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Definition 2.1. Let (X,≼) be a partially ordered set and A : X → X. We say
that A is nondecreasing (with respect to ≼) if

x, y ∈ X, x ≼ y =⇒ Ax ≼ Ay.

Definition 2.2. Let (X,≼) be a partially ordered set and A : X × X → X. We
say that A has the mixed monotone property if

(x, y), (u, v) ∈ X ×X, x ≼ u, y ≽ v =⇒ A(x, y) ≼ A(u, v).

Definition 2.3. Let (X,≼) be a partially ordered set and A : X × X → X. We
say that (x, y) ∈ X ×X is a coupled fixed point of A if

x = A(x, y) and y = A(y, x).

Definition 2.4. Let (X,≼) be a partially ordered set endowed with a metric d. We
say that (X,≼, d) is regular if for every sequence {un} ⊂ X satisfying

(i) lim
n→∞

d(un, u) = 0, for some u ∈ X;

(ii) un ≼ un+1 for all n,

we have un ≼ u for all n.

Our first result is the following fixed point theorem.

Theorem 2.5. Let (X,≼) be a partially ordered set. Suppose that there exists
a metric d on X such that (X, d) is a complete metric space. We suppose that
(X,≼, d) is regular. Let A : X → X be a nondecreasing mapping that satisfies: for
any 0 < a < b < ∞, there exists 0 < k(a, b) < 1 such that

(2.1) x, y ∈ X, x ≻ y, a ≤ d(x, y) ≤ b =⇒ d(Ax,Ay) ≤ k(a, b)d(x, y).

Suppose also that there exists x0 ∈ X such that x0 ≼ Ax0. Then A has a fixed point,
that is, there exists x∗ ∈ X such that Ax∗ = x∗.

Proof. We make the proof in three steps.

Step I. We shall prove that for all r > 0, there exists z ∈ X with z ≼ Az such that

x ≽ z, d(x, z) ≤ r =⇒ d(Ax, z) ≤ r.

In fact, suppose that there exists some r > 0 such that, for any z ∈ X with z ≼ Az,
there exists x ≽ z satisfying

(2.2) d(x, z) ≤ r, d(Ax, z) > r.

Let z ∈ X with z ≼ Az. We distinguish three cases.
Case 1. d(x, z) = 0, that is, x = z. In this case, from (2.2), we have

d(z,Az) = d(Ax, z) > r > r/2.

Case 2. 0 < d(x, z) ≤ d(x, z) ≤ r/2. From (2.1), we have

d(Ax,Az) ≤ k(d(x, z), r/2)d(x, z) < d(x, z) ≤ r/2,

which implies that

(2.3) d(Ax,Az) < r/2.
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On the other hand, we have

(2.4) d(z,Az) ≥ d(z,Ax)− d(Ax,Az).

Using (2.2), (2.3) and (2.4), we get that

d(z,Az) > r/2.

Case 3. r/2 < d(x, z) ≤ r. From (2.1), we have

(2.5) d(Ax,Az) ≤ k(r/2, r)d(x, z) ≤ k(r/2, r)r.

Thanks to (2.2), (2.4) and (2.5), we deduce that

d(z,Az) > r − k(r/2, r)r.

Now, in all cases, for all z ∈ X with z ≼ Az, we have

(2.6) d(z,Az) > min {r/2, r − k(r/2, r)r} = a > 0.

Denote b = d(x0, Ax0) > 0 (obviously, if x0 = Ax0, the proof is finished). From
(2.6) and the hypothesis on x0, we have

Ax0 ≻ x0, a < d(x0, Ax0) ≤ b.

Using (2.1), we get that

(2.7) d(Ax0, A
2x0) ≤ k(a, b)d(x0, Ax0).

Since A is nondecreasing, we have A2x0 = A(Ax0) ≽ Ax0. Similarly, we can suppose
that A2x0 ≻ Ax0, otherwise, Ax0 will be a fixed point of A, and the proof is finished.
Using (2.6), we have

a < d(Ax0, A
2x0).

Since 0 < k(a, b) < 1, from (2.7), we have

d(Ax0, A
2x0) < b.

Thus, we have

A(Ax0) ≻ Ax0, a < d(Ax0, A
2x0) < b.

Again, applying (2.1), we get that

d(A2x0, A
3x0) ≤ k(a, b)d(Ax0, A

2x0).

Using (2.7), we get that

d(A2x0, A
3x0) ≤ [k(a, b)]2d(x0, Ax0).

Thus, by induction, we have

d(Anx0, A
n+1x0) ≤ [k(a, b)]nd(x0, Ax0), for all n ≥ 0.

Therefore (since 0 < k(a, b) < 1), we can take a positive integer n sufficiently large
such that

d(xn, Axn) < a,

where xn = Anx0, which contradicts (2.6).
Thus, we proved that for all r > 0, there exists z ∈ X with z ≼ Az such that

x ≽ z, d(x, z) ≤ r =⇒ d(Ax, z) ≤ r,
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that is (since A is nondecreasing and z ≼ Az),

x ≽ z, d(x, z) ≤ r =⇒ Ax ≽ z, d(Ax, z) ≤ r.

Step II. Construction of a Cauchy sequence in the complete metric space (X, d).
For all r > 0 and z ∈ X, consider the set

∆(r, z) := {x ∈ X |x ≽ z, d(x, z) ≤ r}.

Clearly, ∆(r, z) ̸= ∅ (z ∈ ∆(r, z)). From Step I, we have

(2.8) ∀ r > 0, ∃ z ∈ X | z ≼ Az, A(∆(r, z)) ⊆ ∆(r, z).

Using (2.8), for r = 1, there exists z1 ∈ X with z1 ≼ Az1 such that A(∆(1, z1)) ⊆
∆(1, z1) := ∆1. Then, the mapping A : ∆1 → ∆1 is well defined. Using (2.8),
for r = 1

2 , there exists z2 ∈ ∆1 with z2 ≼ Az2 such that A(∆(12 , z2) ∩ ∆1) ⊆
∆(12 , z2)∩∆1 := ∆2. Then, we can define the mapping A : ∆2 → ∆2. Again, using

(2.8), for r = 1
3 , there exists z3 ∈ ∆2 with z3 ≼ Az3 such that A(∆(13 , z3) ∩∆2) ⊆

∆(13 , z3) ∩∆2 := ∆3. Inductively, there exists zn+1 ∈ ∆n with zn+1 ≼ Azn+1 such
that A(∆(1/(n+1), zn+1)∩∆n) ⊆ ∆(1/(n+1), zn+1)∩∆n := ∆n+1 (n = 1, 2, 3, . . . ).
Clearly, we have

(2.9) ∆n+1 ⊆ ∆n (n = 1, 2, 3, . . . ), d(zn+m, zn) ≤
1

n
(n,m = 1, 2, 3, . . . ).

This implies that {zn} is a Cauchy sequence in the complete metric space (X, d).

Step III. Existence of a fixed point. Since (X, d) is complete and {zn} is a Cauchy
sequence in X, there exists x∗ ∈ X such that zn → x∗ as n → ∞.
We shall prove that

(2.10) x∗ ∈ ∆n, for all n ∈ N.

Since zn+1 ∈ ∆n for all n ∈ N, we have

z1 ≼ z2 ≼ · · · ≼ zn ≼ zn+1 ≼ · · ·

From the regularity of (X,≼, d), we obtain that

zn ≼ x∗, for all n ∈ N.

From (2.9), we have

d(zn+1, z1) ≤ 1, for all n ∈ N.
Letting n → ∞, we get that

d(x∗, z1) ≤ 1.

Thus we proved that x∗ ∈ ∆1.
Again, for n = 2, we have

∆2 = ∆1 ∩∆
(1
2
, z2

)
=

{
x ∈ ∆1 |x ≽ z2, d(x, z2) ≤

1

2

}
.

We know that x∗ ∈ ∆1 and x∗ ≽ z2. From (2.9), we have

zn+1 ∈ ∆n ⊆ ∆2, for all n ≥ 2.
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Then we have

d(zn+1, z2) ≤
1

2
, for all n ≥ 2.

Letting n → ∞, we get that

d(x∗, z2) ≤
1

2
.

Thus we proved that x∗ ∈ ∆2. Continuing this process, by induction, we can show
that (2.10) holds.

On the other hand, for all n ∈ N, A(∆n) ⊆ ∆n and x∗ ∈ ∆n, that is,

x∗ ∈ ∆n, Ax∗ ∈ ∆n, for all n ∈ N.

This implies that

d(x∗, zn) ≤
1

n
, d(Ax∗, zn) ≤

1

n
, for all n ∈ N.

Then we have

d(x∗, Ax∗) ≤ d(x∗, zn) + d(Ax∗, zn) ≤
2

n
, for all n ∈ N.

Letting n → ∞, we obtain that d(x∗, Ax∗) = 0, that is, x∗ = Ax∗. Thus we proved
that x∗ is a fixed point of A. �

Now, we give an example to illustrate our obtained result given by Theorem 2.5.

Example 2.6. Let X = [0,∞) endowed with the metric d defined by: for all
x, y ∈ X,

d(x, y) =

{
max{x, y} if x ̸= y,
0 if x = y.

It is not difficult to show that (X, d) is a complete metric space. Define the mapping
A : X → X by

Ax =


x

2
if 0 ≤ x ≤ 1,

3

4
if x > 1.

Let a, b ∈ R such that 0 < a < b. We distinguish three cases.

Case 1. b ≤ 1.
Let (x, y) ∈ X × X such that a ≤ d(x, y) ≤ b and x > y. This means that
a ≤ x ≤ b ≤ 1. Thus we have

d(Ax,Ay) = d
(x
2
,
y

2

)
=

x

2
≤ 1

2
max{x, y} =

1

2
d(x, y).

Taking k(a, b) = 1
2 , we obtain that d(Ax,Ay) ≤ k(a, b)d(x, y).

Case 2. a > 1.
Let (x, y) ∈ X × X such that a ≤ d(x, y) ≤ b and x > y. This means that
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1 < a ≤ x ≤ b.
If y > 1, then we have

d(Ax,Ay) = d
(3
4
,
3

4

)
= 0 ≤ kd(x, y),

for any k ∈ (0, 1).
If y ≤ 1, we have

d(Ax,Ay) = d
(3
4
,
y

2

)
= max

{3

4
,
y

2

}
=

3

4
≤ 3

4
x =

3

4
max{x, y}.

Taking k(a, b) = 3
4 , we obtain that d(Ax,Ay) ≤ k(a, b)d(x, y).

Case 3. a ≤ 1 and b > 1.
Let (x, y) ∈ X×X such that a ≤ d(x, y) ≤ b and x > y. This means that a ≤ x ≤ b.
If x ≤ 1, we have

d(Ax,Ay) = max
{x

2
,
y

2

}
=

x

2
≤ 1

2
d(x, y).

Taking k(a, b) = 1
2 , we obtain that d(Ax,Ay) ≤ k(a, b)d(x, y).

If 1 < y < x, we have

d(Ax,Ay) = d
(3
4
,
3

4

)
= 0 ≤ kd(x, y),

for any k ∈ (0, 1).
If y ≤ 1 < x, we have

d(Ax,Ay) = max
{3

4
,
y

2

}
=

3

4
≤ 3

4
x =

3

4
max{x, y}.

Taking k(a, b) = 3
4 , we obtain that d(Ax,Ay) ≤ k(a, b)d(x, y).

Thus, in all cases, for all 0 < a < b < ∞, there exists k(a, b) ∈ (0, 1) such that

x, y ∈ X, x > y, a ≤ d(x, y) ≤ b =⇒ d(Ax,Ay) ≤ k(a, b)d(x, y).

Now, we shall prove that (X,≤, d) is regular. Let {un} be a sequence in X such
that

(i) lim
n→∞

d(un, u) = 0, for some u ∈ X;

(ii) un ≤ un+1 for all n.

We have to prove that

(2.11) un ≤ u, for all n.

Let n ∈ N be fixed. We have

un ≤ un+p, for all p ∈ N.

If for some p, we have un+p = u, then from the above inequality, we get (2.11).
Now, suppose that un+p ̸= u for all p. In this case, we have

0 ≤ max{un, u} ≤ max{un+p, u} = d(un+p, u) → 0 as p → ∞.
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This implies that max{un, u} = 0, that is, un = u. Thus we proved that (2.11)
holds, and the regularity of (X,≤, d) is proved.

Finally, for x0 = 0, we have x0 ≤ Ax0. Now, all the required hypotheses of
Theorem 2.5 are satisfied, we deduce the existence of a fixed point of A. In this
case x∗ = 0 is the unique fixed point of A.

Now, we shall prove the following coupled fixed point result.

Theorem 2.7. Let (X,≼) be a partially ordered set. Suppose that there exists
a metric d on X such that (X, d) is a complete metric space. We suppose that
(X,≼, d) satisfies the following properties:

(i) if a nondecreasing sequence {xn} → x ∈ X, then xn ≼ x for all n;
(ii) if a decreasing sequence {yn} → y ∈ X, then yn ≽ y for all n.

Let B : X ×X → X be a mapping having the mixed monotone property. Suppose
that for any 0 < a < b < ∞, there exists 0 < k(a, b) < 1 such that for any
(x, y), (u, v) ∈ X ×X,

(2.12) x ≽ u, y ≼ v, a ≤ d(x, u) + d(y, v)

2
≤ b

=⇒ d(B(x, y), B(u, v)) ≤ k(a, b)

2
[d(x, u) + d(y, v)].

Suppose also that there exists (x0, y0) ∈ X ×X such that x0 ≼ B(x0, y0) and y0 ≽
B(y0, x0). Then B has a coupled fixed point, that is, there exists (x∗, y∗) ∈ X ×X
such that B(x∗, y∗) = x∗ and B(y∗, x∗) = y∗.

Proof. We endow the product set Y = X ×X with the metric η defined by

η((x, y), (u, v)) =
d(x, u) + d(y, v)

2
, for all (x, y), (u, v) ∈ Y.

Since (X, d) is complete, it is clear that (Y, η) is also a complete metric space. We
endow Y with the partial order ≪ defined by

(x, y), (u, v) ∈ Y, (x, y) ≪ (u, v) ⇐⇒ x ≼ u, y ≽ v.

From conditions (i) and (ii), it is clear that (Y,≪, η) is regular.

Now, define the self-mapping A : Y → Y by

A(x, y) = (B(x, y), B(y, x)), for all (x, y) ∈ Y.

It follows from the mixed monotone property of B that A is a nondecreasing map-
ping with respect to ≪. Moreover, we have (x0, y0) ≪ A(x0, y0).

From (2.12), we can show that for any 0 < a < b < ∞, there exists 0 < k(a, b) < 1
such that

(x, y), (u, v) ∈ Y, (x, y) ≫ (u, v), a ≤ η((x, y), (u, v)) ≤ b

=⇒ η(A(x, y), A(u, v)) ≤ k(a, b)η((x, y), (u, v)).
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Now, Applying Theorem 2.5, we obtain that A has a fixed point (x∗, y∗) ∈ Y ,
that is,

(x∗, y∗) = A(x∗, y∗) = (B(x∗, y∗), B(y∗, x∗)),

which implies that (x∗, y∗) is a coupled fixed point of B. �

Theorem 2.8. Let (X,≼) be a partially ordered set. Suppose that there exists
a metric d on X such that (X, d) is a complete metric space. We suppose that
(X,≼, d) satisfies the following properties:

(i) if a nondecreasing sequence {xn} → x ∈ X, then xn ≼ x for all n;
(ii) if a decreasing sequence {yn} → y ∈ X, then yn ≽ y for all n.

Let B : X ×X → X be a mapping having the mixed monotone property. Suppose
that for any 0 < a < b < ∞, there exists 0 < k(a, b) < 1 such that for any
(x, y), (u, v) ∈ X ×X,

(2.13) x ≽ u, y ≼ v, a ≤ max{d(x, u), d(y, v)} ≤ b

=⇒ d(B(x, y), B(u, v)) ≤ k(a, b)max{d(x, u), d(y, v)}.

Suppose also that there exists (x0, y0) ∈ X × X such that x0 ≼ B(x0, y0) and
y0 ≽ B(y0, x0). Then B has a coupled fixed point.

Proof. It is similar to the proof of Theorem 2.7 by considering the metric η on Y
defined by

η((x, y), (u, v)) = max{d(x, u), d(y, v)}, for all (x, y), (u, v) ∈ Y.

�

Remark 2.9.

• Theorem 2.5 is a generalization of Theorem 2.1 in [17].
• Theorems 2.7 and 2.8 are generalizations of Theorem 2.2 in [4].

3. Existence of solutions to a system of nonlinear integral
equations

In this section, we discuss the existence of solutions to the following system of
integral equations given by

g(t) +

∫ 1

0
G(s, t)f(s, u1(s), u2(s)) ds = u1(t);(3.1)

g(t) +

∫ 1

0
G(s, t)f(s, u2(s), u1(s)) ds = u2(t),(3.2)

where g : [0, 1] → R, G : [0, 1] × [0, 1] → [0,∞) and f : [0, 1] × R × R → R are
continuous functions.

We consider the following assumptions:
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(H1) for all s ∈ [0, 1],

α ≥ γ, β ≤ θ =⇒ 0 ≤ f(s, α, β)− f(s, γ, θ) ≤ φ

(
(α− γ) + (θ − β)

2

)
,

where φ : [0,∞) → [0,∞) is continuous nondecreasing and satisfies: for all
0 < a < b < ∞, there exists 0 < k(a, b) < 1 such that

a ≤ r ≤ b =⇒ φ(r) ≤ k(a, b)r;

(H2) sup
0≤t≤1

∫ 1

0
G(t, s) ds ≤ 1;

(H3) there exist two continuous functions u0, v0 : [0, 1] → R such that for all
t ∈ [0, 1],

u0(t) ≤ g(t) +

∫ 1

0
G(s, t)f(s, u0(s), v0(s)) ds

v0(t) ≥ g(t) +

∫ 1

0
G(s, t)f(s, v0(s), u0(s)) ds.

We denote by X = C([0, 1),R) the set of real continuous functions on [0, 1].

We have the following result.

Theorem 3.1. Under the assumptions (H1)-(H3), Problem (3.1)-(3.2) has at least
one solution (x∗, y∗) ∈ X ×X.

Proof. Consider the operator B : X ×X → X defined by: for all (x, y) ∈ X ×X,

B(x, y)(t) = g(t) +

∫ 1

0
G(s, t)f(s, x(s), y(s)) ds, for all t ∈ [0, 1].

Clearly, (u, v) is a solution to (3.1)-(3.2) if and only if (u, v) is a coupled fixed point
of B.

We endow X with the metric d given by

d(x, y) = max
t∈[0,1]

|x(t)− y(t)|, x, y ∈ C([0, 1],R).

It is well known that (X, d) is a complete metric space. We endow X with the
partial order ≼ given by

x, y ∈ C([0, 1],R), x ≼ y ⇐⇒ x(t) ≤ y(t) for all t ∈ [0, 1].

We can show easily that (X,≼, d) is regular.
From (H1) and since G is positive, we obtain that the mapping B has the mixed

monotone property.
Let 0 < a < b < ∞. Let (x, y), (u, v) ∈ X ×X such that

x ≽ u, y ≼ v, a ≤ d(x, u) + d(y, v)

2
≤ b.

From (H1) and (H2), we have: for all t ∈ [0, 1],

|B(x, y)−B(u, v)|(t) ≤
∫ 1

0
G(s, t)[f(s, x(s), y(s))− f(s, u(s), v(s))] ds
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≤
∫ 1

0
G(s, t)φ

(
(x(s)− u(s)) + (v(s)− y(s))

2

)
ds

≤ φ

(
d(x, u) + d(y, v)

2

)
≤ k(a, b)

2
[d(x, u) + d(y, v)],

which implies that

d(B(x, y), B(u, v)) ≤ k(a, b)

2
[d(x, u) + d(y, v)].

Thus we proved that for any 0 < a < b < ∞, there exists 0 < k(a, b) < 1 such that
for any (x, y), (u, v) ∈ X ×X,

x ≽ u, y ≼ v, a ≤ d(x, u) + d(y, v)

2
≤ b

=⇒ d(B(x, y), B(u, v)) ≤ k(a, b)

2
[d(x, u) + d(y, v)].

Finally, from (H3), we have u0 ≼ B(u0, v0) and v0 ≽ B(v0, u0).
Now, the desired result follows immediately from Theorem 2.7. �
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