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FIXED POINT RESULTS ON ORDERED METRIC SPACES AND
EXISTENCE OF SOLUTIONS TO A SYSTEM OF NONLINEAR
INTEGRAL EQUATIONS

MOHAMED JLELI AND BESSEM SAMET

ABSTRACT. We establish fixed point results on ordered metric spaces for a new
class of contractive mappings. We use the obtained fixed point theorems in
this paper to study the existence of solutions to a system of nonlinear integral
equations.

1. INTRODUCTION

Fixed point theory is an important branch of modern mathematics and has al-
ways been a major theoretical tool in fields such as differential equations, topology,
functional analysis, ...

The investigation of the existence of fixed points on ordered metric spaces was
first considered by Turinici in [21]. Ran and Reurings in [17] extended the Banach
contraction principle to the setting of ordered metric spaces, and applied their
result to the study of positive definite solutions to a class of matrix equations.
This study was extended in [14], where certain uniqueness and existence results
for ordinary differential equations were considered. For other fixed point results
on ordered metric spaces, we refer the reader to [1, 5, 6, 7, 8, 9, 13, 15, 16, 18]
and the references therein. Bhaskar and Lakshmikantham [4] initiated and proved
some new coupled fixed point results for mixed monotone and contraction mappings
in partially ordered metric spaces. The obtained results in [4] were extended and
generalized by many authors, for more details, we refer the reader to [2, 3, 10, 11,
12, 19, 20] and the references therein.

In this paper, we establish fixed point and coupled fixed point theorems on the
setting of ordered metric spaces for a new class of contractive mappings. The
presented theorems extend and generalize several fixed point results existing in the
literature, in particular the obtained results in [4, 17]. Moreover, we apply our main
results in this paper to discuss the existence of solutions to a class of systems of
nonlinear integral equations.

2. MAIN RESULTS

At first, we need the following concepts.
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Definition 2.1. Let (X, <) be a partially ordered set and A : X — X. We say
that A is nondecreasing (with respect to <) if

z,ye X, zxy=— Ax < Ay.

Definition 2.2. Let (X, <) be a partially ordered set and A : X x X — X. We
say that A has the mixed monotone property if

(,9), (u,v) € X x X, z=2u,y=v= Az,y) X A(u,v).

Definition 2.3. Let (X, <) be a partially ordered set and A : X x X — X. We
say that (z,y) € X x X is a coupled fixed point of A if

z = A(z,y) and y = A(y, z).

Definition 2.4. Let (X, <) be a partially ordered set endowed with a metric d. We
say that (X, <,d) is regular if for every sequence {u,} C X satisfying
(i) lim d(up,u) =0, for some u € X
n—oo
(ii) up =< Upyy for all n,
we have u,, < u for all n.

Our first result is the following fixed point theorem.

Theorem 2.5. Let (X,=) be a partially ordered set. Suppose that there exists
a metric d on X such that (X,d) is a complete metric space. We suppose that
(X, =,d) is reqular. Let A : X — X be a nondecreasing mapping that satisfies: for
any 0 < a < b < oo, there exists 0 < k(a,b) < 1 such that

(2.1) ryyeX, x>y, a<d(ry) <b= d(Az,Ay) < k(a,b)d(x,y).

Suppose also that there exists xg € X such that xg = Axg. Then A has a fixed point,
that is, there exists x* € X such that Ax* = x*.

Proof. We make the proof in three steps.

Step I. We shall prove that for all r > 0, there exists z € X with z < Az such that
x -z, dz,z) <r=d(Az,z) <r.

In fact, suppose that there exists some r > 0 such that, for any z € X with z < Az,
there exists x = z satisfying

(2.2) dxz,z) <7, d(Az,z) >r.

Let z € X with z < Az. We distinguish three cases.
Case 1. d(z,z) =0, that is, x = z. In this case, from (2.2), we have

d(z,Az) = d(Az,z) >r >r/2.
Case 2. 0 < d(zx,z) <d(x,z) <r/2. From (2.1), we have
d(Az, Az) < k(d(z,2),r/2)d(z,2) < d(z,2z) <r/2,
which implies that
(2.3) d(Az, Az) <r/2.
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On the other hand, we have
(2.4) d(z,Az) > d(z,Az) — d(Ax, Az).
Using (2.2), (2.3) and (2.4), we get that

d(z,Az) > /2.
Case 3. r/2 < d(z,z) <r. From (2.1), we have
(2.5) d(Az, Az) < k(r/2,r)d(z,z) < k(r/2,r)r.
Thanks to (2.2), (2.4) and (2.5), we deduce that

d(z,Az) >r —Ek(r/2,r)r.
Now, in all cases, for all z € X with z < Az, we have

(2.6) d(z,Az) > min{r/2,r — k(r/2,7)r} =a > 0.

Denote b = d(xg, Axg) > 0 (obviously, if zgp = Az, the proof is finished). From
(2.6) and the hypothesis on zy, we have

Azgy = xg, a < d(xg,Axo) <b.
Using (2.1), we get that
(2.7) d(Axg, A%xo) < k(a,b)d(xo, Ax).
Since A is nondecreasing, we have A%2xq = A(Azg) = Axg. Similarly, we can suppose
that A%z >~ Axg, otherwise, Az will be a fixed point of A, and the proof is finished.
Using (2.6), we have
a < d(Axg, A%x).
Since 0 < k(a,b) < 1, from (2.7), we have
d(Azg, A%zo) < b.
Thus, we have
A(Axg) = Azg, a < d(Axg, A%zg) < b.
Again, applying (2.1), we get that
d(A%zg, A3z0) < k(a,b)d(Axg, A%x0).
Using (2.7), we get that
d(A%zg, A3z0) < [k(a,b)]?d(z0, Axo).
Thus, by induction, we have
d(A"zo, A" xg) < [k(a,b)]"d(xg, Azg), for all n > 0.

Therefore (since 0 < k(a,b) < 1), we can take a positive integer n sufficiently large
such that
d(xpn, Azy) < a,
where z, = A"z, which contradicts (2.6).
Thus, we proved that for all » > 0, there exists z € X with z < Az such that

x =z, dz,z) <r=d(Az,z) <,
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that is (since A is nondecreasing and z < Az),

=z, dz,z)<r= Ax =z, d(Az,z)<r.

Step II. Construction of a Cauchy sequence in the complete metric space (X, d).
For all r > 0 and z € X, consider the set

Alr,z) ={r e X|z¥x 2z dx,z) <r}
Clearly, A(r,z) #0 (2 € A(r,2)). From Step I, we have
(2.8) Vr>0, 3z€ X |z =X Az, A(A(r,2)) C A(r, 2).

Using (2.8), for r = 1, there exists z; € X with z; < Az; such that A(A(1,z1)) C
A(1,z1) :== Aj. Then, the mapping A : A; — A; is well defined. Using (2.8),
for r = %, there exists 29 € A; with 29 < Az, such that A(A(%,zg) NA;) C
A(%, 29) N A1 := Agy. Then, we can define the mapping A : Ay — Ag. Again, using
(2.8), for r = 1, there exists z3 € Ay with z3 < Azg such that A(A(3,23) N Ay) C
A(%, z3) N Ag := Ags. Inductively, there exists z,+1 € A, with z,41 < Az,41 such
that A(A(1/(n+1), znt1)NAR) C AL/ (n41), 2n41)NA, == Apt1 (n=1,2,3,...).
Clearly, we have

1
(2.9) Api1 CAL(n=1,2,3,...), d(zntm,zn) < —(n,m=1,2,3,...).
n

This implies that {z,} is a Cauchy sequence in the complete metric space (X, d).

Step I11. Existence of a fixed point. Since (X, d) is complete and {z,} is a Cauchy
sequence in X, there exists * € X such that z, — z* as n — oo.
We shall prove that

(2.10) x* € A, foralln € N.
Since z,11 € A, for all n € N, we have
21 222 2 2 2p D %41 D
From the regularity of (X, <,d), we obtain that
zp =¥, for all n € N.

From (2.9), we have
d(zp41,21) <1, for all n € N.

Letting n — oo, we get that
d(z*,z1) < 1.

Thus we proved that x* € A;.
Again, for n = 2, we have

AnglﬂA(%,@) :{xeAl\xtzz, d(x,z9) < 1}.

We know that 2* € A; and x* > 2. From (2.9), we have
Zn+1 € Ap C Ag, for all n > 2.
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Then we have

d(zp41,22) < =, forall n > 2.

1

2’
Letting n — oo, we get that

N 1

d(x 722) < 5

Thus we proved that * € As. Continuing this process, by induction, we can show
that (2.10) holds.
On the other hand, for all n € N, A(A,) C A, and z* € A,,, that is,

r e, Ax*eA,, forallneN.
This implies that

d(z*,zp) < —, d(Az",z,) < —, for alln € N.

1
n

S|

Then we have

2
d(z*, Ax™) < d(z*, z,) + d(Ax", z,) < o for all n € N.

Letting n — oo, we obtain that d(z*, Az*) = 0, that is, 2* = Az*. Thus we proved
that x* is a fixed point of A. O

Now, we give an example to illustrate our obtained result given by Theorem 2.5.

Example 2.6. Let X = [0,00) endowed with the metric d defined by: for all
T,y € X,

max{z, if =z ,
d(m,y):{ 0 { y} if xfz

It is not difficult to show that (X, d) is a complete metric space. Define the mapping
A: X — X by

if 0<x<1,
Ar =

=l N8

it xz>1.

Let a,b € R such that 0 < a < b. We distinguish three cases.

Case 1. b < 1.
Let (x,y) € X x X such that a < d(z,y) < b and = > y. This means that
a <x <b<1. Thus we have

z 1 1
= =2 <= =
d(Az, Ay) = d<2 2) 5 =3 max{z,y} = 2d(m Y).
Taking k(a,b) = 3, we obtain that d(Az, Ay) < k(a, b)d(z,y).

Case 2. a > 1.
Let (z,y) € X x X such that a < d(z,y) < b and x > y. This means that
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l<a<z<hb
If y > 1, then we have
33

d(Ax, Ay) = d(4 1

) =0 < kd(z,y),

for any k € (0,1).
If y <1, we have
Y 3y 3 3 3
= - S<gp=2 .
d(Az, Ay) = d<4 2) max{4 2} 1527 4max{:c,y}
Taking k(a,b) = 2, we obtain that d(Axz, Ay) < k(a,b)d(z,y).

Case 3. a<1landbd>1.
Let (z,y) € X x X such that a < d(z,y) < band z > y. This means that a <z <b.
If £ <1, we have

1

Ty x
=2 <z .
d(Az, Ay) = max{2 2} 5 2d(au,y)
Taking k(a,b) = 5, we obtain that d(Az, Ay) < k(a,b)d(x,y).

fl<y<ua, Wehave

d(Az, Ay) = d(4 Z) =0 < kd(z,y),

for any k € (0,1).
If y <1<z, we have

IA

3yy 3 .3 3
d(Ax, Ay) = max{4 2}—1 17 —Zmax{x,y}.

Taking k(a,b) = 2, we obtain that d(Axz, Ay) < k(a,b)d(z,y).
Thus, in all cases, for all 0 < a < b < oo, there exists k(a,b) € (0,1) such that
ryeX, x>y, a<d(x,y) <b= d(Az, Ay) < k(a,b)d(z,y).

Now, we shall prove that (X, <,d) is regular. Let {u,} be a sequence in X such
that

(i) li_>m d(up,u) = 0, for some u € X;
(ii) up < Upyq for all n.

We have to prove that
(2.11) up < u, for all n.
Let n € N be fixed. We have

Uy < Up4p, for all p € N.

If for some p, we have u,4, = u, then from the above inequality, we get (2.11).
Now, suppose that u,4, # u for all p. In this case, we have

0 < max{un,u} < max{uptp, u} = d(tptp,u) = 0 as p — oo.
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This implies that max{u,,u} = 0, that is, u,, = u. Thus we proved that (2.11)
holds, and the regularity of (X, <,d) is proved.

Finally, for zg = 0, we have o < Azg. Now, all the required hypotheses of
Theorem 2.5 are satisfied, we deduce the existence of a fixed point of A. In this
case £* = 0 is the unique fixed point of A.

Now, we shall prove the following coupled fixed point result.

Theorem 2.7. Let (X,=) be a partially ordered set. Suppose that there exists
a metric d on X such that (X,d) is a complete metric space. We suppose that
(X, X,d) satisfies the following properties:

(i) if a nondecreasing sequence {x,} — = € X, then x,, <z for all n;

(i) if a decreasing sequence {y,} — y € X, then y, =y for all n.

Let B : X x X — X be a mapping having the mized monotone property. Suppose
that for any 0 < a < b < oo, there exists 0 < k(a,b) < 1 such that for any
(z,y), (u,v) € X x X,

d(z,u) + d(y,v)

(212) z>=u,y=<v, a< 5 <b

— d(B(z.v). Bw.v) < "D ld(a,w) + d(y, )]

Suppose also that there exists (zg,y0) € X x X such that xo < B(zo,y0) and yo =
B(yo,x0). Then B has a coupled fized point, that is, there exists (z*,y*) € X x X
such that B(x*,y*) = x* and B(y*,z*) = y*.

Proof. We endow the product set Y = X x X with the metric n defined by

d(z,u) +d(y,v
(@), (u,0) = L0 > A0
Since (X, d) is complete, it is clear that (Y,n) is also a complete metric space. We
endow Y with the partial order < defined by

, for all (z,v), (u,v) €Y.

(@,9), (w,v) €Y, (2,9) < (u,0) =2 Zu, y=zv
From conditions (i) and (ii), it is clear that (Y, <, n) is regular.

Now, define the self-mapping A:Y — Y by
Az, y) = (B(z,y), B(y,x)), for all (z,y) €Y.

It follows from the mixed monotone property of B that A is a nondecreasing map-
ping with respect to <. Moreover, we have (xg,yo) < A(xo,Yo)-

From (2.12), we can show that for any 0 < a < b < oo, there exists 0 < k(a,b) < 1
such that

(#,9), (u,v) €Y, (x,y) > (u,0), a <n((z,y), (u,v)) <b
= (A, y), A(u,v)) < k(a, b)n((z, y), (u, v)).
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Now, Applying Theorem 2.5, we obtain that A has a fixed point (z*,y*) € Y,
that is,

(z*,y") = A", y") = (B(z",y"), By", 7)),
which implies that (z*,y*) is a coupled fixed point of B. O

Theorem 2.8. Let (X,=) be a partially ordered set. Suppose that there exists
a metric d on X such that (X,d) is a complete metric space. We suppose that
(X, =,d) satisfies the following properties:

(i) if a nondecreasing sequence {x,} — = € X, then x, <z for all n;
(ii) if a decreasing sequence {y,} — y € X, then y, = y for all n.

Let B: X x X — X be a mapping having the mired monotone property. Suppose
that for any 0 < a < b < oo, there exists 0 < k(a,b) < 1 such that for any
(z,y), (u,v) € X x X,
(2.13) > u,y X v, a <max{d(z,u),d(y,v)} <b

= d(B(z,y), B(u,v)) < k(a,b) max{d(z,u),d(y,v)}.

Suppose also that there exists (zo,y0) € X x X such that zo <X B(zg,y0) and
yo = B(yo,x0). Then B has a coupled fixed point.

Proof. 1t is similar to the proof of Theorem 2.7 by considering the metric 7 on Y
defined by

n((z,y), (u,v)) = max{d(x,u),d(y,v)}, for all (x,y), (u,v) € Y.

Remark 2.9.

e Theorem 2.5 is a generalization of Theorem 2.1 in [17].
e Theorems 2.7 and 2.8 are generalizations of Theorem 2.2 in [4].

3. EXISTENCE OF SOLUTIONS TO A SYSTEM OF NONLINEAR INTEGRAL
EQUATIONS

In this section, we discuss the existence of solutions to the following system of
integral equations given by

1
(3.1 o)+ [ Gt ds = wo)
(3.2) / G, D) f (5, un(s), 1 () ds = wa(t),
where ¢g : [0,1] — R, G : [0,1] x [0,1] — [0,00) and f : [0,1] x R x R — R are

continuous functions.
We consider the following assumptions:
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(H1) for all s € [0, 1],

)

2

where ¢ : [0,00) — [0,00) is continuous nondecreasing and satisfies: for all
0 < a < b < oo, there exists 0 < k(a,b) < 1 such that

a<r<b= p(r) <k(a,br;

a>v, ﬁ§9:>0§f(8,a7ﬁ)_f(s’%6)S(p<(04—’7)+(9—5)>

sup/Gts )ds < 1;
0<t<1

(H ) there exist two continuous functions wug,vg : [0,1] — R such that for all
te0,1],

1

w(®) < g+ [ Gls.)f(s.us). () ds
1

vo(t) > g(t)—}—/0 G(s,t)f(s,v0(s),up(s))ds.

We denote by X = C(]0,1),R) the set of real continuous functions on [0, 1].

We have the following result.

Theorem 3.1. Under the assumptions (H1)-(H3), Problem (3.1)-(3.2) has at least
one solution (z*,y*) € X x X.

Proof. Consider the operator B : X x X — X defined by: for all (z,y) € X x X,
B(x,y)(t / G(s,t)f(s,z(s),y(s))ds, for all t € [0, 1].

Clearly, (u,v) is a solution to (3.1)-(3.2) if and only if (u, v) is a coupled fixed point
of B.
We endow X with the metric d given by
d(z,y) = max |z(t) —y(t)|, =,y € C([0,1],R).
tel0,1]
It is well known that (X,d) is a complete metric space. We endow X with the
partial order < given by

z,y € C([0,1,R), z=<y<=z(t)<y(t) forall te]|0,1].

We can show easily that (X, <, d) is regular.

From (H1) and since G is positive, we obtain that the mapping B has the mixed
monotone property.

Let 0 < a<b<oo. Let (z,y), (u,v) € X x X such that

d(z,u) + d(y,v)
2

rxuy<v, a< <.

From (H1) and (H2), we have: for all ¢ € [0, 1],

1
[B(z,y) — B(u,v)|(t) < /0G(Sat)[f(sax(S)vy(S))—f(SaU(S)vv(S))]dS



850

M. JLELI AND B. SAMET

! (z(s) —u(s)) + (v(s) — y(s))
< /0 G(s,t)p ( 5 > ds
< (d(x,u) —2i— d(y, v))
< MO0 u) diy.v)),

2

which implies that

k(a,b)

d(B(z,y), B(u,v)) < 5

[d(z,u) +d(y, v)].

Thus we proved that for any 0 < a < b < oo, there exists 0 < k(a,b) < 1 such that
for any (z,y), (u,v) € X x X,

Tr=Uu, Yy 3v,

_dlwu) +d(.)
< Ao dw)
— d(B(z,y), B(u,)) <

k(a,b)
2

[d(z, u) + d(y, v)].

Finally, from (H3), we have uy < B(ug, vo) and vg = B(vg, up).
Now, the desired result follows immediately from Theorem 2.7. U
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