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Since the operator T is nonlinear and the algorithm has a convex structure, it is nat-
ural to ask whether it is possible to develop corresponding results for nonexpansive
mappings in nonlinear spaces, such as Hadamard manifolds (that is, complete and
simply connected Riemannian manifolds of nonpositive curvature), by extending
concepts and techniques which originate in Euclidean, Hilbert and Banach spaces.
Indeed, in [5] an analogue of (1.2) is studied in Hadamard manifolds of finite di-
mension. We are interested in proving analogous results for a particular infinite
dimensional manifold, namely the Hilbert ball B endowed with the hyperbolic met-
ric ρ [2]. In this paper we study the analogue of (1.2) in this space and prove a
theorem regarding the strong convergence of sequences generated by it to a fixed
point of a ρ-nonexpansive mapping T , when such a point exists (see Theorem 3.1
below).

2. Preliminaries

Let (X, ρ) be a complete metric space. A mapping c : R → X is called a metric
embedding of R into X if ρ(c(s), c(t)) = |s − t| for all s, t ∈ R. The image of R
under a metric embedding is called a metric line and the image of an interval [a, b]
under such a mapping is called a metric segment. Assume that (X, ρ) contains a
family M of metric lines such that for each pair of points x, y ∈ X, there is a unique
metric line in M passing through them. This metric line determines a unique metric
segment connecting x to y, which we denote by [x, y]. For each 0 ≤ t ≤ 1, there is
a unique point z ∈ [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point is denoted by (1− t)x⊕ ty. We say that (X, ρ,M) is a hyperbolic space
[9] if

ρ

(
1

2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z

)
≤ 1

2
ρ(y, z)

for all x, y, z ∈ X. An equivalent condition is that the inequality

ρ((1− t)x⊕ ty, (1− t)w ⊕ tz) ≤ (1− t)ρ(x,w) + tρ(y, z)

holds for all 0 ≤ t ≤ 1 and x, y, z, w ∈ X.
A subset K ⊂ X is called ρ-convex if x, y ∈ K ⇒ [x, y] ⊂ K.
Clearly, all Banach spaces are hyperbolic spaces. In addition, Hadamard manifolds
are also hyperbolic spaces. We are mainly interested in the infinite dimensional
Hilbert ball endowed with the hyperbolic metric, some properties of which we now
recall.
Let B be the open unit ball of a complex Hilbert space (H, ⟨·, ·⟩) with induced norm
∥ · ∥. For a ∈ B, the Möbius transformations Ma on B have the form

Ma(z) = (Pa +
√

1− ∥a∥2Qa)ma(z), z ∈ B,
where Pa is the orthogonal projection onto the subspace spanned by a, Qa = I−Pa

and
ma(z) = (z + a)/(1 + ⟨z, a⟩), z ∈ B.

The metric ρ on B is given by ρ(x, y) = tanh−1∥M−x(y)∥, where tanh−1 denotes
the inverse hyperbolic tangent. The Hilbert ball B endowed with this metric ρ is a



HALPERN’S ALGORITHM IN THE HILBERT BALL 855

hyperbolic space.
With each x ∈ B we associate a tangent Hilbert space Hx the elements of which
are denoted by {[x, y]}y∈B. In the language of differential geometry, the vector
[x, y] ∈ Hx is identified with the vector v in the tangent space at x for which
expxv = y, where expx is the exponential map at x. The linear structure and the
inner product in Hx are determined by the (surjective) mapping i : Hx → H defined
by

i([x, y]) =

{
(ρ(x, y)/∥M−x(y)∥)M−x(y) y ̸= x

0 y = x
.

Note that the norm of the vector [x, y] in Hx is ρ(x, y) and that for every x, y ∈ B,
the Hilbert spaces Hx and Hy are isometric via the isometry Uxy : Hx → Hy given
by Uxy[x, z] = [y,My(M−x(z))] for all z ∈ B.
For more details concerning hyperbolic spaces and the Hilbert ball, see [2], [9] and
[11].

Let K be a nonempty, ρ-closed and ρ-convex subset of B. We denote by PK the
nearest point projection onto K defined by

PK(p) = {p0 ∈ K : ρ(p, p0) ≤ ρ(p, q) ∀q ∈ K}, ∀p ∈ B.

Lemma 2.1. For any point p ∈ B, PK(p) is a singleton and the following inequality
holds for all q ∈ K:

Re⟨[PK(p), p], [PK(p), q]⟩ ≤ 0.

Proof. A proof of the existence and uniqueness of the point PK(p) can be found in [2,
page 108]. The fact that such a point is unique also implies that for r = ρ(p, PK(p))
the closed ball B(p, r) of radius r about p intersects K only at PK(p).

If there were a point q ∈ K with Re⟨[PK(p), p], [PK(p), q]⟩ > 0, then we would
have points (1−t)PK(p)⊕tq on the metric segment [PK(p), q] with positive small pa-
rameter t which are both in K and B(p, r). This contradicts our previous conclusion
and completes the proof (cf. [13, page 96]).

Alternatively, recall [12, page 642] that a self-mapping T of B is firmly nonex-
pansive (of the first kind) if and only if

Re{⟨[Tx, Ty], [Tx, x]⟩+ ⟨[Ty, Tx], [Ty, y]⟩} ≤ 0

for all x, y ∈ B. Since PK : B → B is known to be firmly nonexpansive (of the first
kind) [2, page 124], we may take x = p ∈ B and q ∈ K, and obtain that PKq = q
and Re⟨[PK(p), p], [PK(p), q]⟩ ≤ 0, as claimed.

Let {xn}∞n=0 be a ρ-bounded sequence in B, and let K be a ρ-closed and ρ-convex
subset of B. Consider the functional f : B → [0,∞) defined by

f(x) = lim sup
n→∞

ρ(xn, x).

A point z in K is said to be an asymptotic center of the sequence {xn}∞n=0 with
respect to K if f(z) = min{f(x) : x ∈ K}. The minimum of f over K is called
the asymptotic radius of {xn}∞n=0 with respect to K.

Proposition 2.2 ([2, page 116]). Every ρ-bounded sequence in (B, ρ) has a unique
asymptotic center with respect to any ρ-closed and ρ-convex subset of B.
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The asymptotic center of {xn}∞n=0 with respect toK will be denoted byA(K, {xn})
and its asymptotic radius by r(K, {xn}). If K = B we shall write A({xn}) and
r({xn}), respectively.

Lemma 2.3 ([2, page 116]). If {xn} ⊂ K, then A({xn}) = A(K, {xn}).

Proposition 2.4 ([2, page 117]). If a ρ-bounded sequence {xn}∞n=0 converges weakly
to x, then x = A({xn}).

We say that a mapping T : K → K is ρ-nonexpansive if for any two points
x, y ∈ K, the following inequality holds:

ρ(Tx, Ty) ≤ ρ(x, y).

It is known that every holomorphic self-mapping of B is ρ-nonexpansive [2, page
118].

Let T : K → K be a ρ-nonexpansive mapping. We shall call a sequence {yn}∞n=0 ⊂
K an approximating sequence for T if limn→∞ ρ(yn, T yn) = 0.

Theorem 2.5 ([2, page 120]). Let T : K → K be a ρ-nonexpansive mapping. The
following statements are equivalent:

(a) T has a fixed point;
(b) There exists a point x in K such that the sequence of iterates {Tnx}∞n=0 is

ρ-bounded;
(c) The sequence of iterates {Tnx}∞n=0 is ρ-bounded for all x in K;
(d) There exists a ρ-bounded approximating sequence for T .

The asymptotic centers of the sequences in parts (b) and (d) are fixed points of T .

We also need the following result concerning the structure of the fixed point set
Fix(T ) of T .

Theorem 2.6 ([2, page 120]). The fixed point set of a ρ-nonexpansive mapping
T : K → K is ρ-closed and ρ-convex.

Since the CN inequality holds in the Hilbert ball (B, ρ) [9, page 541], we know
that (B, ρ) is a CAT(0) space [1, page 163].

A metric triangle ∆(p1, p2, p3) in the Hilbert ball B is the set consisting of three
points p1, p2 and p3 in B, and the three metric segments joining pi and pi+1, where
i = 1, 2, 3 (mod 3).

The following lemma is a basic tool for comparing the geometry of the Hilbert
ball to that of the Euclidean plane.

Lemma 2.7 ([1, page 24]). Let ∆(p, q, r) be a metric triangle in B. Then there
exist points p′, q′, r′ ∈ R2 such that

ρ(p, q) = ∥p′ − q′∥, ρ(q, r) = ∥q′ − r′∥, ρ(r, p) = ∥r′ − p′∥.

The triangle ∆(p′, q′, r′) is called the comparison triangle of the metric triangle
∆(p, q, r). It is unique up to isometry. A point x′ ∈ [q′, r′] is called the comparison
point for x ∈ [q, r] if ρ(q, x) = ∥q′−x′∥. Comparison points on [p′, q′] and [r′, p′] are
defined in the same way. If p ̸= q and p ̸= r, then the angle at p is the Riemannian
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angle between the vectors [p, q] and [p, r] in Hp, namely the unique α ∈ [0, π] for
which

cosα =
Re⟨[p, q], [p, r]⟩
ρ(p, q) · ρ(p, r)

.

The interior angle α′ of ∆(p′, q′, r′) at p′ is called the comparison angle of α.
For every pair of points x, y ∈ ∆(p, q, r) and their comparison points x′, y′ ∈

∆(p′, q′, r′), the CAT(0) inequality holds:

ρ(x, y) ≤ ∥x′ − y′∥.

Lemma 2.8 ([1, page 161]). Let ∆(p, q, r) be a metric triangle in the Hilbert ball
B and let ∆(p′, q′, r′) be its comparison triangle.

(i) Let α, β, γ (respectively, α′, β′, γ′) be the angles of ∆(p, q, r) (respectively,
∆(p′, q′, r′)) at the vertices p, q, r (respectively, p′, q′, r′). Then the following
inequalities hold:

α′ ≥ α, β′ ≥ β, γ′ ≥ γ.

(ii) Let z be a point on the metric segment [p, q] and z′ its comparison point on
the side [p′, q′]. Then the following inequality holds:

ρ(z, r) ≤ ∥z′ − r′∥.

Lemma 2.9 ([14]). Let {βn}∞n=0 and {bn}∞n=0 be two real sequences satisfying the
following conditions:

(i) {βn}∞n=0 ⊂ [0, 1] and
∑∞

n=0 βn = ∞;
(ii) lim supn→∞ bn ≤ 0.

Let {an}∞n=0 be a sequence of non-negative real numbers such that

an+1 ≤ (1− βn)an + βnbn, n ≥ 0.

Then limn→∞ an = 0.

3. Main result

Let K be a ρ-closed and ρ-convex subset of B and let T : K → K be a ρ-
nonexpansive mapping. Let points u, x0 ∈ K and a sequence {αn}∞n=0 ⊂ (0, 1) be
given. Then Halpern’s algorithm in B generates the sequence of iterations defined
by the recursion

(3.1) xn+1 = αnu⊕ (1− αn)Txn, ∀n ≥ 0.

Theorem 3.1. Let K be a ρ-closed and ρ-convex subset of B and let T : K → K
be a ρ-nonexpansive mapping with F := Fix(T ) ̸= ∅. Let points u, x0 ∈ K be given.
Suppose that a sequence {αn}∞n=0 ⊂ (0, 1) satisfies

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;
(ii)

∑∞
n=0 |αn+1 − αn| < ∞ or limn→∞(αn − αn−1)/αn = 0.

Then the sequence {xn}∞n=0 generated by algorithm (3.1) strongly converges to PF (u).

A similar result under stronger assumptions on the sequence {αn}∞n=0 was proved
in [4] by using different techniques. Closely related theorems, established by em-
ploying other methods, can also be found in [10, 7].
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Proof. The proof of Theorem 3.1 is divided into four steps.

Step 1. The sequences {xn}∞n=0 and {Txn}∞n=0 are ρ-bounded.
Take x ∈ F and set M := max{ρ(u, x), ρ(x0, x)}. We prove that ρ(xn, x) ≤ M for
all n by mathematical induction on n. It is clear that ρ(x0, x) ≤ M . Using now the
hyperbolic property of the metric ρ, the ρ-nonexpansivity of T and the inductive
hypothesis, we obtain

ρ(xn+1, x) = ρ(αnu⊕ (1− αn)Txn, x)

≤ αnρ(u, x) + (1− αn)ρ(Txn, x)

≤ αnρ(u, x) + (1− αn)ρ(xn, x)

≤ M.

Thus {xn}∞n=0 is indeed ρ-bounded and the ρ-boundedness of {Txn}∞n=0 is a direct
consequence.

Step 2. limn→∞ ρ(xn+1, xn) = 0.
By Step 1, we can find a constant C such that

(3.2) ρ(xn, xn−1) ≤ C and ρ(u, Txn) ≤ C

for all n ≥ 1 and n ≥ 0, respectively.
For each n ≥ 1, consider the metric segment [u, Txn−1] in B as the metric embed-

ding of the real interval [s, t] under c : R → B. Namely, c(s) = u and c(t) = Txn−1.
Using the hyperbolic property of the metric ρ, the nonexpansivity of T and (3.2),

we obtain for each n ≥ 1,

ρ(xn+1, xn) = ρ(αnu⊕ (1− αn)Txn, αn−1u⊕ (1− αn−1)Txn−1)

≤ ρ(αnu⊕ (1− αn)Txn, αnu⊕ (1− αn)Txn−1)

+ρ(αnu⊕ (1− αn)Txn−1, αn−1u⊕ (1− αn−1)Txn−1)

≤ αnρ(u, u) + (1− αn)ρ(Txn, Txn−1)

+ρ(c(αns+ (1− αn)t), c(αn−1s+ (1− αn−1)t))

≤ (1− αn)ρ(xn, xn−1)

+|(αns+ (1− αn)t)− (αn−1s+ (1− αn−1)t)|
= (1− αn)ρ(xn, xn−1) + |αn − αn−1||t− s|
= (1− αn)ρ(xn, xn−1) + |αn − αn−1|ρ(u, Txn−1),

and finally,

(3.3) ρ(xn+1, xn) ≤ (1− αn)ρ(xn, xn−1) + C|αn − αn−1|.

Thus, if limn→∞(αn − αn−1)/αn = 0, we can apply Lemma 2.9 to conclude that
limn→∞ ρ(xn+1, xn) = 0.

As to the case where
∑∞

n=0 |αn+1 − αn| < ∞, let k ≤ n. From (3.3) we see that

ρ(xn+1, xn) ≤ C

n∏
i=k

(1− αi) + C

n∑
i=k

|αi − αi−1|.
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Since
∏∞

i=k(1− αi) = 0 for all k ≥ 1, letting n → ∞, we get

lim sup
n→∞

ρ(xn+1, xn) ≤ C

∞∑
i=k

|αi − αi−1|.

Now letting k → ∞ and using the limit

lim
k→∞

∞∑
i=k

|αi − αi−1| = 0,

we see that in this case too we have limn→∞ ρ(xn+1, xn) = 0, as claimed.

Step 3. lim supn→∞Re⟨[PF (u), u], [PF (u), Txn]⟩ ≤ 0.
By Step 1, the sequence {Re⟨[PF (u), u], [PF (u), Txn]⟩} is bounded; hence its upper
limit is finite. Evidently, we can find a subsequence {zk}∞k=1 of {xn}∞n=0, zk :=
xnk

, k ≥ 1, so that, defining

ck := Re⟨[PF (u), u], [PF (u), T zk]⟩,

we have

lim sup
n→∞

Re⟨[PF (u), u], [PF (u), Txn]⟩ = lim
k→∞

ck.

Since {xn}∞n=0 is ρ-bounded by Step 1, we may assume, without any loss of gen-
erality, that zk ⇀ x̄ as k → ∞ for some x̄ ∈ B, where ⇀ denotes weak convergence.
Then, by Proposition 2.4, x̄ is the asymptotic center of {zk}∞k=1.

Next we show that {zk}∞k=1 is an approximating sequence for T . Indeed,

ρ(zk, T zk) = ρ(xnk
, Txnk

) ≤ ρ(xnk
, xnk+1) + ρ(xnk+1, Txnk

).

By Step 2, limk→∞ ρ(xnk+1, xnk
) = 0. Also, using the definition of the algorithm

and the hyperbolic property of the metric ρ, we see that

ρ(xnk+1, Txnk
) = ρ(αnk

u⊕ (1− αnk
)Txnk

, Txnk
) ≤ αnk

ρ(u, Txnk
),

and since, by Step 1, the sequence {ρ(u, Txnk
)}∞k=1 is bounded, we therefore obtain

(3.4) lim
k→∞

ρ(zk, T zk) = 0.

Thus {zk}∞k=1 is indeed an approximating sequence for T and applying Theorem
2.5, we conclude that its asymptotic center x̄ is a fixed point of T . Namely, x̄ ∈ F .
From (3.4) it also follows that zk−Tzk → 0 as k → ∞ [2, page 91]. Hence Tzk ⇀ x̄
as k → ∞.

Using the definition of the inner product in the tangent Hilbert space, we see
that without loss of generality we may write, denoting the norm in H by | · |,

ck = Re⟨i([PF (u), u]), i([PF (u), T zk])⟩

= Re⟨i([PF (u), u]),
ρ(PF (u), T zk)

|M−PF (u)(Tzk)|
M−PF (u)(Tzk)⟩.

If x̄ = PF (u), then using the weak continuity of M−PF (u) [2, page 116], we have

Re⟨i([PF (u), u]),M−PF (u)(Tzk)⟩ → 0.
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By Step 1, the sequence {ρ(PF (u), T zk)}∞k=1 is bounded and so if the sequence
{1/(|M−PF (u)(Tzk)|)}∞k=1 is also bounded, then limk→∞ ck = 0. Assume there ex-
ists a subsequence {M−PF (u)(Tzkl)}∞l=1 that tends to the origin as l → ∞. Ap-
plying MPF (u), we get Tzkl → MPF (u)(0) = PF (u) as l → ∞. Hence in this case
ρ(PF (u), T zkl) → 0 as l → ∞, the subsequence

{(M−PF (u)(Tzkl))/(|M−PF (u)(Tzkl)|)}
∞
l=1

is bounded, and once again we have liml→∞ ckl = 0.
Assume now that x̄ ̸= PF (u). In this case we see that

ck = ak · bk,
where

ak :=
|M−PF (u)(x̄)|
ρ(PF (u), x̄)

· ρ(PF (u), T zk)

|M−PF (u)(Tzk)|
and

bk := Re⟨i([PF (u), u]),
ρ(PF (u), x̄)

|M−PF (u)(x̄)|
M−PF (u)(Tzk)⟩.

Using again the weak continuity of M−PF (u) along with Lemma 2.1, we see that

lim
k→∞

bk = Re⟨[PF (u), u], [PF (u), x̄]⟩ ≤ 0.

As for the sequence {ak}∞k=1, it is clearly nonnegative. We claim that it is
bounded. For that we need to make sure that the sequence {M−PF (u)(Tzk)}∞k=1
is bounded away from the origin. As before, assume to the contrary that there
exists a subsequence {M−PF (u)(Tzkl)}∞l=1 which tends to the origin as l → ∞. Ap-
plying MPF (u), we get Tzkl → MPF (u)(0) = PF (u) as l → ∞ and so x̄ = PF (u).
This contradicts our assumption that x̄ ̸= PF (u), and so we see that the sequence
{ak}∞k=1 is indeed bounded. We conclude that limk→∞ ck ≤ 0, as claimed.

Step 4. limn→∞ ρ(xn, PF (u)) = 0.
Fix n ≥ 0, and set p = Txn and q = PF (u). Considering the metric triangle
∆(u, p, q) and its comparison triangle ∆(u′, p′, q′), we have

ρ(u, q) = ∥u′ − q′∥ and ρ(p, q) = ∥p′ − q′∥.
Let β denote the angle at q and β′ its comparison angle at q′. Then by part (i)

of Lemma 2.8 we have β ≤ β′ and so cosβ′ ≤ cosβ.
Consider the point xn+1 = αnu ⊕ (1 − αn)p on the metric segment [u, p] and

denote its comparison point by x
′
n+1 = αnu

′ + (1 − αn)p
′. Then, by part (ii) of

Lemma 2.8, we have

ρ2(xn+1, PF (u)) ≤ ∥x′n+1 − q′∥2

= ∥αn(u
′ − q′) + (1− αn)(p

′ − q′)∥2

= α2
n∥u′ − q′∥2 + (1− αn)

2∥p′ − q′∥2

+ 2αn(1− αn)∥u′ − q′∥∥p′ − q′∥ cosβ′

≤ α2
nρ

2(u, q) + (1− αn)
2ρ2(p, q)

+ 2αn(1− αn)ρ(u, q)ρ(p, q) cosβ
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= (1− αn)
2ρ2(Txn, PF (u))

+ αn[αnρ
2(u, PF (u)) + 2(1− αn)Re⟨[PF (u), u], [PF (u), Txn]⟩]

≤ (1− αn)ρ
2(xn, PF (u)) + αnbn,

where

bn = αnρ
2(u, PF (u)) + 2(1− αn)Re⟨[PF (u), u], [PF (u), Txn]⟩.

By Step 3, lim supn→∞ bn ≤ 0. Thus we may apply Lemma 2.9 and conclude that
limn→∞ ρ2(xn, PF (u)) = 0. Hence the sequence {xn}∞n=0 converges in norm to PF (u)
[2, page 91] and this completes the proof of Theorem 3.1.

Alternatively, we may use the CN inequality and the law of cosines [12, page 638]
to obtain

ρ2(q, αnu⊕ (1− αn)p) ≤ αnρ
2(q, u) + (1− αn)ρ

2(q, p)− αn(1− αn)ρ
2(u, p)

≤ α2
nρ

2(q, u) + (1− αn)
2ρ2(q, p) + 2αn(1− αn)Re⟨[q, u], [q, p]⟩

≤ (1− αn)
2ρ2(p, q) + αnbn ≤ (1− αn)ρ

2(xn, PF (u)) + αnbn,

as before.
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