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and complex system networks tend to lack centralized operators and can change
size at any time. Moreover, each user in such a network should not be able to know
other users’ private information such as their utility functions and feasible sets.
Therefore, decentralized mechanisms should be used for network resource allocation
instead of centralized ones that involve extra infrastructure. Decentralized mecha-
nisms enable each user to adjust his or her own resource allocation in cooperation
with other users but without using other users’ private utility functions or feasible
sets. Since the network resource allocation problem has global information on the
whole network, it is referred to as a centralized optimization problem.

Many decentralized algorithms for solving the centralized optimization problem
have been presented, and these fall into three classifications. (I) Decentralized op-
timization methods [26, 28, 35, 38] for solving the centralized optimization problem
work in the case that user i’s utility function depends on only user i’s resource allo-
cation, i.e., the domain of the utility function is one dimensional, and that each user
has a common feasible set. These methods are based on Lagrangian duality and dual
subgradient algorithms. Recently, reference [30] presented a subgradient method
and provided lower and upper bounds of the approximate value that are applicable
for general convex optimization problems. (II) References [4,7,10,23,30,32,33,42,44]
presented consensus algorithms for solving the centralized optimization problem
when each user’s utility function is concave on the Euclidean space and its feasible
set is equal to the whole Euclidean space. Reference [30] presented a subgradient
algorithm that can optimize concave utility functions over a time-varying network
topology and described the lower and upper bounds of the method’s approximate
sum of the utility functions. (III) References [12,14,19,21] presented broadcast de-
centralized optimization algorithms, which require each user to communicate with
other users directly, for solving the centralized optimization problem when each
user’s utility function is concave and its feasible set is a closed convex subset of a
real Hilbert space, and proved that the algorithms converge strongly or weakly to the
solution to the centralized optimization problem under the standard assumptions.
Reference [36] considered the centralized optimization problem for the power con-
trol and presented a broadcast algorithm to adjust the users’ transmission powers
under constraints so as to maximize the sum of users’ utilities.

However, we encounter two issues when the methods of (I), (II), and (III) above
are used to solve the centralized optimization problem:

(a) Since the centralized optimization problems in [24], [29], [36], and [38] can
be expressed as a maximization problem for the sum of the concave utility
functions over a closed convex subset of a certain Euclidean space, the
decentralized optimization algorithms in (I) and (II) cannot be applied to
such problems directly.

(b) It would be physically impossible for all users to communicate with each
other. Hence, it is difficult to apply the broadcast decentralized optimiza-
tion algorithm in (III) to the the centralized optimization problems in large-
scale and complex networks.

In this paper, we present a multicast type of decentralized optimization algorithm to
resolve the above issues (a) and (b). The main advantages of this algorithm are as
follows:
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(A) The algorithm can be used to solve the centralized optimization problem
when each user’s utility function is concave and its feasible set is a closed
convex subset of a real Hilbert space.

(B) The algorithm can be applied when each user directly communicates with
its neighbor users, and the applications of the algorithm do not depend on
the network’s topology.

Each user’s utility function given in [36] is modeled as a function from RK into
R, where K is the total number of users participating in the network, while the
domain of the utility function in [24] is a more than K-dimensional Euclidean space.
Meanwhile, the domain of the utility function in [29] and [38] is a less than K-
dimensional Euclidean space. We will deal with a centralized optimization problem
in an infinite space so that we can consider the centralized optimization problems
in [24], [29], [36], and [38] together. Thanks to advantage (A), each user that
executes the algorithm can solve centralized optimization problems including those
of [24], [29], [36], and [38].

Let us consider the simple networks in Figures 1 and 2 in Section 2 where each
user in the network communicates with only its neighbor users within one hop. Such
a network will arise depending on the users’ specifications (e.g., processor speed and
transmitted power) and physical constraints (e.g., interference and reflection). Un-
der this communication assumption, since each user cannot directly communicate
with other users beyond one hop, the broadcast decentralized optimization algo-
rithms that require each user to communicate with all users directly cannot be
applied to even the simple cases of Figures 1 and 2. However, advantage (B) enable
the proposed algorithm to be applied to any network structure and hence it can
work in the cases illustrated in the figures.

The proposed algorithm (Algorithm 2.9) embodies three ideas: The first is a
decentralized method for setting the weighted parameters for each user and its
neighbors (see Subsection 2.2 and Equation (2.2)). The weighted parameters are
used to execute the proposed algorithm. The second is the proximal point methods
with the resolvents [1, 5, 12–14] of bifunctions and monotone operators. A use of
the resolvent implies that each user computes the unique maximizer of its objective
function over its feasible set (see Equation (2.1)). Proximal point methods are also
used to solve problems in image processing [15] and network flows [1]. The third
is based on the ergodic iteration technique [9] for solving the monotone variational
inequality problem (see Equation (2.3)). Such a technique leads to convergence of
the algorithm to the solution to the centralized optimization problem.

The key contributions of this paper are (i) to propose a multicast decentralized
optimization algorithm for solving the centralized optimization problem with infor-
mation on the whole network; and (ii) to prove that the algorithm weakly converges
to the solution to the centralized optimization problem under certain assumptions.
Although there are many decentralized algorithms being used in the network field,
few of them have been proven to converge to the desired solutions. The analyses
presented in the literature tend to rely on computational simulations. Moreover, the
literature does not seem to have any multicast type of decentralized optimization
algorithm for solving a centralized optimization problem. The proposed algorithm
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can be modified to work in large-scale and complex networks that have the proper-
ties of incompleteness and asymmetry.

This paper is organized as follows. Section 2 describes our basic model of a net-
work, the main problem, and the proposed algorithm, and it provides an outline of
our results. Section 3 proves that the algorithm converges weakly to the solution
to the problem under certain assumptions. Section 4 considers the network band-
width allocation and network storage allocation and provides numerical examples
for these problems. Section 5 concludes the paper and mentions future subjects
for development of the algorithm. An extension of the algorithm to the case that
the utility function of each user is nonsmooth is given in the Appendix. It also
gives mathematical preliminaries on monotone operators, variational inequalities,
and metric projections.

2. Outline of results

2.1. The basic model. Let I := {1, 2, . . . ,K} be the set of users who must com-
pete for the network resource, and let I(i) (i ∈ I) denote the set of user i and users
neighboring user i.1 Each user’s index of satisfaction in the network is represented
as a utility function, and it is a function depending on the allocations to other users.
Hence, the utility function, U (i), of user i is modeled as the function from RK into
R. Also, the domain of U (i) is a more (or less) than K-dimensional Euclidean space
(for example, the domain of the utility function for a multi-carrier system is more

than K [24]). Hence, we shall assume that the domain of U (i) is a real Hilbert space

H to include the cases in [24], [29], [36], and [38]. The feasible set, C(i), of user

i is a subset of H, and the set, C :=
∩

i∈I C
(i) (̸= ∅), is called the feasible region

for allocating the resource. We need to make the following assumptions about the
network structure:

Assumption 2.1.
(A1) Each user’s utility function, U (i) : H → R (i ∈ I), is strictly concave and

continuously Fréchet differentiable. The explicit form of U (i) is its own private
information; that is, other users cannot know the explicit form of U (i).

(A2) Each user’s feasible set, C(i), is a nonempty, bounded, closed convex subset

of H. The explicit form of C(i) is its own private information.

We will assume the network has the following properties:

Assumption 2.2.
(A3) C :=

∩
i∈I C

(i) ̸= ∅.
(A4) Each user can communicate with neighbor users.2

Let us consider the following network resource allocation problem, called the cen-
tralized optimization problem, with information on the whole network (see [3], [25],
[38], [43], [30], and references therein):

1For example, I(2) in Figure 2 is {1, 2, 4, 5}.
2User 2 in Figure 2 can communicates with users 1, 4, and 5 directly, while it cannot communicate

with users 3, 6, and 7 directly.
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Problem 2.3 (Centralized optimization problem). Under Assumptions 2.1 and 2.2,

maximize
∑
i∈I

U (i)(x) subject to x ∈ C :=
∩
i∈I

C(i),

where one assumes
(A5) Argmax

x∈C

∑
i∈I

U (i)(x) :=
{
x∗ ∈ C :

∑
i∈I

U (i)(x∗) = max
x∈C

∑
i∈I

U (i)(x)
}
̸= ∅.

Assumption (A1) implies that the operator, −
∑

i∈I ∇U (i) : H → H, is strictly

monotone. Moreover, Assumptions (A2) and (A3) imply that C :=
∩

i∈I C
(i)(⊂ H)

is nonempty, closed, and convex. Accordingly, from the closedness of C, Proposition
7.1 (ii), and Relation (7.1) (see the Appendix), Assumption (A5) is true when at

least one of C(i)s is compact. Under Assumptions (A1), (A2), (A3), and (A5),
Proposition 7.1 (iii) guarantees the following:

Proposition 2.4. Problem 2.3 has a unique solution; that is, {x∗} =

Argmaxx∈C
∑

i∈I U (i)(x).

2.2. Weighted parameters for each user and its neighbors. Before presenting
the algorithm for solving Problem 2.3, we need some preliminaries. The proposed
algorithm will require user i (i ∈ I) to use an (ωij) (j ∈ I(i)) satisfying the following
conditions:

Assumption 2.5. (A6) User i (i ∈ I) initially has ωij ∈ [0, 1) (j ∈ I) satisfying∑
j∈I(i) ωij = 1 and ωij = 0 (j /∈ I(i)). Moreover, for each j ∈ I, it is assumed that

ωkj ∈ [0, 1) (k ∈ I) satisfies
∑

k∈I(j) ωkj = 1 and ωkj = 0 (k /∈ I(j)).

Assumption (A6) implies that the sum of elements of each row and column of the
matrix, Ω := [ωij ]i,j∈I , is equal to 1. Since there is no user that knows the whole
network structure, each user must determine its own weighted parameters on the
basis of Assumption (A4) in cooperation with its neighbor users. The following are
examples of decentralized methods for setting the weighted parameters of simple
networks (Note that the decentralized methods for determining Ω for the cases of
Figures 1 and 3 are not unique):

Example 2.6. Consider the network structure in Figure 1. Since users 1, 2, and 3
initially have I(1) := {1, 2} (i.e., ω1j = 0 (j /∈ I(1))), I(2) := {1, 2, 3}, and I(3) :=

{2, 3} (i.e., ω3j = 0 (j /∈ I(3))), respectively, user 2 finds Ω :=

( ω11 ω12 ω13 ···
ω21 ω22 ω23 ···
ω31 ω32 ω33 ···
...

...
...

)
=(

ω11 ω12 0
ω21 ω22 ω23
0 ω32 ω33

)
by cooperating with its neighbor users. When user 2 sets ω21 = ω22 =

ω23 :=
1
3 , user 2 has the matrix, Ω =

( 2
3

1
3

0
1
3

1
3

1
3

0 1
3

2
3

)
. User 2 then transmits (ω1j)j∈I and

(ω3j)j∈I to users 1 and 3, respectively.

Example 2.7. Consider the case of Figure 2. By cooperating with its neigh-

bor users, user 2 can get Ω1 := [ωij ]i=1,2,4,5,j∈N\{0} =

(
ω11 ω12 ω13 0 0 0 ···
1
4

1
4

0 1
4

1
4

0 ···
0 ω42 0 ω44 0 0 ···
0 ω52 0 0 ω55 0 ···

)
=
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user 1 user 2 user 3

Figure 1. Network with
three users

user 1

user 3

user 5user 4

user 2

user 7user 6

Figure 2. Network with
seven users ω11

1
4
ω13 0 0 0 ···

1
4

1
4

0 1
4

1
4
0 ···

0 1
4

0 3
4

0 0 ···
0 1

4
0 0 3

4
0 ···

 and transmit it to users 1, 4, and 5. On the other hand, user 3

has Ω2 := [ωij ]i=1,3,6,7,j∈N\{0} =

(
ω11 ω12 ω13 0 0 0 0 0 ...
ω31 0 ω33 0 0 ω36 ω37 0 ...
0 0 ω63 0 0 ω66 0 0 ...
0 0 ω73 0 0 0 ω77 0 ...

)
. Hence, user 1 can find

Ω := [ωij ]i,j∈I =


ω11

1
4
ω13 0 0 0 0

1
4

1
4

0 1
4

1
4

0 0
ω31 0 ω33 0 0 ω36 ω37

0 1
4

0 3
4

0 0 0

0 1
4

0 0 3
4

0 0
0 0 ω63 0 0 ω66 0
0 0 ω73 0 0 0 ω77

 =



2
4

1
4

1
4

0 0 0 0
1
4

1
4

0 1
4

1
4

0 0
1
4

0 1
4

0 0 1
4

1
4

0 1
4

0 3
4

0 0 0

0 1
4

0 0 3
4

0 0

0 0 1
4

0 0 3
4

0

0 0 1
4

0 0 0 3
4

. That is, each user

can get its own weighted parameters satisfying Assumption (A6).

2.3. Multicast decentralized optimization algorithm for solving central-
ized optimization problem. Now we shall present the multicast decentralized
optimization algorithm that enables each user to determine its own optimal re-
source allocation in cooperation with its neighbor users. First, we assume that all
users in the network start with the following common information:

Assumption 2.8.
(A7) All users initially have the step size, (αn)n∈N ⊂ (0, 1], satisfying the following

conditions:3

(C1) αn+1 ≤ αn (n ∈ N), (C2) lim
n→∞

αn = 0, (C3)

∞∑
n=0

αn = ∞.

The algorithm for solving Problem 2.3 under Assumptions (A1)-(A7) is as follows.

Algorithm 2.9 (Multicast decentralized optimization algorithm).

Step 0. User i chooses x̄
(i)
0 ∈ H arbitrarily, and let n := 0.

3Examples of (αn)n∈N satisfying Conditions (C1), (C2), and (C3) are αn := 1
(n+1)ρ

(ρ ∈ (0, 1]).



MULTICAST DECENTRALIZED OPTIMIZATION ALGORITHM 823

Step 1. User i computes x
(i)
0 ∈ H by {x(i)0 } = Argmaxx∈C(i) [U (i)(x) − 1

2α0
∥x −

x̄
(i)
0 ∥2] and transmits this point to the neighbor users. User i computes y

(i)
0 ∈ H by

y
(i)
0 :=

∑
j∈I(i) ωijx

(j)
0 , where (ωij)j∈I(i) is the weighted parameters in Assumption

(A6).

Step 2. Given y
(i)
n ∈ H, user i computes x

(i)
n+1 ∈ H by{

x
(i)
n+1

}
= Argmax

x∈C(i)

[
U (i)(x)− 1

2αn+1

∥∥∥x− y(i)n

∥∥∥2](2.1)

and transmits this point to the neighbor users. User i computes y
(i)
n+1 ∈ H by

y
(i)
n+1 :=

∑
j∈I(i)

ωijx
(j)
n+1.(2.2)

User i then computes z
(i)
n+1 ∈ H by calculating

z
(i)
n+1 :=

1∑n+1
k=1 αk

n+1∑
k=1

αkx
(i)
k .(2.3)

Put n := n+ 1, and go to Step 2.

The point, x
(i)
n+1 (i ∈ I, n ∈ N), in Equation (2.1) is the unique maximizer of

the strictly concave function, U (i) − 1
2αn+1

∥ · −y
(i)
n ∥2, over C(i). This point is called

the resolvent [1,5,12–14] of −αn+1∇U (i) at y
(i)
n . The possibility of calculating x

(i)
n+1

(i ∈ I, n ∈ N) depends on the forms of U (i) and C(i). If H = RL (L ≥ 1), this
problem can be solved by using convex optimization techniques such as projection
methods and interior-point methods [8, Chapter III, 10 and 11], [31, Chapters 15-19].

We will provide examples of approximately calculating x
(i)
n+1 in Equation (2.1) in

Subsections 4.1 and 4.2. Some important examples in which x
(i)
n+1 can be explicitly

solved are given in [15, Subsection 2.6]. From Assumption (A6), we can see that

y
(i)
n+1 (i ∈ I, n ∈ N) in Equation (2.2) is given by the convex combination of x

(j)
n+1s

(j ∈ I(i)). z
(i)
n+1 (i ∈ I, n ∈ N) in Equation (2.3) is the mean of (x

(i)
k )n+1

k=1 . The idea
of using a mean sequence is based on the ergodic algorithm [9] for solving variational
inequality problems for monotone operators in a real Hilbert space.

2.4. Convergence analysis on proposed algorithm. The following theorem
constitutes the convergence analysis of Algorithm 2.9.

Theorem 2.10. If, for each i, j ∈ I, the sequence,4( 1∑n
k=0 αk+1

n∑
k=0

∥∥∥y(i)k − y
(j)
k

∥∥∥2)
n∈N

, is bounded,(2.4)

4For examples satisfying Condition (2.4), see Section 4.
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the sequence, (z
(i)
n+1)n∈N (i ∈ I), in Algorithm 2.9 converges weakly5 to a unique

solution to Problem 2.3.

3. Lemmas and proof of Theorem 2.10

The proof of Theorem 2.10 is divided into five steps: Lemmas 3.1, 3.2, 3.3, and
3.4, and Proof of Theorem 2.10. For the notations in this section, see the Appendix.

Lemma 3.1. Let y ∈ H and r > 0, and suppose that f : H → R is convex and
Fréchet differentiable and that D (⊂ H) is nonempty, closed, and convex. Then,
x̄ ∈ D satisfies the equation,

{x̄} = Argmin
x∈D

[
f(x) +

1

2r
∥x− y∥2

]
,(3.1)

if and only if x̄ ∈ D satisfies x̄ = PD(y − r∇f(x̄)), where PD stands for the metric
projection onto D (see Subsection 7.3) and ∇f is the gradient of f .

Proof. Since x̄ ∈ D in Equation (3.1) is a minimizer of the convex function, g(·) :=
f(·) + 1

2r∥ · −y∥2, over D (⊂ H), from Relation (7.1), we find that x̄ ∈ D satisfies
Equation (3.1) if and only if x̄ ∈ VI(D,∇g); that is, for all x ∈ D, 0 ≤ ⟨x −
x̄,∇g(x̄)⟩ = ⟨x − x̄,∇f(x̄) + 1

r (x̄ − y)⟩. This is equivalent to 0 ≤ ⟨x − x̄, x̄ −
(y − r∇f(x̄))⟩ (x ∈ D). Proposition 7.2 (i) guarantees that x̄ ∈ D satisfies x̄ =
PD(y − r∇f(x̄)). �

Lemma 3.2. Let (x
(i)
n )n∈N, (y

(i)
n )n∈N, and (z

(i)
n+1)n∈N (i ∈ I) be sequences generated

by Algorithm 2.9 and define A(i) := −∇U (i) (i ∈ I). Then,

(i) (x
(i)
n )n∈N, (y

(i)
n )n∈N, and (z

(i)
n+1)n∈N (i ∈ I) are bounded;

(ii) For all n ∈ N and for all y ∈ C,

−

∑
i∈I

∥∥∥x(i)0 − y
∥∥∥2∑n

k=0 αk+1
≤ 2

∑
i∈I

⟨
y − z

(i)
n+1, A

(i)(y)
⟩
−
∑
i∈I

1∑n
k=0 αk+1

n∑
k=0

∥∥∥x(i)k+1 − y
(i)
k

∥∥∥2;
(iii) For each i ∈ I,( 1∑n

k=0 αk+1

n∑
k=0

∥∥∥x(i)k+1 − y
(i)
k

∥∥∥2)
n∈N

is bounded.

Proof. (i) Equation (2.1) and the boundedness of C(i) (i ∈ I) guarantee that

(x
(i)
n )n∈N ⊂ C(i) (i ∈ I) is bounded. (y

(i)
n )n∈N is bounded from Equation (2.2)

and the boundedness of (x
(i)
n )n∈N. Moreover, the convexity of C(i) (i ∈ I), and

Equation (2.3) ensure that (z
(i)
n+1)n∈N ⊂ C(i) (i ∈ I). Accordingly, the boundedness

of C(i) (i ∈ I) implies that (z
(i)
n+1)n∈N is bounded.

5(zn)n∈N (⊂ H) is said to converge weakly to x∗ ∈ H if, for any y ∈ H, limn→∞⟨zn, y⟩ =
⟨x∗, y⟩. When H is finite dimensional, the weak convergence of (zn)n∈N to x∗ is coincident with
the convergence of (zn)n∈N to x∗ in the sense of the norm.
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(ii) Equation (2.2), Assumption (A6), and the convexity of ∥ · ∥2 guarantee that,
for all i ∈ I, for all n ∈ N, and for all y ∈ C,∥∥∥y(i)n − y

∥∥∥2 = ∥∥∥ ∑
j∈I(i)

ωijx
(j)
n − y

∥∥∥2 = ∥∥∥ ∑
j∈I(i)

ωij

(
x(j)n − y

)∥∥∥2 ≤ ∑
j∈I(i)

ωij

∥∥∥x(j)n − y
∥∥∥2.

Summing this inequality over all i ensures that∑
i∈I

∥∥∥y(i)n − y
∥∥∥2 ≤∑

i∈I

∑
j∈I(i)

ωij

∥∥∥x(j)n − y
∥∥∥2.

Moreover, Assumption (A6) guarantees that∑
i∈I

∑
j∈I(i)

ωij

∥∥∥x(j)n − y
∥∥∥2 =∑

i∈I

∑
j∈I(i)

ωji

∥∥∥x(i)n − y
∥∥∥2 =∑

i∈I

∥∥∥x(i)n − y
∥∥∥2,

which implies that, for all n ∈ N and for all y ∈ C,∑
i∈I

∥∥∥y(i)n − y
∥∥∥2 ≤∑

i∈I

∥∥∥x(i)n − y
∥∥∥2.(3.2)

Choose any i ∈ I. Proposition 7.2 (ii) and (iii), Equation (2.1), and Lemma 3.1

guarantee that, for all y ∈ C :=
∩

j∈I C
(j) =

∩
j∈I Fix(PC(j)) ⊂ Fix(PC(i)) and for

all k ∈ N, ∥∥∥x(i)k+1 − y
∥∥∥2 = ∥∥∥PC(i)

(
y
(i)
k − αk+1A

(i)
(
x
(i)
k+1

))
− PC(i)(y)

∥∥∥2
≤
⟨
y
(i)
k − αk+1A

(i)
(
x
(i)
k+1

)
− y, x

(i)
k+1 − y

⟩
.

By using the equality, ⟨x, y⟩ = 1
2(∥x∥

2 + ∥y∥2 − ∥x− y∥2) (x, y ∈ H), we find that∥∥∥x(i)k+1 − y
∥∥∥2 ≤ ⟨y(i)k − αk+1A

(i)
(
x
(i)
k+1

)
− y, x

(i)
k+1 − y

⟩
=

1

2

{∥∥∥y(i)k − αk+1A
(i)
(
x
(i)
k+1

)
− y
∥∥∥2 + ∥∥∥x(i)k+1 − y

∥∥∥2
−
∥∥∥(y(i)k − αk+1A

(i)
(
x
(i)
k+1

)
− y
)
−
(
x
(i)
k+1 − y

)∥∥∥2},
which means that∥∥∥x(i)k+1 − y

∥∥∥2 ≤ ∥∥∥(y(i)k − y
)
− αk+1A

(i)
(
x
(i)
k+1

)∥∥∥2
−
∥∥∥(y(i)k − x

(i)
k+1

)
− αk+1A

(i)
(
x
(i)
k+1

)∥∥∥2
=
∥∥∥y(i)k − y

∥∥∥2 − 2αk+1

⟨
y
(i)
k − y,A(i)

(
x
(i)
k+1

)⟩
−
∥∥∥y(i)k − x

(i)
k+1

∥∥∥2
− 2αk+1

⟨
x
(i)
k+1 − y

(i)
k , A(i)

(
x
(i)
k+1

)⟩
=
∥∥∥y(i)k − y

∥∥∥2 + 2αk+1

⟨
y − x

(i)
k+1, A

(i)
(
x
(i)
k+1

)⟩
−
∥∥∥y(i)k − x

(i)
k+1

∥∥∥2.
The monotonicity of A(i) (:= −∇U (i)) (see Subsection 7.1) guarantees that∥∥∥x(i)k+1 − y

∥∥∥2 ≤ ∥∥∥y(i)k − y
∥∥∥2 + 2αk+1

⟨
y − x

(i)
k+1, A

(i)(y)
⟩
−
∥∥∥x(i)k+1 − y

(i)
k

∥∥∥2.
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Summing this inequality over all i and Inequality (3.2) ensure that, for all y ∈ C
and for all k ∈ N,∑

i∈I

∥∥∥x(i)k+1 − y
∥∥∥2 ≤∑

i∈I

∥∥∥x(i)k − y
∥∥∥2 −∑

i∈I

∥∥∥x(i)k+1 − y
(i)
k

∥∥∥2
+ 2αk+1

∑
i∈I

⟨
y − x

(i)
k+1, A

(i)(y)
⟩
.

By summing this inequality from k = 0 to k = n (n ∈ N), one gets∑
i∈I

∥∥∥x(i)n+1 − y
∥∥∥2 ≤∑

i∈I

∥∥∥x(i)0 − y
∥∥∥2 + 2

n∑
k=0

αk+1

∑
i∈I

⟨
y − x

(i)
k+1, A

(i)(y)
⟩

−
n∑

k=0

∑
i∈I

∥∥∥x(i)k+1 − y
(i)
k

∥∥∥2.
Therefore, we find that, for all y ∈ C and for all n ∈ N,

−
∑
i∈I

∥∥∥x(i)0 −y
∥∥∥2 ≤ −

∑
i∈I

n∑
k=0

∥∥∥x(i)k+1 − y
(i)
k

∥∥∥2
+ 2

∑
i∈I

⟨ n∑
k=0

αk+1y −
n∑

k=0

αk+1x
(i)
k+1, A

(i)(y)
⟩
,

and hence,

−

∑
i∈I

∥∥∥x(i)0 − y
∥∥∥2∑n

k=0 αk+1
≤ −

∑
i∈I

1∑n
k=0 αk+1

n∑
k=0

∥∥∥x(i)k+1 − y
(i)
k

∥∥∥2
+ 2

∑
i∈I

⟨
y − z

(i)
n+1, A

(i)(y)
⟩
.

(iii) Condition (C3) and the boundedness of (z
(i)
n+1)n∈N (i ∈ I) imply that the

sequences, (
∑

i∈I ∥x
(i)
0 −y∥2∑n

k=0 αk+1
)n∈N and (

∑
i∈I⟨y− z

(i)
n+1, A

(i)(y)⟩)n∈N, are bounded for all

y ∈ C. Moreover, Lemma 3.2 (ii) implies that, for all n ∈ N and for all y ∈ C,

∑
i∈I

1∑n
k=0 αk+1

n∑
k=0

∥∥∥x(i)k+1 − y
(i)
k

∥∥∥2 ≤ ∑
i∈I

∥∥∥x(i)0 − y
∥∥∥2∑n

k=0 αk+1
+ 2

∑
i∈I

⟨
y − z

(i)
n+1, A

(i)(y)
⟩
.

Therefore, (
∑n

k=0 ∥x
(i)
k+1−y

(i)
k ∥2∑n

k=0 αk+1
)n∈N (i ∈ I) is bounded. �

Lemma 3.2 leads us to the following:

Lemma 3.3. Let (y
(i)
n )n∈N and (z

(i)
n+1)n∈N be the sequences generated by Algorithm

2.9 and define a sequence, (w
(i)
n+1)n∈N (i ∈ I), by, for all n ∈ N,

w
(i)
n+1 :=

1∑n+1
k=1 αk

n+1∑
k=1

αky
(i)
k−1.(3.3)
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Then, limn→∞ ∥z(i)n+1 − w
(i)
n+1∥ = 0 for each i ∈ I. Moreover, if Condition (2.4) is

satisfied, limn→∞ ∥w(i)
n+1 − w

(j)
n+1∥ = 0 for all i, j ∈ I.

Proof. Choose any i ∈ I. From Lemma 3.2 (i) and (iii), there exist M1,M2 > 0

such that, for all n ∈ N, ∥x(i)n+1 − y
(i)
n ∥2 ≤ M1 and

∑n
k=0 ∥x

(i)
k+1−y

(i)
k ∥2∑n

k=0 αk+1
≤ M2. Choose

ε > 0 arbitrarily. Then, Condition (C2) guarantees that m1(ε) ∈ N exists such that
αn ≤ ε for all n ≥ m1(ε). Moreover, Condition (C3) ensures that, for m1(ε), there
exists m2(m1(ε)) ∈ N such that

1∑m2
k=1 αk

m1∑
k=1

αk

∥∥∥x(i)k − y
(i)
k−1

∥∥∥2 ≤ M1∑m2
k=1 αk

m1∑
k=1

αk ≤ ε.

Hence, we find that, for all n ≥ m2,

1∑n+1
k=1 αk

m1∑
k=1

αk

∥∥∥x(i)k − y
(i)
k−1

∥∥∥2 ≤ ε.(3.4)

Equations (2.3) and (3.3), Inequality (3.4), the convexity of ∥ · ∥2, and Condition
(C1) thus imply that, for all n ≥ n0 := max{m1,m2},∥∥∥z(i)n+1 − w

(i)
n+1

∥∥∥2 = ∥∥∥ 1∑n+1
k=1 αk

n+1∑
k=1

αk

(
x
(i)
k − y

(i)
k−1

)∥∥∥2
≤ 1∑n+1

k=1 αk

n+1∑
k=1

αk

∥∥∥x(i)k − y
(i)
k−1

∥∥∥2
=

1∑n+1
k=1 αk

m1∑
k=1

αk

∥∥∥x(i)k − y
(i)
k−1

∥∥∥2
+

1∑n+1
k=1 αk

n+1∑
k=m1+1

αk

∥∥∥x(i)k − y
(i)
k−1

∥∥∥2
≤ ε+

αm1+1∑n+1
k=1 αk

n+1∑
k=m1+1

∥∥∥x(i)k − y
(i)
k−1

∥∥∥2
≤ ε+

ε∑n+1
k=1 αk

n+1∑
k=1

∥∥∥x(i)k − y
(i)
k−1

∥∥∥2
≤ (1 +M2)ε,

(3.5)

which implies that limn→∞ ∥z(i)n+1 − w
(i)
n+1∥ = 0 for all i ∈ I.

Choose i, j ∈ I and suppose that Condition (2.4) is satisfied. Then, M3,M4 > 0

exist such that, for all n ∈ N, ∥y(i)n − y
(j)
n ∥2 ≤ M3 and

∑n
k=0 ∥y

(i)
k −y

(j)
k ∥2∑n

k=0 αk+1
≤ M4.

The same calculation in Inequality (3.5) guarantees that, for all ε > 0, there exists
n1 ∈ N such that, for all n ≥ n1,∥∥∥w(i)

n+1 − w
(j)
n+1

∥∥∥2 ≤ (1 +M4)ε;
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that is, limn→∞ ∥w(i)
n+1 − w

(j)
n+1∥ = 0 for all i, j ∈ I. �

The next lemma follows from Lemmas 3.2 and 3.3:

Lemma 3.4. Suppose that Condition (2.4) is satisfied. Then, for all i ∈ I, (z
(i)
n+1)n∈N

generated by Algorithm 2.9 has a subsequence converging weakly to a point in
Argmaxx∈C

∑
i∈I U (i)(x).

Proof. Choose an i ∈ I. From the boundedness of (z
(i)
n )n∈N\{0} in Lemma 3.2

(i), there exist a subsequence, (z
(i)
nl )l∈N, of (z

(i)
n )n∈N\{0} and a point, z

(i)
∗ ∈ H,

such that (z
(i)
nl )l∈N converges weakly to z

(i)
∗ . First, we shall show that z

(i)
∗ ∈ C.

The closedness and convexity of C(i)(⊂ H) and (z
(i)
nl )l∈N ⊂ C(i) guarantee that

z
(i)
∗ ∈ C(i). Lemma 3.3 then ensures that (w

(i)
nl )l∈N converges weakly to z

(i)
∗ . Choose

j ∈ I\{i} arbitrarily. Then, from Lemma 3.3 and the weak convergence of (w
(i)
nl )l∈N

to z
(i)
∗ , we find that (w

(j)
nl )l∈N converges weakly to z

(i)
∗ . By using Lemma 3.3 again,

(z
(j)
nl )l∈N converges weakly to z

(i)
∗ ∈ C(i). Moreover, the closedness and convexity

of C(j) and (z
(j)
nl )l∈N ⊂ C(j) guarantee that z

(i)
∗ ∈ C(j). Therefore, z

(i)
∗ ∈ C(i) ∩∩

j∈I\{i}C
(j) =: C.

Next, we shall show that z
(i)
∗ ∈ Argmaxx∈C

∑
i∈I U (i)(x). Lemma 3.2 (ii) ensures

that, for all y ∈ C and for all l ∈ N,

−

∑
j∈I

∥∥∥x(j)0 − y
∥∥∥2∑nl−1

k=0 αk+1

≤ 2
∑
j∈I

⟨
y − z(j)nl

, A(j)(y)
⟩
.

The weak convergence of (z
(j)
nl )l∈N (j ∈ I) to z

(i)
∗ ∈ C and Condition (C3) guarantee

that, for all y ∈ C,

0 ≤ 2
∑
j∈I

⟨
y − z

(i)
∗ , A(j)(y)

⟩
= 2
⟨
y − z

(i)
∗ ,
∑
j∈I

A(j)(y)
⟩
.

From the monotonicity and hemicontinuity of
∑

i∈I A
(i) (see Subsection 7.1) and

Proposition 7.1 (i), we find that

0 ≤
⟨
y − z

(i)
∗ ,
∑
j∈I

A(j)
(
z
(i)
∗

)⟩
for all y ∈ C.

Therefore, from Relation (7.1), we have that z
(i)
∗ ∈ VI(C,

∑
j∈I A

(j))

= Argmaxx∈C
∑

i∈I U (i)(x). This completes the proof of Lemma 3.4. �

Now we are in a position to prove Theorem 2.10 by using Lemma 3.4:
Proof of Theorem 2.10. From Proposition 2.4 and Lemma 3.4, for each i ∈ I, there

exists a subsequence, (z
(i)
nl )l∈N, of (z

(i)
n )n∈N\{0} such that it converges weakly to the

unique point, x∗ ∈ Argmaxx∈C
∑

i∈I U (i)(x). Take another subsequence, (z
(i)
nm)m∈N,

of (z
(i)
n )n∈N. Then, Lemma 3.4 ensures that (z

(i)
nm)m∈N also converges weakly to x∗.

Since, for each i ∈ I, any subsequence of (z
(i)
n )n∈N converges weakly to the same
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point, we conclude that (z
(i)
n+1)n∈N converges weakly to the solution to Problem 2.3

for all i ∈ I. �

4. Application to network resource allocation problem

Let us look at typical numerical examples to see how Algorithm 2.9 works for
different network topologies. The computer used in the experiment had an Intel
Boxed Core i7 i7-870 2.93 GHz 8M CPU and 8 GB of memory. The language was
MATLAB 7.9.

4.1. Numerical examples for bandwidth allocation. The objective of utility-
based bandwidth allocation is to share the available bandwidth among traffic sources
so as to maximize the overall utility subject to the capacity constraints [25, 38].
In this subsection, we apply Algorithm 2.9 to the network bandwidth allocation
problem in [30, Subsection 10.2.5] on a simple network that consists of two links
and three sources, as shown in Figure 3:

Problem 4.1 (Network bandwidth allocation problem).

Maximize
∑
i∈I

U (i)(x) :=
∑
i∈I

√
xi

subject to x ∈ C :=
{
(x1, x2, x3)

T ∈ R3
+ : x1 + x2 ≤ c1, x1 + x3 ≤ c2

}
,

where cl (l = 1, 2) stands for the capacity of link l and let c1 := 1 and c2 := 2.

The utility function of source i of which the explicit form is its own private
information is defined by the strictly concave, continuously differentiable function,
U (i)(x) :=

√
xi (x := (x1, x2, x3)

T ∈ R3
+). The feasible region, C, for allocating

the bandwidth is a nonempty, compact, convex subset of R3, and we assume that
sources i commonly have C(i) := C. The optimal solution of Problem 4.1 is x∗ :=
(0.2686, 0.7314, 1.7314)T . We assume that three sources find the optimal bandwidth

pair by executing Algorithm 2.9, that, for all n ∈ N, source 2 can get x
(i)
n (i = 1, 2, 3)

in Equation (2.1), and sources 1 and 3 can get x
(i)
n (i = 1, 2) and x

(i)
n (i = 2, 3),

respectively, and that, given n ∈ N, firstly, source 1 transmits x
(1)
n to source 2,

secondly, source 2 transmits x
(2)
n to sources 1 and 3, and thirdly, source 3 transmits

x
(3)
n to source 2. We also assume that source i can compute y

(i)
n , x

(i)
n+1, and z

(i)
n+1 as

soon as it gets all the points, x
(j)
n s (j ∈ I(i)), transmitted from the neighbor sources.

We further assume that each source has the weighted parameters in Example 2.6
and αn := 1√

n+1
(n ∈ N) satisfying Assumption 2.8.

The point, x
(i)
n+1 ∈ H (i ∈ I, n ∈ N), in Equation (2.1) can be approximately

calculated by using the algorithm in [47], as follows: for each i ∈ I and for each
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n ∈ N, choose an initial point, x
(i)
n+1,0 := y

(i)
n ∈ H, and compute


x
(i)
n+1,m+1 := T

(
x
(i)
n+1,m − λ

[
−∇U (i)

(
x
(i)
n+1,m

)
+

1

αn+1

(
x
(i)
n+1,m − y(i)n

)])
(m = 0, . . . ,M − 1),

x
(i)
n+1 := x

(i)
n+1,M ,

(4.1)

where T is a nonexpansive mapping with Fix(T ) = C (see Subsection 7.1), λ > 0,
and M > 0. In this case, we used T := PR3

+
PC1PC2 satisfying Fix(T ) = C = R3

+ ∩
C1 ∩ C2 ̸= ∅, λ := 0.01, and M = 3, where C1 := {(x1, x2, x3)T ∈ R3 : x1 + x2 ≤ 1}
and C2 := {(x1, x2, x3)T ∈ R3 : x1 + x3 ≤ 2}.

The behaviors of ( 1∑n
k=0 αk+1

∑n
k=0 ∥y

(i)
k − y

(j)
k ∥2)n∈N (i, j ∈ I) versus the number

of received data are presented in Figure 4. This figure shows that, for each i, j ∈ I,

( 1∑n
k=0 αk+1

∑n
k=0 ∥y

(i)
k −y

(j)
k ∥2)n∈N is stable and 1∑n

k=0 αk+1

∑n
k=0 ∥y

(i)
k −y

(j)
k ∥2 < 700

for all n ∈ N, which means that Condition (2.4) in Theorem 2.10 is satisfied. Figure

5 describes the behavior of D
(i)
n := ∥z(i)n − x∗∥2 (i ∈ I, n ∈ N) versus the number

of received data. We can see that all D
(i)
n s converge to 0 at the same convergence

rate; that is, Algorithm 2.9 converges to the solution to Problem 4.1, as promised
by Theorem 2.10.

4.2. Numerical examples for storage allocation. Here, we consider a utility-
based maximization storage allocation problem [29] for a peer-to-peer (P2P) storage
system network (Figure 2) in which each node supplies a storage capacity, y, which
is then shared with other nodes, and demands a storage capacity, x, which is to
be used for storing its own data. Storage capacities, x and y, are referred to as
the demand and supply storage capacities. The utility function of node i in a P2P
storage system network is defined as follows: for all x := (x1, x2, . . . , x7)

T ,y :=
(y1, y2, . . . , y7)

T ∈ R7,

U (i)(x,y) := V (i)(xi)− P (i)(yi),(4.2)
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where

V (i)
(
xi

)
:=

1

b(i)

(
− x2i

2
+ b(i)p(i)maxxi

)
, P (i)

(
yi

)
:=

1

a(i)
y2i
2

+ p
(i)
minyi,

p
(i)
min and p

(i)
max respectively represent the minimum value of the unit price po such

that node i sells some of its own disk space and the maximum value of the unit
price ps such that it buys some storage space, and a(i) and b(i) respectively cor-

respond to the increase in sold capacity with the unit price po (≥ p
(i)
min) and the

decrease in bought storage space with the unit price ps (≤ p
(i)
max). These param-

eters, a(i), b(i), p
(i)
min, and p

(i)
max, for node i are its own private information; that is,

other users cannot know them.
In the P2P storage system network considered here, since each node expects

to have sufficient demand storage capacity within its supply storage capacity to
store its own data, the utility maximization is constrained by the condition, y ≥ x.
Therefore, the solution to the problem of maximizing the overall utility of the nodes
under the condition,

∑
i∈I yi ≥

∑
∈I xi, should yield reasonable pairs of demand and

supply storage capacities for all nodes in the network. Hence, our objective is to
solve the following maximization problem [29, Subsection III. A]:

Problem 4.2 (Network storage allocation problem).

Maximize
∑
i∈I

U (i)(x,y) :=
∑
i∈I

[
V (i)(xi)− P (i)(yi)

]
subject to (x,y) ∈ C :=

{
((xi)

T
i∈I , (yi)

T
i∈I) ∈ R7

+ × R7
+ :
∑
i∈I

yi ≥
∑
i∈I

xi

}
.

We can see that the explicit form of U (i)(x,y) := V (i)(xi) − P (i)(yi) ((x,y) ∈
R7 × R7) is its own private information because only node i knows a(i), b(i), p

(i)
min,

and p
(i)
max. Moreover, U (i) has strict concavity and continuous differentiability. The

feasible region, C, for allocating the storages is a nonempty, compact, convex subset
of R7, and we assume that nodes i commonly have C(i) := C. In the same way as

in Subsection 4.1, we assume that, given n ∈ N, node i can transmit x
(i)
n to node

j (j ∈ I(i)) in the order from node 1 to node 7, that node i can compute y
(i)
n ,

x
(i)
n+1, and z

(i)
n+1 as soon as it gets all x

(j)
n s (j ∈ I(i)), and that each node has its

weighted parameter in Example 2.7 and αn+1 :=
1√
n+1

(n ∈ N). We used a(i), b(i) ∈

[0.0001, 1], as given by uniform random numbers, p
(i)
min := 0.0001, p

(i)
max := 1 (i ∈ I).

We used T := PR7
+
PC̄ (C̄ := {((xi)Ti∈I , (yi)Ti∈I) ∈ R7×R7 :

∑
i∈I yi ≥

∑
i∈I xi}) with

Fix(T ) = R7
+ ∩ C̄ = C ̸= ∅ (see also Subsection 7.1), λ := 0.001, and M := 10 to

compute the approximate point of x
(i)
n+1 (i ∈ I, n ∈ N) in Equation (4.1).

Figures 6–8 show the behaviors of ( 1∑n
k=0 αk+1

∑n
k=0 ∥y

(i)
k − y

(j)
k ∥2)n∈N (i, j ∈ I)

versus the number of received data. These figures indicate that, for each i, j ∈ I,

( 1∑n
k=0 αk+1

∑n
k=0 ∥y

(i)
k − y

(j)
k ∥2)n∈N is stable and 1∑n

k=0 αk+1

∑n
k=0 ∥y

(i)
k − y

(j)
k ∥2 <

104 for all n ∈ N, which means that Condition (2.4) in Theorem 2.10 is satisfied.
Therefore, Theorem 2.10 guarantees that Algorithm 2.9 converges to the solution to
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Problem 4.2. Figure 9 plots the behavior of the utility function of each node versus
the number of received data. We can see that the utilities of nodes 1, 3, 5, and
7 increase and the utility of node 4 becomes stable after the received data exceed
0.2×105, while the utilities of nodes 2 and 6 decrease after the received data exceed
0.2× 105.

5. Conclusion and future work

We presented a multicast decentralized optimization algorithm for solving the
centralized optimization problem with information on the whole network. The pro-
posed algorithm enables each user to set his or her own optimal resource allocation
in cooperation with neighbor users and is practical from the viewpoint of network
scalability. We also presented a convergence analysis of the algorithm. The analysis
ensures that the algorithm converges weakly to the solution to the problem under
certain assumptions. To demonstrate the effectiveness of the algorithm, we applied
it to concrete network resource allocation problems and provided some numerical
examples.

In the future, we should consider developing decentralized resource allocation
algorithms to resolve the problems listed below.

• We must discuss practical implementations to which the theoretical ap-
proach given in Section 2 cannot be applied. For example, we need to
consider a situation where users can move into and out of the network.
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• To resolve many practical resource allocation problems, we need to devise
a multicast decentralized algorithm that works when each user’s utility
function is non-concave (for example, the signal-to-interference-plus-noise
ratio (SINR), which is used to evaluate the performance of each user in
a wireless network, is not concave) and do a convergence analysis on it.
Centralized algorithms for solving non-convex optimization problems were
presented in [20,37].

• It would be good to have a decentralized optimization algorithm that works
even when the intersection of all users’ feasible sets is empty. There are
centralized algorithms [11, 20, 22, 46] for solving the optimization problem
with an infeasible constraint set by using fixed point theory for nonexpan-
sive mappings. Hence, application of fixed point theory would be a way to
devise such an algorithm.

• The existing decentralized optimization algorithms require the cooperation
of all users. However, there would likely be some users in a network who
would not want to cooperate with other users. For such cases, we need a
distributed control mechanism that enables each user to determine its own
optimal resource allocation independently.
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6. Appendix–extension of Algorithm 2.9 to nonsmooth utility
functions

Let us consider the network resource allocation problem for the case such that H
is finite dimensional and that

(A1)’ The utility function, U (i) : RL → R (i ∈ I), is strictly concave6 (and is not
always differentiable).

The following holds under Assumptions (A1)’, (A2), (A3), (A4), (A6), and (A7):

Theorem 6.1. Algorithm 2.9 converges to a unique solution to Problem 2.3 if
Condition (2.4) is satisfied.

Proof. As in the proof of Lemma 3.2, we can prove the boundedness of (x
(i)
n )n∈N,

(y
(i)
n )n∈N, and (z

(i)
n+1)n∈N (i ∈ I), and Inequality (3.2). Choose an i ∈ I. Since

x
(i)
n+1 ∈ C(i) (n ∈ N) in Equation (2.1) is the minimizer of a convex function,

−U (i)(·) + 1
2αn+1

∥ · −y
(i)
n ∥2, over C(i), the following variational inequality holds true

from Relation (7.1): for all n ∈ N, there exists u
(i)
n+1 ∈ ∂(−U (i))(x

(i)
n+1) such that,

for all y ∈ C ⊂ C(i),⟨
y − x

(i)
n+1, u

(i)
n+1 +

1

αn+1

(
x
(i)
n+1 − y(i)n

)⟩
≥ 0,

6Any concave function on the Euclidean space is continuous [6, Theorem 4.1.3].
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which means that⟨
y − x

(i)
n+1, u

(i)
n+1

⟩
≥
⟨
y − x

(i)
n+1,

1

αn+1

(
y(i)n − x

(i)
n+1

)⟩
=

1

2αn+1

{∥∥∥y − x
(i)
n+1

∥∥∥2 + ∥∥∥y(i)n − x
(i)
n+1

∥∥∥2 − ∥∥∥y − y(i)n

∥∥∥2}.
This inequality and the subdifferentiability of −U (i) at x

(i)
k+1 (see Subsection 7.1)

guarantee that, for all y ∈ C and for all k ∈ N,

U (i)
(
x
(i)
k+1

)
≥ U (i)(y) +

⟨
y − x

(i)
k+1, u

(i)
k+1

⟩
≥ U (i)(y) +

1

2αk+1

{∥∥∥y − x
(i)
k+1

∥∥∥2 + ∥∥∥y(i)k − x
(i)
k+1

∥∥∥2 − ∥∥∥y − y
(i)
k

∥∥∥2}.
Summing this inequality over all i and Inequality (3.2) imply that, for all y ∈ C
and for all k ∈ N,∑

i∈I
U (i)

(
x
(i)
k+1

)

≥
∑
i∈I

U (i)(y) +
1

2αk+1

{∑
i∈I

∥∥∥y(i)k − x
(i)
k+1

∥∥∥2 +∑
i∈I

(∥∥∥x(i)k+1 − y
∥∥∥2 − ∥∥∥x(i)k − y

∥∥∥2)}.
By summing this inequality from k = 0 to k = n (n ∈ N), we have

2
∑
i∈I

n∑
k=0

αk+1U (i)
(
x
(i)
k+1

)
≥ 2

n∑
k=0

αk+1

∑
i∈I

U (i)(y)+
∑
i∈I

n∑
k=0

∥∥∥y(i)k −x
(i)
k+1

∥∥∥2+∑
i∈I

(∥∥∥x(i)n+1−y
∥∥∥2−∥∥∥x(i)0 −y

∥∥∥2).
On the other hand, the concavity of U (i) and Equation (2.3) ensure that, for all
i ∈ I and for all n ∈ N,

1∑n
k=0 αk+1

n∑
k=0

αk+1U (i)
(
x
(i)
k+1

)
≤ U (i)

(
z
(i)
n+1

)
.

Hence, we find that, for all y ∈ C and for all n ∈ N,

(6.1) 2
∑
i∈I

U (i)
(
z
(i)
n+1

)

≥ 2
∑
i∈I

U (i)(y)−

∑
i∈I

∥∥∥x(i)0 − y
∥∥∥2∑n

k=0 αk+1
+
∑
i∈I

1∑n
k=0 αk+1

n∑
k=0

∥∥∥y(i)k − x
(i)
k+1

∥∥∥2.
The compactness of C(i) (i ∈ I), (z

(i)
n+1)n∈N ⊂ C(i), and the continuity of U (i) (i ∈

I) guarantee the boundedness of U (i)(z
(i)
n+1) (i ∈ I, n ∈ N). Therefore, Inequality

(6.1) and Condition (C3) imply that (
∑n

k=0 ∥x
(i)
k+1−y

(i)
k ∥2∑n

k=0 αk+1
)n∈N (i ∈ I) is bounded.
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Choose an i ∈ I. As in the proofs of Lemmas 3.3 and 3.4, we can prove that a

subsequence, (z
(i)
nl )l∈N, of (z

(i)
n )n∈N and a point, z

(i)
∗ ∈ C, exist such that (z

(i)
nl )l∈N

converges to z
(i)
∗ . Moreover, from Inequality (6.1), we find that, for all y ∈ C and

for all l ∈ N,

2
∑
j∈I

U (j)
(
z(j)nl

)
≥ 2

∑
j∈I

U (j)(y)−

∑
j∈I

∥∥∥x(j)0 − y
∥∥∥2∑nl−1

k=0 αk+1

.

The continuity of U (j) (j ∈ I), the convergence of (z
(j)
nl )l∈N (j ∈ I) to z

(i)
∗ (see the

proof of Lemma 3.4), and Condition (C3) guarantee that, for all y ∈ C,∑
j∈I

U (j)
(
z
(i)
∗

)
≥
∑
j∈I

U (j)(y);

that is, z
(i)
∗ ∈ Argmaxx∈C

∑
j∈I U (j)(x). Since Argmaxx∈C

∑
j∈I U (j)(x) consists of

one point, (z
(i)
n+1)n∈N converges to the maximizer of

∑
i∈I U (i) over C :=

∩
i∈I C

(i).
�

7. Appendix–mathematical preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and its induced norm ∥ · ∥,
and let N be the set of zero and all positive integers, that is, N := {0, 1, 2, . . .}. Let
RN and RN

+ denote an N -dimensional Euclidean space and {(x1, x2, . . . , xN )T ∈
RN : xi ≥ 0 (i = 1, 2, . . . , N)}, respectively.

7.1. Monotonicity, continuity, and nonexpansivity. A set-valued operator,
A : H → 2H , is said to be monotone [48, Definition 32.2 (c)] if, for all (x, u), (y, v) ∈
G(A) := {(z, w) ∈ H × H : w ∈ A(z)}, ⟨x − y, u − v⟩ ≥ 0. A : H → H is referred
to as a strictly monotone operator [48, Definition 25.2 (ii)] if, for all x, y ∈ H with
x ̸= y, ⟨x − y,A(x) − A(y)⟩ > 0. A monotone operator, A : H → 2H , is said to be
maximal [48, Definition 32.2 (b), (d)] if G(A) is not properly contained in G(B) of
any monotone operator B : H → 2H . Suppose that f : H → R is convex and lower
semicontinuous.7 Then, the subdifferential, ∂f : H → 2H , of f is defined as follows
[34, Part V]: for all x ∈ H, ∂f(x) := {z ∈ H : f(y) ≥ f(x)+⟨y−x, z⟩ (y ∈ H)}, and
it satisfies the maximal monotonicity condition [34, Corollary 31.5.2], [49, Theorem
47.F (1)], [40, Theorem 4.6.6]. If f is convex and continuous at x ∈ H, the condition,
∂f(x) ̸= ∅, holds true [49, Theorem 47.A (2)]. Moreover, if f is convex and Gâteaux
differentiable on H, the condition, ∂f(x) = {∇f(x)}, holds for all x ∈ H, where
∇f : H → H stands for the gradient of f [48, Proposition 32.13 (a)].

A : H → H is said to be hemicontinuous [40, p.204], [48, Definition 27.14] if, for
any x, y ∈ H, a mapping, g : [0, 1] → H, defined by g(t) := A(tx + (1 − t)y) (t ∈
[0, 1]) is continuous, where H has a weak topology. Any single-valued, monotone,
hemicontinuous operator satisfies the maximality condition [48, Proposition 32.7].
A : H → H is referred to as a Lipschitz continuous (L-Lipschitz continuous) operator
[18, Subsection 1.1], [48, Definition 27.14] if L > 0 exists such that ∥A(x)−A(y)∥ ≤

7f : H → R is said to be lower semicontinuous onH if, for any a ∈ R, the set, {x ∈ H : f(x) ≤ a},
is closed.
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L∥x − y∥ for all x, y ∈ H. A : H → H is called a nonexpansive mapping [18,
Subsection 1.1], [17, Section 3] when it is 1-Lipschitz continuous; that is, ∥A(x) −
A(y)∥ ≤ ∥x− y∥ for all x, y ∈ H. The fixed point set of a (nonexpansive) mapping,
A, is denoted by Fix(A) := {x ∈ H : A(x) = x}.

7.2. Variational inequality problem for monotone operators. The varia-
tional inequality problem [27, Chapter III], [49, Chapters 54-57], [16, Chapter II], [6,
Subsection 8.3] for a monotone operator, A : H → 2H , over a nonempty, closed con-
vex set, D (⊂ H), is to

find x∗ ∈ VI(D,A)

:=
{
x∗ ∈ D : u∗ ∈ A(x∗) exists such that

⟨
y − x∗, u∗

⟩
≥ 0 (y ∈ D)

}
.

When A is single-valued, VI(D,A) is equal to {x∗ ∈ D : ⟨y − x∗, A(x∗)⟩ ≥ 0 (y ∈
D)}. The following theorem characterizes the solution set of the variational inequal-
ity problem and proves the existence of a point in the set (Proposition 7.1 (iii) can
be readily proved by using strict monotonicity):

Proposition 7.1. Let D (⊂ H) be a nonempty, closed convex set, and let A : H →
H be monotone and hemicontinuous. Then,

(i) [40, Lemma 7.1.7] VI(D,A) =
{
x∗ ∈ D : ⟨y − x∗, A(y)⟩ ≥ 0 (y ∈ D)

}
;

(ii) [6, Theorem 8.3.6], [40, Theorem 7.1.8] VI(D,A) ̸= ∅ if D is compact;
(iii) there exists a unique point in VI(D,A) if A : H → H is strictly monotone

and if VI(D,A) ̸= ∅.

Suppose that f : H → R is convex and lower semicontinuous and that D (⊂ H)
is a nonempty, closed convex set. Then, the set of minimizers of f over D is
coincident with the solution set of the variational inequality problem for ∂f over
D [49, Theorem 47.C (1)], [6, Subsection 8.3]; that is,

VI(D, ∂f) = Argmin
x∈D

f(x).(7.1)

The variational inequality problem also includes many nonlinear problems such
as the fixed point problem for a nonexpansive mapping [41, Theorem 7.7.2], the
complementarity problem for a monotone operator [41, Problem 7.7.2], and so on.

7.3. Metric projections onto closed convex sets. Let D (⊂ H) be nonempty,
closed, and convex. A mapping that assigns every point, x ∈ H, to its unique
nearest point in D is called a metric projection [2, Facts 1.5], [39, Equation (2.3-
13)], [40, p.56] onto D and is denoted by PD; that is, PD(x) ∈ D and ∥x−PD(x)∥ =
infy∈D ∥x− y∥. The metric projection, PD, satisfies the following conditions:

Proposition 7.2.

(i) [2, Facts 1.5 (ii)], [40, Lemma 3.1.3] Let x ∈ H. Then, x̄ = PD(x) if and
only if x̄ ∈ D and ⟨x̄− x, y − x̄⟩ ≥ 0 for all y ∈ D.

(ii) The fixed point set of PD is coincident with D; that is, Fix(PD) := {x ∈
H : PD(x) = x} = D.
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(iii) [17, Equation (12.5)], [2, Facts 1.5 (i)], [39, Theorem 2.4-1 (ii)], [40, Proof
(i) of Theorem 3.1.4] PD satisfies the firm nonexpansivity condition; that
is, ∥PD(x)− PD(y)∥2 ≤ ⟨x− y, PD(x)− PD(y)⟩ for all x, y ∈ H.

From Proposition 7.2 (iii) and the Cauchy-Schwarz inequality, we find that
∥PD(x)−PD(y)∥ ≤ ∥x− y∥ (x, y ∈ H); that is, PD is nonexpansive. If D is a linear
variety, a closed ball, a closed cone, or a closed polytope, the explicit form of PD is
known, which implies that PD can be explicitly calculated [45].
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