOVICH

(a) Θ is SNC at the origin and Ω is SNC at ū.
(b) F is PSNEC at (ū, z̄) and Θ is SNC at the origin.
(c) Ω is SNC at ū, (EF )−1 is PSNC at (z̄, ū), and F exhibits the singular subd-

ifferential regularity property (2.9) at (ū, z̄).

Then the validity of the conditions

∂∞F (ū, z̄) +N(ū; Ω) ⊂ N(ū; Ω) and(3.7)

∂F (ū, z̄) +N(ū; Ω) ⊂ N(ū; Ω)(3.8)

for all ū ∈ Ω with z̄ ∈ EF (ū) is sufficient for the global Pareto maximality of (x̄, z̄).

Proof. Arguing by contradiction, suppose that (x̄, z̄) is not a global Pareto maxi-
mizer for problem (1.2). Then there are t̄ ∈ Ω and v̄ ∈ F (t̄) such that z̄ ≤Θ v̄ while
z̄ ̸= v̄. This yields t̄ ̸∈ levΩ(F; z̄) by implication (3.5). Observe that

u ∈ lev(F ; z̄) ∩ Ω ⇐⇒ u ∈ lev(F ; z̄) and u ∈ Ω

⇐⇒
[
∃ v ∈ F (u)

∣∣ v ≤Θ z̄
]

and u ∈ Ω

⇐⇒
[
∃ θ ∈ Θ

∣∣ z̄ = v + θ ∈ F (u) + Θ
]

and u ∈ Ω

⇐⇒ (u, z̄) ∈ epiF and (u, z̄) ∈ Ω× {z̄}

⇐⇒ (u, z̄) ∈ epiF ∩ (Ω× {z̄}).
Next we note that the problem of finding the shortest distance from t̄ and the com-
pact z̄-level set levΩ(F ; z̄) of F over Ω attains its minimum at some ū ∈ levΩ(F ; z̄)
by the classical Weierstrass theorem. Thus (ū, z̄) is an optimal solution to the
problem of scalar constrained optimization:{

minimize φ(u, v) := ∥u− t̄∥
subject to (u, v) ∈ Ξ := Ξ1 ∩ Ξ2,

(3.9)

where the sets Ξ1 and Ξ2 are defined by

(3.10) Ξ1 := epiF and Ξ2 := Ω× {z̄}.
These sets are obviously closed in X × Z due to (H1) and (H2). Since φ in (3.9)
is Lipschitz continuous, all the assumptions ensuring the lower subdifferential nec-
essary condition from [24, Proposition 5.3] are satisfied. Applying this necessary
condition to the minimizer (ū, z̄) of problem (3.9), we have

0 ∈ ∂∥ū− t̄∥ × {0}+N
(
(ū, z̄); Ξ1 ∩ Ξ2

)
.(3.11)

It follows that ū − t̄ ̸= 0, since t̄ ̸∈ levΩ(F ; z̄) and ū ∈ levΩ(F ; z̄). The convexity
and Fréchet differentiability of renorm ∥ · ∥ on X \ {0} ensure that

∂∥ū− t̄∥ = {∇∥ū− t̄∥}.
Denoting x∗ := −∇∥ū− t̄∥ allows us to derive from (3.11) the inclusion

(x∗,0) ∈ N
(
(ū, z̄); Ξ1 ∩ Ξ2

)
with Ξ1 := epiF and Ξ2 := Ω× {z̄}.(3.12)

We proceed further by employing in (3.12) the fundamental intersection rule
from [23, Theorem 3.4] under the following two assumptions on the sets Ξ1 and Ξ2

in (3.12), where we identify {X,Z} with the index set in the product X × Z:
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(A) There are two subsets J1 and J2 of {X,Z} with J1 ∪ J2 = {X,Z} such
that one of the sets is PSNC at (ū, z̄) with respect to J1 while the other is
strongly PSNC at (ū, z̄) with respect to J2.

(B) The limiting qualification condition for Ξ1 and Ξ2 at (ū, z̄) holds: for any
sequences

(xik, zik)
Ξi→ (ū, z̄), (x∗ik, z

∗
ik)

w∗
→ (x∗i , z

∗
i ), (x

∗
ik, z

∗
ik) ∈ N̂

(
(xik, zik); Ξi

)
,(3.13)

for i = 1, 2, we have the implication

∥(x∗1k, z∗1k) + (x∗2k, z
∗
2k)∥ → 0 =⇒

[
x∗1 = x∗2 = 0 and z∗1 = z∗2 = 0

]
.(3.14)

Let us first check the validity of condition (A). This step easily follows from the
imposed conditions (a)–(c). Precisely, for each of these cases we have:

(a) Ξ1 is strongly PSNC at (ū, z̄) with respect to J1 = {Z} and Ξ2 is PSNC at
(ū, z̄) with respect to J2 = {X}.

(b) In this case we have Ξ1 = epiF is SNC at (ū, z̄), and hence we can put J1 =

{X,Z} and J2 = ∅. To check this property, take sequences (xk, zk)
epi F−→ (ū, z̄)

and (x∗k, z
∗
k) ∈ X∗ × Z∗ satisfying

(x∗k, z
∗
k)

w∗
−→ (0,0) with (x∗k, z

∗
k) ∈ N̂

(
(xk, zk); epiF

)
.(3.15)

It follows from implication (2.8) that z∗k
w∗
−→ 0 with z∗k ∈ N̂(zk; Θ). By the

assumed SNC property of Θ at the origin we get ∥z∗k∥ → 0, which yields
together with (3.15) that ∥x∗k∥ → 0 due to the PSNEC assumption on F .
Thus epiF is SNC at (ū, z̄).

(c) In this case we check directly that Ξ1 is PSNC at (ū, z̄) with respect to
J1 = {Z} and Ξ2 is strongly PSNC at (ū, z̄) with respect to J2 = {X}.

Next we verify the validity of condition (B). Take arbitrary sequences in (3.13)
and get by the structures of Ξ1 and Ξ2 in (3.10) that{

(x∗1k, z
∗
1k) ∈ N̂

(
(x1k, z1k); epiF

)
=⇒ z∗1k ∈ N̂(0; Θ),

(x∗2k, z
∗
2k) ∈ N̂

(
(x2k, z2k); Ω× {z̄}

)
=⇒ x∗2k ∈ N̂(x2k; Ω) and z2k ≡ z̄.

(3.16)

Passing to the limit in (3.16) as k → ∞ allows us to obtain from the hypothesis of
implication (3.15) that

0 ∈ D∗
NEF (ū, z̄)(z∗) +N(ū; Ω) and − z∗ ∈ N(0; Θ).(3.17)

Observe that if z∗ ̸= 0 in (3.17), then it can be scaled to a unit vector in order to
equivalently express the inclusions in (3.17) via the subdifferential of F at (ū, z̄):

0 ∈ D∗
NEF (ū, z̄)

( z∗

∥z∗∥

)
+N(ū; Ω) ⊂ ∂F (ū, z̄) +N(ū; Ω),

which surely contradicts the assumption in (3.3). Thus z∗ = 0.
Using further either the SNC property of Θ in conditions (a) and (b), or the

singular subdifferential regularity of F in condition (c) allows us to deduce from
(3.17) the existence of u∗ ∈ X∗ such that

u∗ ∈ ∂∞F (ū, z̄) ∩
(
−N(ū; Ω)

)
,
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which implies the conclusion of implication (3.15) u∗ = 0 by the assumed qualifica-
tion condition (3.6). Thus condition (B) is also satisfied.

The validity of hypotheses (A) and (B) for the intersection rule in (3.12) ensures
that the pair (x∗,0) satisfies the more elaborated inclusion

(x∗,0) ∈ N
(
(ū, z̄); epiF

)
+N

(
(ū, z̄); Ω× {z̄}

)
= N

(
(ū, z̄); epiF

)
+N(ū; Ω)× Z∗,

which justifies the existence of dual elements (u∗1,−z∗) ∈ N
(
(ū, z̄); epiF

)
and u∗2 ∈

N(ū; Ω) such that

x∗ = u∗1 + u∗2 and u∗1 ∈ D∗
NEF (ū, z̄)(z∗).(3.18)

Recall that the inclusion in (3.18) implies that −z∗ ∈ N(0; Θ). To finish the proof
of the theorem, we consider the following two cases:

• Case 1: z∗ = 0. In this case we can show that D∗
NEF (ū, z̄)(0) = ∂∞F (ū, z̄) by

using the same arguments as in verifying (B) above. Thus (3.18) yields

−∇∥ū− t̄∥ = x∗ = u∗1 + u∗2 ∈ ∂∞F (ū, z̄) +N(ū; Ω) ⊂ N(ū; Ω),

where the last inclusion holds due to (3.7). This contradicts the normal indepen-
dence property of Ω.

• Case 2: z∗ ̸= 0. In this case we get from (3.18) that

x∗

∥z∗∥
∈ ∂F (ū, ū) +N(ū; Ω) ⊂ N(ū,Ω),

where the last inclusion holds due to (3.8). Therefore

x∗ = −∇∥ū− t̄∥ ∈ N(ū; Ω)

since N(ū; Ω) is a cone. Again we arrive at the contradiction with the normal
independence property of Ω.

Summing up, we conclude that the pair (x̄, z̄) is a global Pareto maximizer of
MOPGC (1.2) and thus complete the proof of the theorem. �

Now let us compare the results obtained in Theorem 3.2 with the known ones in
the literature and also discuss the major assumptions made.

Remark 3.3 (on the assumptions of Theorem 3.2).

(i) The fulfilment of implication (3.5) is automatic if F enjoys the property

F (x) = Max
(
F (x);Θ

)
;

in particular, when F = f : X → Z is single-valued.
(ii) Both sufficient conditions (3.7) and (3.8) can be combined into one condition

in terms of coderivative of the epigraphical multifunction of the cost mapping

D∗
NEF (ū, z̄)(z∗) +N(ū; Ω) ⊂ N(ū; Ω) for all z∗ ∈ Z∗.

(iii) The SNC condition (b) is equivalent to that F is SNEC at the point under
consideration. In the proof of Theorem 3.2 we justified one direction: the
former implies the latter. Thus it remains to justify the reverse implication.
Assume that F is SNEC at (ū, z̄). Then it is PSNEC at (ū, z̄). Next we show
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that Θ is SNC at the origin. Indeed, for any sequence {(zk, z∗k)} ⊂ Z × Z∗

satisfying

zk ∈ Θ and z∗k ∈ N̂(zk; Θ) ⊂ N̂(0; Θ)

we have {(ū, z̄,0, z∗k)} ⊂ X × Z ×X∗ × Z∗ with (0, z∗k) ∈ N̂
(
(ū, z̄); epiF

)
.

It follows further from the SNEC property of F at (ū, z̄) that

if z∗k
w∗
→ 0, then ∥z∗k∥ → 0

verifying the SNC property of Θ. It is important to recall that in establishing
necessary conditions for constrained multiobjective optimization problems
via coderivatives of cost mappings (see, e.g., [6, Theorem 4.6] and cf. [8,
Theorem 6.1]) we need the validity of the four SNC conditions: (a) Θ is
SNC and Ω is SNC; (b) F is PSNC and Θ is SNC; (c) Ω is SNC at ū, F−1

is PSNC; and (d) F is SNC. Observe that conditions (b) and (d) for F are
independent while their counterparts for the epigraphical multifunction EF
are equivalent.

(iv) Sufficient conditions for Pareto maximizers can be established in general
Banach settings by imposing some generalized convexity requirements on
the z̄-level set of F over Ω; see [9, Remark 3.5] and [9, Corollary 3.6] for
details.

(v) The proof of Theorem 3.2 is based on calculus rules for generalized differ-
entiation and SNC properties. It occurs to be much simpler than those
of [8, Theorem 7.1] and [9, Theorem 3.3] in which we used a more funda-
mental tool of variational analysis, the extremal principle, that is the driving
force in deriving a number of calculus results including sum rules and chain
rules for coderivatives of set-valued mappings.

Remark 3.4 (comparisons with previous results on sufficient conditions).
(i) When intΘ ̸= ∅ for the ordering cone Θ ⊂ Z, we can consider a weak

counterpart of the relation ≤Θ in (1.1) with replacing Θ by its interior and denote
it by <Θ. A feasible solution (x̄, z̄) is a weak maximizer of MOPGC (1.2) if

F (Ω) ∩ (z̄ + intΘ) = ∅.
It is obvious that every Pareto maximizer is weak Pareto provided that intΘ ̸= ∅
and that the sufficient result in Theorem 3.2 is still valid for weak Pareto maximizers
to the problems under consideration provided that the weaker version[

v̄ ∈ F (t̄), z̄ <Θ v̄
]
=⇒

[
t̄ ̸∈ levΩ(F ; z̄)

]
,

of (3.5) holds; the latter is equivalent to the implication in [9, Theorem 3.3]:[
F (t̄) ∩ (z̄ + intΘ) = ∅

]
=⇒

[
t̄ ̸∈ levΩ(F ; z̄)

]
.

Observe that when intΘ ̸= ∅, the ordering cone Θ is SNC at the origin. Thus the
SNC condition (a) implies the SNC condition (c) and the SNC conditions (a)–(c)
reduce to that either Ω is SNC at ū or F is PSNEC at (ū, z̄). Note also that the
four conditions (3.3), (3.6), (3.7), and (3.8) are of the same forms of (3.6), (3.8),
(3.9), and (3.7) in [9, Theorem 3.3]; cf. [8, Theorem 7.1]. Observe finally that the
conditions in this paper are imposed at each point ū ∈ Ω with z̄ ∈ EF (ū) = F (ū)+Θ,
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i.e., (ū, z̄) ∈ epiF , while those in [9, Theorem 3.3] are needed at each pair of input
and output (ū, v̄) ∈ gphF with ū ∈ Ω and v̄ ∈ z̄ − bdΘ. It is important to
emphasize that by the input-based conditions of Theorem 3.2 are more efficient
than the input-output-based conditions in [8, 9] since we have the inclusions

∂F (x̄, z̄) ⊂ ∂F (x̄, v̄) and ∂∞F (x̄, z̄) ⊂ ∂∞F (x̄, v̄)(3.19)

for every v̄ ∈ F (x̄)+Θ provided that F is in the class of set-valued mappings enjoying
the following compactness property at (x̄, z̄): for any sequence {(xk, zk)} ⊂ epiF
satisfying (xk, zk) → (x̄, z̄) as k → ∞ there exists a sequence {vk} with vk ∈ F (xk)
and zk ∈ vk+Θ such that it contains a subsequence converging to some v̄ ∈ F (x̄). To
justify the validity of (3.19), we use the definitions of the limiting subdifferential and
normal cone directly. It is easy to check that this class of mappings includes single-
valued continuous ones and extended-real-valued lower semicontinuous functions
and that the inclusions in (3.19) are strict in general, e.g., when z̄ happens to be in
the interior of the image of F at x̄. Roughly speaking, the fulfilment of either the
four conditions (3.3), (3.6), (3.7), and (3.8) in Theorem 3.2 or conditions (3.6)—
(3.9) in [9, Theorem 3.3] ensures the optimality of the point under consideration.
Each set of the conditions is divided into two groups due to the employed tools of
generalized differentiation.

(ii) Note that the sufficient conditions of Theorem 3.2 do not cover in general
standard sufficient conditions in nonlinear programming and convex optimization.
Our approach is different from the conventional one as, e.g., in [19,28], where suffi-
cient conditions are derived by strengthening known necessary conditions assuming
certain local convexity and the like. In contrast, we employ tools of variational
analysis to obtain new sufficient conditions for problems of vector and set-valued
optimization in fully nonconvex settings. Note also that, being efficient for broad
classes of problems in constrained optimization, the sufficient conditions obtained
in this paper may not be generally applied to unconstrained problems. Some results
for unconstrained problems via our approach can be found in [9, Section 4].

To conclude this section, we present two useful consequences of Theorem 3.2 for
problems of vector optimization and scalar optimization, respectively.

Corollary 3.5 (sufficient conditions in nonconvex vector optimization). Consider
the multiobjective problem (1.2) with a single-valued cost mapping f : X → Z, which
is Lipschitz continuous on the Fréchet smooth space X. Fix x̄ ∈ Ω with z̄ := f(x̄)
and, in addition to the standing assumptions (H1) and (H3), suppose that either
Θ is SNC at the origin or Ω is SNC at ū, (Ef )−1 is PSNC at (z̄, ū), and f exhibits
the singular subdifferential regularity at ū for every ū ∈ Ω with z̄ ∈ f(ū) + bdΘ.
Suppose also that

0 ̸∈ ∂f(ū, z̄) +N(ū; Ω) and ∂f(ū, z̄) +N(ū; Ω) ⊂ N(ū; Ω)(3.20)

for all such elements ū. Then x̄ is a global Pareto maximizer for the vector opti-
mization problem (1.2).

Proof. This result is a particular case of Theorem 3.2 with the following specifica-
tions of its assumptions and conclusions:

• Implication (3.5) is automatic since f is single-valued.
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• Conditions (3.6) and (3.7) hold since f is Lipschitz continuous around ū.
Precisely, the Lipschitz continuity of f implies the Lipschitz-like property of
its epigraphical multifunction Ef by [7, Corollary 3.5]. The latter property
ensures the injectivity property of the mixed coderivative of EF at 0 by [23,
Theorem 1.44]:

D∗
MEf (ū, z̄)(0) = ∂∞f(ū) = {0},

which in turn verifies the validity of the sufficient optimality conditions of
Theorem 3.2:

∂∞f(ū) ∩
(
−N(ū; Ω)

)
= {0} ∩

(
−N(ū; Ω)

)
= {0} and

∂∞f(ū) +N(ū; Ω) = {0}+N(ū; Ω) = N(ū; Ω).

• We can use z̄ ∈ f(ū) + bdΘ instead of z̄ ∈ f(ū) +Θ due to ∂∞f(ū) = ∅ for
z̄ ∈ f(ū) + intΘ.

�

Corollary 3.6 (sufficient conditions in nonsmooth scalar optimization). Let φ :
X → IR be a locally Lipschitzian, Ω ⊂ X be a closed and convex set in the reflexive
Banach space X, and x̄ ∈ Ω. Assume that for every ū ∈ Ω with φ(ū) = φ(x̄) we
have

0 ̸∈ ∂φ(ū) +N(ū; Ω) and(3.21)

∂φ(ū) ⊂ N(ū; Ω) ⇔ ∂φ(ū) +N(ū; Ω) ⊂ N(ū; Ω).(3.22)

Then x̄ is a global maximum of φ over Ω.

Proof. It follows directly from Corollary 3.5 since every reflexive Banach space is
Fréchet smooth and the convexity property of Ω implies the normal independence
condition for this set by [9, Proposition 3.1]. �

If we assume further that X = IRn, then Corollary 3.6 reduces to the result by
Dutta [13, Theorem 3.2]. If the data is convex, it recaptures that by Hiriart-Urruty
and Ledyaev [17, Theorem 1.1].

4. Sufficient conditions for multiobjective problems with equilibrium
constraints

This section is devoted to deriving sufficient conditions for global Pareto maxi-
mizers in MOPEC (1.3). For simplicity we consider the case of single-valued cost
mappings and replace hypothesis (H2) by following stronger version:

(H2′) (modified cost assumptions) F = f : X → Z is a Lipschitz continuous
mapping from a Fréchet smooth space X to an ordered Asplund space Z.

Note that under (H2′) assumptions (3.5), (3.6), and (3.7) hold. The next assump-
tion is imposed on the equilibrium constraint data in (1.3):

(H4) (equilibrium constraint assumptions) G : X × Y →→ W and Q : X ×
Y →→W are closed-graph mappings between Asplund spaces.
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Denoting S the set of all the feasible solutions to MOPEC (1.3) by

S :=
{
x ∈ Ω

∣∣ ∃ y ∈ Y with 0 ∈ G(x, y) +Q(x, y)
}
,(4.1)

we say that x̄ is a (global) maximizer of MOPEC (1.3) if it is a maximizer in the
following MOPGC (1.2):{

Θ-maximizer f(x)

subject to x ∈ S ⊂ X.
(4.2)

To establish sufficient conditions for multiobjective optimization problems with
equilibrium constraints we follow the scheme developed by Bao and Mordukhovich
[3] for deriving necessary optimality conditions in MOPEC. In contrast to the con-
ventional approach of reducing MOPEC to the equivalent problem (4.2), we in-
troduce another equivalent problem of type (1.2) as well by adding extra variables
into the cost to describe a new geometric constraint in form of set intersections in
an appropriate product space; see [3, Theorem 3.4 and Theorem 4.3] and cf. the
constraint of the auxiliary problem (4.7) in the proof of Theorem 4.1 below. Due
to this reduction it is possible to derive optimality conditions for MOPEC (1.3)
from those in (1.2) by using refined calculus rules for generalized differential objects
including normal cones to sets and coderivatives of set-valued mappings. Here is
the main result of this section.

Theorem 4.1 (sufficient conditions for global Pareto maximizers in MOPEC).
Consider MOPEC (1.3) under hypotheses (H1), (H2′), (H3), and (H4) and take
x̄ ∈ S from the set of feasible solutions (4.1) with z̄ := f(x̄). Assume that for every
ū ∈ Ω with f(ū) = f(x̄) and every w ∈ G(ū, ȳ) with −w ∈ Q(ū, ȳ) corresponding to
some ȳ ∈ Y we have the condition

0 ̸∈ ∂f(ū) +D∗
NG(ū, ȳ, w)(y

∗, w∗) +D∗
NQ(ū, ȳ,−w)(y∗, w∗) +N(ū; Ω),(4.3)

which holds, in particular, when x̄ is not a local minimizer of (1.3). Suppose also
that the z̄-level set

levS(f ; z̄) = lev (f ; z̄) ∩ S
is compact in X and that for every (ū, ȳ, z̄, w) with ū ∈ S, z̄ = f(ū) and w ∈
G(x̄, ȳ) ∩

(
−Q(x̄, ȳ)

)
the following two groups of assumptions are satisfied:

SNC: G and Q are SNC at (ū, ȳ, w) and (ū, ȳ,−w), respectively. Either Θ is
SNC at 0 or Ω is SNC at ū, (Ef )−1 is PSNC at (z̄, ū), and f exhibits the singular
subdifferential regularity at ū.

Constraint Qualification: x∗G ∈ D∗
NG(x̄, ȳ, w)(y

∗, w∗)

x∗Q ∈ D∗
NQ(x̄, ȳ,−w)(−y∗, w∗)

x∗Ω ∈ N(x̄; Ω), x∗G + x∗Q + x∗Ω = 0

 =⇒

[
y∗ = 0, w∗ = 0

x∗G = x∗Q = x∗Ω = 0

]
.(4.4)

Then the validity of the conditions

D∗
NG(ū, ȳ, w)(y

∗, w∗) +D∗
NQ(ū, ȳ, w)(y∗, w∗) +N(ū; Ω) ⊂ N(ū; Ω),(4.5)

∂f(ū) +D∗
NG(ū, ȳ, w)(y

∗, w∗) +D∗
NQ(ū, ȳ, w)(y∗, w∗) +N(ū; Ω) ⊂ N(ū; Ω)(4.6)
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is sufficient for the global Pareto maximality of x̄ in MOPEC (1.3).

Proof. Arguing by contradiction, suppose that x̄ is not a global Pareto maximizer
for MOPEC (1.3). Then, by the equivalence mentioned above, x̄ is not an optimal
solution to problem (4.2), i.e., there is a t̄ ∈ S such that f(x̄) ≤Θ f(t̄) and f(x̄) ̸=
f(t̄). This yields that t̄ ̸∈ lev S(f ; z̄) = lev (f ; z̄)∩S. Considering now the problem of
finding the shortest distance from the point t̄ to the compact set lev S(f ; z̄), we find
its optimal solution ū ∈ lev S(f ; z̄) by the classical Weierstrass theorem. Observe
that

x ∈ lev(f ; z̄) ∩ S

⇐⇒
[
∃ x ∈ Ω, θ ∈ Θ, y ∈ Y, w ∈W with
f(x) + θ = z̄, 0 = w − w ∈ G(x, y) +Q(x, y)

]
⇐⇒ (x, z̄) ∈ epi f, (x, y, w) ∈ gphG ∩

(
gph (−Q)

)
, and x ∈ Ω

and thus ū is a minimizer of scalar optimization problem with geometric constraints
of the intersection type:{

minimize φ(x) := ∥x− t̄∥
subject to (x, y, z, w) ∈ Ξ := Ξ1 ∩ Ξ2 ∩ Ξ3 ∩ Ξ4,

(4.7)

where Ξ1, Ξ2, Ξ3, and Ξ4 are subsets in the (Asplund) product space P := X×Y ×
Z ×W defined by

Ξ1 :=
{
(x, y, z, w) ∈ P

∣∣ (x, z) ∈ epi f
}
,

Ξ2 :=
{
(x, y, z, w) ∈ P

∣∣ x ∈ Ω and z = z̄
}
,

Ξ3 :=
{
(x, y, z, w) ∈ P

∣∣ (x, y, w) ∈ gphG
}
,

Ξ4 :=
{
(x, y, z, w) ∈ P

∣∣ (x, y, w) ∈ gph (−Q)
}
.

(4.8)

As in the proof of Theorem 3.2, we conclude by using the necessary optimality
condition in problem (4.7) that

0 ∈ ∂φ(ū)× {(0,0,0)}+N
(
(ū, ȳ, z̄, w); Ξ

)
.(4.9)

Next we use several intersection rules to represent the normal cone N
(
(ū, ȳ, z̄, w);

Ξ
)
as a sum of the normal cones to the components in the set intersection. It is

shown in Proposition 4.2 below that the validity of the assumed constraint qual-
ification (4.4) implies the fulfilment of the qualification conditions needed for the
calculus rules employed. Observe first that both the sets Ξ3 and Ξ4 are SNC at
(ū, ȳ, z̄, w) since the mappings G and Q are SNC at (ū, z̄, w) and (ū, z̄,−w), respec-
tively, and that the qualification condition (4.4) implies the normal qualification
condition [23, Corollary 3.81] for the system {Ξ3,Ξ4}, which thus ensures the SNC
property for the intersection Ξ3 ∩ Ξ4 at (ū, ȳ, z̄, w).

By Proposition 4.2 the normal qualification condition for (Ξ1∩Ξ2) and (Ξ3∩Ξ4)
is satisfied by the constraint qualification (4.4). Thus applying the intersection rule
from [23, Corollary 3.5] to (Ξ1 ∩ Ξ2) and (Ξ3 ∩ Ξ4) gives us

N
(
(ū, ȳ, z̄, w); Ξ

)
⊂ N

(
(ū, ȳ, z̄, w); (Ξ1 ∩ Ξ2)

)
+N

(
(ū, ȳ, z̄, w); (Ξ3 ∩ Ξ4)

)
.(4.10)
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Furthermore, applying the aforementioned intersection rule to the sets Ξ3 and Ξ4

under the normal qualification condition (4.4) gives us

N
(
(ū, ȳ, z̄, w); (Ξ3 ∩ Ξ4)

)
⊂ N

(
(ū, ȳ, z̄, w); Ξ3

)
+N

(
(ū, ȳ, z̄, w); Ξ4

)
.(4.11)

It remains unfolding the normal cone to Ξ1 ∩ Ξ2 in (4.10). To proceed, we employ
the intersection rule from [23, Theorem 3.4] to the PSNC sets Ξ1 and Ξ2 by taking
into account that the PSNC assumptions of that rule hold under the assumptions
made in this theorem and observing that the fulfilment of the mixed qualification
condition for Ξ1 and Ξ2 is guaranteed by the imposed qualification condition (4.4)
due to Proposition 4.2. In this way we arrive at the inclusion

N
(
(ū, ȳ, z̄, w); (Ξ1 ∩ Ξ2)

)
⊂ N

(
(ū, ȳ, z̄, w); Ξ1

)
+N

(
(ū, ȳ, z̄, w); Ξ2

)
.(4.12)

It follows from the structures of the sets Ξi for i = 1, 2, 3, 4 in (4.8) and the inclusion
in (4.9) that

(x∗f ,0,−z∗,0) ∈ N
(
(ū, ȳ, z̄, w); Ξ1

)
=⇒ (x∗f ,−z∗) ∈ N

(
(ū, z̄); epi f

)
,

(x∗G,−y∗,0,−w∗) ∈ N
(
(ū, ȳ, z̄, w); Ξ2

)
=⇒ (x∗G,−y∗,−w∗) ∈ N

(
(ū, ȳ, w); gphG

)
,

(x∗Q, y
∗,0, w∗) ∈ N

(
(ū, ȳ, z̄, w); Ξ3

)
=⇒ (x∗Q, y

∗,−w∗) ∈ N
(
(ū, ȳ,−w); gphQ

)
,

(x∗Ω,0, z
∗,0) ∈ N

(
(ū, ȳ, z̄, w); Ξ4

)
=⇒ x∗Ω ∈ N(ū; Ω) and z∗ ∈ Z∗.

Using this and substituting the relationships in (4.11), (4.12), and (4.10) into the
necessary optimality condition (4.9) give us the inclusion

x∗ ∈ D∗
NEf (ū, z̄)(z∗) + D∗

NG(ū, ȳ, w)(y
∗, w∗)

+ D∗
NQ(ū, ȳ, w)(−y∗, w∗) +N(ū; Ω),

(4.13)

where x∗ := −∇∥ · −ȳ∥(ū). Finally, we combine (4.13) with (4.5) when z∗ = 0 and
with (4.6) when z∗ ̸= 0 and arrive in this way at x∗ ∈ N(ū; Ω), which obviously
contradicts the normal independence condition for Ω from Definition 3.1. This
contradiction ensures that x̄ is a global Pareto maximizer for MOPEC (1.3) and
thus completes the proof of the theorem. �

Now we formulate and prove Proposition 4.2 used above. Moreover, we obtain
an extended version of it that is valued for non-Lipschitzian and set-valued cost
mappings. This would allow the reader to derive extended versions of Theorem 4.1
for more general MOPEC (1.3). It is easy to see that the general qualification
condition (4.14) reduces to that of (4.4) in the setting of Theorem 4.1. In what
follows we consider the sets Ξi defined in (4.8) with the replacement of the single-
valued cost f therein by its set-valued counterpart F .

Proposition 4.2 (fulfillment of qualification conditions). Let F : X →→ Z be a set-
valued mapping with a closed graph, and let the sets Ξ1, Ξ2, Ξ3, and Ξ4 be defined
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in (4.8). Assume that the qualification condition
x∗F ∈ ∂∞F (x̄, z̄), x∗Ω ∈ N(x̄; Ω),

x∗G ∈ D∗
NG(x̄, ȳ, w)(y

∗, w∗),

x∗Q ∈ D∗
NQ(x̄, ȳ,−w)(−y∗, w∗),

x∗F + x∗G + x∗Q + x∗Ω = 0

 =⇒

 y∗ = 0, w∗ = 0,

x∗F = 0,

x∗G = x∗Q = x∗Ω = 0

(4.14)

is satisfied. Assume also that (4.3) holds and that conditions (a)–(c) of Theorem 3.2
are fulfilled. Then we have:

• mixed qualification condition for Ξ1 and Ξ2:

∂∞F (x̄, z̄) ∩
(
−N(x̄; Ω)

)
= {0}.(4.15)

• normal qualification condition for Ξ3 and Ξ4:

N
(
(x̄, ȳ, w); gphG

)
∩
(
−N

(
(x̄, ȳ, w); gph (−Q)

))
= {0}.(4.16)

• normal qualification condition for Ξ1 ∩ Ξ2 and Ξ3 ∩ Ξ4: x∗ ∈ ∂∞F (x̄, z̄) +N(x̄; Ω)

−x∗ ∈ D∗
NG(x̄, ȳ, w)(y

∗, w∗)

+D∗
NQ(x̄, ȳ,−w)(−y∗, w∗)

 =⇒

[
x∗ = 0, y∗ = 0

w∗ = 0

]
.(4.17)

Proof. Putting y∗ = 0, w∗ = 0, and x∗G = x∗Q = 0 in (4.14) gives us (4.15). In

a similar way condition (4.14) implies (4.16) by taking x∗F = x∗Ω = 0. It remains
to verify the validity of the normal qualification condition (4.17) for Ξ1 ∩ Ξ2 and
Ξ3 ∩ Ξ4, which can be equivalently written as

N
(
(ū, ȳ, z̄, w); Ξ1 ∩ Ξ2

)
∩
(
−N

(
(ū, ȳ, z̄, w); Ξ3 ∩ Ξ4

))
= {0}.(4.18)

Remembering the discussions above, we have under the assumed SNC that

N
(
(ū, ȳ, z̄, w); (Ξ1 ∩ Ξ2)

)
⊂ N

(
(ū, ȳ, z̄, w); Ξ1

)
+N

(
(ū, ȳ, z̄, w); Ξ2

)
and

N
(
(ū, ȳ, z̄, w); (Ξ3 ∩ Ξ4)

)
⊂ N

(
(ū, ȳ, z̄, w); Ξ3

)
+N

(
(ū, ȳ, z̄, w); Ξ4

)
.

It is clear that the fulfilment of (4.18) is ensured by the validity of the implication[
(x∗,0,0,0) ∈ N

(
(ū, ȳ, z̄, w); Ξ1

)
+N

(
(ū, ȳ, z̄, w); Ξ2

)
(−x∗,0,0,0) ∈ N

(
(ū, ȳ, z̄, w); Ξ3

)
+N

(
(ū, ȳ, z̄, w); Ξ4

) ]
=⇒ x∗ = 0.(4.19)

The hypothesis of implication (4.19) is equivalent, by taking into the descriptions
of the normal cones to Ξi for i = 1, 2, 3, 4 in (4.8), to the fulfillment of the inclusion

0 ∈ D∗
NEF (ū, z̄)(z∗) +D∗

NG(ū, ȳ, w)(y
∗, w∗) +D∗

NQ(ū, ȳ,−w)(−y∗, w∗) +N(ū; Ω).

Note that the assumed condition (4.3) yields z∗ = 0. Then either the SNC property
of Θ or the singular subdifferential regularity (2.9) of F ensures thatD∗

NEF (ū, z̄)(0) =
∂∞F (ū, z̄). This together with the hypothesis of (4.19) gives us

x∗F ∈ ∂∞F (ū, z̄), x∗G ∈ D∗
NG(x̄, ȳ, w)(y

∗, w∗),

x∗Q ∈ D∗
NQ(x̄, ȳ,−w)(−y∗, w∗), x∗Ω ∈ N(x̄; Ω),

x∗F + x∗G + x∗Q + x∗Ω = 0 with x∗ = x∗F + x∗Ω = −(x∗G + x∗Q),
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and thus x∗F = x∗G = x∗Q = x∗Ω = 0 by the qualification condition (4.14). Therefore
x∗ = 0, which verifies the normal qualification condition for Ξ1 ∩ Ξ4 and Ξ2 ∩ Ξ3

and completes the proof of the proposition. �

The last result of the paper provides new sufficient conditions for the conventional
model in multiobjective mathematical programming with finitely many objectives,
inequality and equality constraints:

IRn
+–maximize f(x) =

(
f1(x), . . . , fn(x)

)
subject to gi(x) ≤ 0 for i = 1, . . . ,m,

hj(x) = 0 for j = 1, . . . , p,

x ∈ Ω,

(4.20)

where the real-valued functions fk as k = 1, . . . , n, gi as i = 1, . . . ,m, and hj
as j = 1, . . . , p are assumed to be Lipschitz continuous, and where the Pareto
maximization is determined by the positive ordering cone of IRn. That is, x̄ is a
global maximizer of problem (4.20) if there is no feasible solution x ∈ S := {x ∈
Ω | gi(x) ≤ 0 for i = 1, . . . ,m and hj(x) = 0 for j = 1, . . . , p} such that{

fk(x) ≥ fk(x̄) for all k ∈ {1, . . . , n} and

fk0(x) > fk0(x̄) for some k0 ∈ {1, . . . , n}.

We can see that problem (4.20) is a particular case of (1.3) with

G(x) :=

m∏
i=1

[
gi(x),∞

)
×

p∏
j=1

{
hj(x)

}
and Q(x) ≡ IRm

+ × {0IRp}.

It is not hard to check that

D∗G(ū)(λ, κ) ⊂
m∑
i=1

λi∂gi(ū) +

p∑
j=1

κj∂hj(ū)

under the assumed Lipschitz continuity and that

D∗Q(ū)(λ, κ) ≡ {0} for all λ ∈ IRm
+ and κ ∈ IRp.

This allows us to deduce sufficient conditions for the multiobjective mathematical
programs (4.20) from those for MOPEC obtained in Theorem 4.1.

Corollary 4.3 (sufficient conditions for global Pareto maximizers to multiobjective
mathematical programs). Consider problem (4.20) on a Fréchet smooth space X
with the feasible solution set S defined above. Assume that all the functions involved
are locally Lipschitzian around the reference points and that the constraint set Ω is
locally closed while enjoying the normal independence property from Definition 3.1.
Fix x̄ ∈ S with z̄ := f(x̄) and assume that the z̄-level set

lev S(f ; z̄) :=
{
x ∈ S

∣∣ fi(x) ≤ z̄i, for i = 1, . . . , n
}

with z̄i := fi(x̄)
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is compact in X. Suppose also that any u ∈ S with f(u) = z̄ is not a local minimizer
of f over S and thus

0 ̸∈
n∑

k=1

µk∂fk(u) +

m∑
i=1

λi∂gi(u) +

p∑
j=1

κj∂hj(u) +N(u; Ω), where

n∑
i=1

µk = 1, µk ≥ 0 as k = 1, . . . , n, λi ≥ 0 as i = 1, . . . ,m, and

κj ∈ IR as j = 1, . . . , p.

(4.21)

Assume finally that the following constraint qualification
0 ∈

m∑
i=1

λi∂gi(ū) +

p∑
j=1

κj∂hj(ū) +N(ū; Ω)

λi ≥ 0 as i = 1, . . . ,m and

κj ∈ IR as j = 1, . . . , p,

 ⇒

[
λi = 0, i = 1, . . . ,m

κj = 0, j = 1, . . . , p

]
(4.22)

holds for any ū ∈ S with f(ū) = z̄. Then the validity of the conditions
m∑
i=1

λi∂gi(ū) +

p∑
j=1

κj∂hj(ū) +N(ū; Ω) ⊂ N(ū; Ω) for all

λi ≥ 0 as i = 1, . . . , n, κj ∈ IR as j = 1, . . . , p.

(4.23)



n∑
k=1

µk∂fk(ū) +

m∑
i=1

λi∂gi(ū) +

p∑
j=1

κj∂hj(ū) +N(ū; Ω) ⊂ N(ū; Ω)

whenever
n∑

k=1

µk = 1, µk ≥ 0 as k = 1, . . . , n,

λi ≥ 0 as i = 1, . . . , n, κj ∈ IR as j = 1, . . . , p.

(4.24)

is sufficient for the global Pareto maximality of x̄ in problem (4.20).

Proof. It is straightforward from Theorem 4.1. �
We conclude this section with a simple example illustrating Corollary 4.3.

Example 4.4. (illustration of sufficient optimality conditions). Consider the fol-
lowing multiobjective programming problem of type (4.20):

IR2
+–maximize f(x1, x2) = (−x1,−x2)

(
=: (f1(x), f2(x))

)
subject to g(x1, x2) := |x1| − x2 ≤ 0,

(x1, x2) ∈ Ω := IR+ × IR ⊂ IR2

and the feasible solution x̄ = (0, 0) to this problem. It is easy to check that there is
no other feasible solutions ū such that f(ū) = f(x̄) = (0, 0). We directly calculate
the subdifferentials of the objective and constraint functions and the normal cone
to the geometric constraint set by

∂f1(0, 0) = {(−1, 0)}, ∂f2(0, 0) = {(−1, 0)},

∂g(0, 0) = [−1, 1]× {−1}, and N
(
(0, 0); Ω

)
= {0} × IR−.
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There are two multipliers µ1 =: µ and µ2 = 1− µ with µ ∈ [0, 1] corresponding the
two objective functions. For any µ ∈ [0, 1] and λ ≥ 0, all the four conditions (4.21),
(4.22), (4.23), and (4.24) are satisfied:

• 0 ̸∈ µ∂f1(0, 0) + (1− µ)∂f2(0, 0) + λ∂g(0, 0) +N
(
(0, 0); Ω

)
= (−µ, 0) + (0, µ− 1) + [−λ, λ]× {−λ}+ IR× IR−;

• 0 ∈ λ∂g(0, 0) +N
(
(0, 0); Ω

)
= [−λ, λ]× {−λ}+ IR× IR− =⇒ λ = 0;

• λ∂g(0, 0) +N
(
(0, 0); Ω

)
⊂ [−λ, λ]× {−λ}+ IR× IR−

⊂ IR× IR− = N
(
(0, 0); Ω

)
;

• µ∂f1(0, 0) + (1− µ)∂f2(0, 0) + λ∂g(0, 0) +N
(
(0, 0); Ω

)
= (−µ, 0) + (0, µ− 1) + [−λ, λ]× {−λ}+ IR× IR−

⊂ IR× IR− = N
(
(0, 0); Ω

)
.

Thus x̄ = (0, 0) is a maximizer of the problem under consideration by Corollary 4.3.

5. Concluding remarks

New sufficient conditions for Pareto optimal solutions to constrained multiob-
jective problems with and without equilibrium constraints are established in The-
orems 3.2, 4.1 and their consequences by using advanced techniques of variational
analysis and generalized differentiation in the novel dual-space approach. It is
important to emphasize that we do not seek sufficient optimality conditions by
strengthening necessary optimality ones with additional convexity-type assump-
tions while considering fully nonconvex settings. It is a challenging issue of our
future research to unify these two independent approaches and to derive in this way
the most appropriate sufficient optimality conditions in both frameworks of scalar
and multiobjective optimization.
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