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Considerable attentions have been devoted to the second-order cone Kn [5–7], a
special case of self-dual cone. However, the study on the circular cone Lθ, a non-
self-dual (or non-symmetric cone) is rather limited. In this paper, we show that
there exists a close relationship between Kn and Lθ by establishing an inequality
regrading distance between Kn and Lθ. This nice property plays an essential role
in our subsequence analysis and give us more information and insight on Lθ. In
particular, we develop the formulae of tangent cone, normal cone, and second-order
tangent cone of Lθ in terms of Kn (the formula of the latter has been given by
different scholars). Furthermore, we show that Lθ, as a non-self-dual and non-
polytechnic cone, is also second-order regular. Note that we know the second-order
cone and positive semi-definite cone are both second order regular, but there are
all symmetric. Thus this is an interesting case which indicates the second order
regularity of a non-symmetric cone. Finally, we develop the spectral factorization
of z in terms of Lθ by studying the projection on Lθ which will be useful in dealing
with optimization associated circular cone.

In fact, it is not hard to see that

Lθ =
{
(x1, x2)

T ∈ IR× IRn−1 | x1 ≥ 0, ∥x∥2 cos2 θ ≤ x21
}

=
{
(x1, x2)

T ∈ IR× IRn−1 | x1 ≥ 0, (x21 + ∥x2∥2) cos2 θ ≤ x21
}

=
{
(x1, x2)

T ∈ IR× IRn−1 | x1 ≥ 0, ∥x2∥2 ≤ x21 tan
2 θ

}
=

{
(x1, x2)

T ∈ IR× IRn−1 | ∥x2∥ ≤ x1 tan θ
}
,

which yields

(1.3)

[
x1
x2

]
∈ Lθ ⇐⇒

[
tan θx1

x2

]
∈ Kn ⇐⇒

[
tan θ 0
0 I

] [
x1
x2

]
∈ Kn.

For simplicity, let us denote

A :=

[
tan θ 0
0 I

]
.

Then, the above expression (1.3) is equivalent to

(1.4)

[
x1
x2

]
∈ Lθ ⇐⇒ A

[
x1
x2

]
∈ Kn.

We point out that the matrix A is positive definite whose inverse matrix is

A−1 =

[
ctanθ 0
0 I

]
where ctanθ :=

1

tan θ
.

To close this section, we say a few words about the notations. For a convex cone
K, its dual cone is defined by

(K)∗ = {v | ⟨v, x⟩ ≥ 0, ∀x ∈ K} ,
while its polar cone is given by

(K)◦ = {v | ⟨v, x⟩ ≤ 0, ∀x ∈ K} .
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2. Insight on circular cone

In this section, we give an insight on circular cone in which we shall study some
properties of Lθ, including characterizing its tangle cone, normal cone, second-order
tangent cone, etc.. To this end, we first describe the relationship between Kn and
Lθ.

Theorem 2.1. Let Lθ and Kn be defined as in (1.1) and (1.2), respectively. Then,
we have

(a) Lθ = A−1Kn and Kn = ALθ.
(b) AKn = Lπ

2
−θ and Lπ

2
−θ = A2Lθ.

(c) L∗
θ = Lπ

2
−θ and (L∗

θ)
∗ = Lθ.

Proof. (a) This follows from equivalence (1.4) because

Lθ = {x | x ∈ Lθ}
= {x | Ax ∈ Kn}
=

{
x | x ∈ A−1Kn

}
= A−1Kn.

(b) According to part(a), we have

Lπ
2
−θ =

[
ctan(

π

2
− θ) 0

0 I

]
Kn =

[
tan θ 0
0 I

]
Kn = AKn = A(ALθ) = A2Lθ

which is the desired result.
(c) It is known that Kn is self-dual. Hence, we have

Kn = (Kn)∗ = {v | ⟨v, k⟩ ≥ 0, ∀k ∈ Kn}
= {v | ⟨v,Az⟩ ≥ 0, ∀z ∈ Lθ}
= {v | ⟨Av, z⟩ ≥ 0, ∀z ∈ Lθ}
= {v | Av ∈ L∗

θ}
= A−1L∗

θ

which implies L∗
θ = AKn = Lπ

2
−θ by part(b). The remaining part is true for all

closed convex cone. �

Theorem 2.2. For any x, z ∈ IRn, we have

(2.1) ∥A∥−1 dist(Az,Kn) ≤ dist(z,Lθ) ≤ ∥A−1∥ dist(Az,Kn)

and

(2.2) ∥A−1∥−1 dist(A−1x,Lθ) ≤ dist(x,Kn) ≤ ∥A∥ dist(A−1x,Lθ).

Proof. First, we observe the following:

dist(x,Kn) = min
k∈Kn

∥x− k∥ = min
k∈ALθ

∥x− k∥

= min
z∈Lθ

∥x−Az∥ = min
z∈Lθ

∥A(A−1x)−Az∥(2.3)
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= min
z∈Lθ

∥A(A−1x− z)∥ ≤ ∥A∥min
z∈Lθ

∥A−1x− z∥

= ∥A∥ dist
(
A−1x,Lθ

)
,

dist(z,Lθ) = min
u∈Lθ

∥z − u∥ = min
u∈A−1Kn

∥z − u∥

= min
k∈Kn

∥z −A−1k∥ = min
k∈Kn

∥A−1(Az)−A−1k∥(2.4)

= min
k∈Kn

∥A−1(Az − k)∥ ≤ ∥A−1∥ min
k∈Kn

∥Az − k∥

= ∥A−1∥ dist(Az,Kn).

These prove the second inequality in (2.1) and (2.2), respectively. Next, plugging
z = A−1x and x = Az in (2.3) and (2.4), respectively, yields the first inequality in
(2.1) and (2.2), respectively. Thus, the proof is complete. �

Theorem 2.2 indicates that the distances of arbitrary points to Kn and Lθ are
equivalent. This is an essential property for analyzing the tangent cone and normal
cone of Lθ. Before we move on, we recall the definitions of tangent cone and normal
cone. Given a subset S ⊂ IRn and x ∈ S, the contingent cone TS(x) and inner
tangent cone T i

S(x) of S at x are defined respectively as

TS(x) := {d ∈ IRn| ∃tn ↓ 0, dist (x+ tnd, S) = o(tn)}
and

T i
S(x) := {d ∈ IRn| dist(x+ th, S) = o(t), t ≥ 0)}.

In general, these two cones can be different. However, when S is convex, they are
equal to each other and to the closure of the radial cone, see [4, page 45]. Hence for
convex sets, we simply speak of tangent cone rather than contingent or inner tangent
cones. Moreover, the Fréchet/regular normal cone (also known as the prenormal

cone), written as N̂S(x), is defined as

N̂S(x) := {v ∈ IRn| ⟨v, z − x⟩ ≤ o(∥z − x∥), for z ∈ S},
and the Mordukhovich/limiting normal cone (or simply normal cone) is defined as

NS(x) := lim sup
z−→
S
x

N̂S(z).

When S is convex, NS(x) = N̂S(x) and is the polar cone of TS(x), i.e.,

NS(x) := {v ∈ IRn | ⟨v, d⟩ ≤ 0, ∀d ∈ TS(x)} .

Theorem 2.3. For any z ∈ Lθ, we have

(a) TLθ
(z) = A−1TKn(Az),

(b) NLθ
(z) = ANKn(Az).

Proof. (a) Let us first show that TLθ
(z) ⊆ A−1TKn(Az). Choose d ∈ TLθ

(z). Then,
by definition of tangent cone, we have

(2.5) dist(z + td,Lθ) = o(t).

Plugging x = A(z + td) into (2.2) yields

∥A−1∥−1 dist(z + td,Lθ) ≤ dist (A(z + td),Kn) ≤ ∥A∥ dist(z + td,Lθ).
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This together with (2.5) implies dist(Az + tAd,Kn) = o(t). Thus, Ad ∈ TKn(Az),
which says d ∈ A−1TKn(Az).
Conversely, let d ∈ A−1TKn(Az). Since Ad ∈ TKn(Az), from definition of tangent
cone, we know

(2.6) dist(Az + tAd,Kn) = o(t).

Replacing z in (2.1) by z + td gives

∥A∥−1 dist(Az + tAd,Kn) ≤ dist(z + td,Lθ) ≤ ∥A−1∥ dist(Az + tAd,Kn).

This together with (2.6) implies dist(z + td,Lθ) = o(t), which says d ∈ TLθ
(z).

(b) The desired result follows from

NLθ
(z) = {v ∈ IRn | ⟨v, d⟩ ≤ 0, ∀d ∈ TLθ

(z)}
=

{
v ∈ IRn | ⟨v,A−1w⟩ ≤ 0, ∀w ∈ TKn(Az)

}
=

{
v ∈ IRn | ⟨A−1v, w⟩ ≤ 0, ∀w ∈ TKn(Az)

}
=

{
v ∈ IRn | A−1v ∈ NKn(Az)

}
= ANKn(Az).

�

Theorem 2.3 tells us that the explicit formula of tangent cone TLθ
(z) can be

established by TKn(Az), which has been given in [3].

It is well known that in the study of second order analysis for optimization prob-
lems, we need the following inner and outer second order tangent sets to describe the
possible curvature of the feasible region. Below, we state their official definitions.

Definition 2.4 ( [4, Definition 3.28]). The set limits

T i,2
S (x, d) :=

{
w ∈ IRn

∣∣∣∣ dist(x+ td+
1

2
t2w,S

)
= o(t2), t ≥ 0

}
and

T 2
S(x, d) =

{
w ∈ IRn

∣∣∣∣ ∃ tn ↓ 0 such that dist

(
x+ tnd+

1

2
t2nw, S

)
= o(t2n)

}
are called the inner and outer second order tangent sets, respectively, to the set S
at x in the direction d.

Definition 2.5 ( [4, Definition 3.32]). We say that the set S is second order direc-
tionally differentiable at a point x ∈ S in a direction d ∈ TS(x), if T

i
S(x) = TS(x)

and T i,2
S (x, d) = T 2

S(x, d). We simply say that S is second order directionally dif-
ferentiable at a point x ∈ S if it is second order directionally differentiable in all
directions d ∈ TS(x).

Theorem 2.6. Let z ∈ Lθ and d ∈ TLθ
(z). Then,

T i,2
Lθ

(z, d) = T 2
Lθ
(z, d) = A−1T 2

Kn(Az,Ad).
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Proof. The first equality is due to the second order directionally differentiable of
Kn as shown in [10, Proposition 3.1] and the second equality can be proved by the
same arguments as in Theorem 2.3. �
Definition 2.7 ( [4, Definition 3.85]). We say that a subset S ⊂ IRn is second order
regular at x if it satisfies

(i) T 2
S(x, d) = T i,2

S (x, d) for all d ∈ TS(x);

(ii) for any d ∈ TS(x) and for any sequence x + tnd + 1
2 t

2
nrn ∈ S such that

tnrn → 0, the following condition holds:

lim
n→∞

dist
(
rn, T

2
S(x, d)

)
= 0.

Theorem 2.8. The circular cone Lθ is second order regular.

Proof. Let z ∈ Lθ and d ∈ TLθ
(z). According to Theorem 2.6, it suffices to show

that for any sequence z + tnd+
1
2 t

2
nrn ∈ Lθ with tnrn → 0, there holds

(2.7) lim
n→∞

dist
(
rn, T

2
Lθ
(z, d)

)
= 0.

We will complete the proof by using the relationship between Lθ and Kn. Since
z+ tnd+

1
2 t

2
nrn ∈ Lθ, we know Az+ tnAd+

1
2 t

2
nArn ∈ Kn by Theorem 2.1(a). Note

that tnArn → 0 because ∥tnArn∥ ≤ ∥A∥ · ∥tnrn∥. In addition, Kn is second order
regular (see [10] for detailed proof), from Definition 2.7, we have

(2.8) lim
n→∞

dist
(
Arn, T

2
Kn(Az,Ad)

)
= 0.

On the other hand, we observe that

dist
(
rn, T

2
Lθ
(z, d)

)
= dist

(
rn, A

−1T 2
Kn(Az,Ad)

)
= dist

(
A−1(Arn), A

−1T 2
Kn(Az,Ad)

)
≤ ∥A−1∥ dist

(
Arn, T

2
Kn(Az,Ad)

)
.

This together with (2.8) implies the validity of (2.7). �

3. Spectral factorization associated with circular cone

In this section, we will develop the spectral factorization associated with circular
cone which is the basis of further investigations for optimization associated with
circular cone. To this end, we start with studying the projection on Lθ, i.e.,

ΠLθ
(z) := arg min

x∈Lθ

∥z − x∥ = {x ∈ Lθ | ∥z − x∥ ≤ ∥z − u∥, ∀u ∈ Lθ} .

It should be mentioned that the projection cannot be obtained by using the
relationship between Lθ and Kn because

∥A−1x∥ ≤ ∥A−1y∥ ; ∥x∥ ≤ ∥y∥ whenever θ ̸= π/4.

For example, let x = (8, 1), y = (4, 2), and θ = cot−1(1/8). Then,

∥A−1x∥ =
√
2 <

√
17/2 = ∥A−1y∥, but ∥x∥ =

√
65 >

√
20 = ∥y∥.

Therefore, we seek another way to characterize the projection. First, we note that
for any closed convex cone Ω

Π−Ω(x) = −ΠΩ(−x).
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In fact, letting a = Π−Ω(x) yields

∥(−x)− (−a)∥ = ∥x− a∥ ≤ ∥x− (−y)∥ = ∥(−x)− y∥ ∀y ∈ Ω,

where the inequality comes from the fact that a = Π−Ω(x) by definition of projec-
tion. This means that −a = ΠΩ(−x). Besides, it is well known that any vector
z ∈ IRn can be written as

z = ΠΩ(z) + ΠΩ◦(z).

Hence,

z = ΠLθ
(z) + ΠL◦

θ
(z) = ΠLθ

(z) + Π−L∗
θ
(z)

= ΠLθ
(z)−ΠL∗

θ
(−z) = ΠLθ

(z)−ΠLπ
2 −θ

(−z).(3.1)

Due to the special structure of Lθ, the explicit formula of projection is given
below.

(3.2) ΠLθ
(z) =

 z, if z ∈ Lθ

0, if z ∈ −L∗
θ

u, otherwise,

where

u =


z1 + ∥z2∥ tan θ

1 + tan2 θ(
z1 + ∥z2∥ tan θ

1 + tan2 θ
tan θ

)
z2
∥z2∥

 .

In fact, formula (3.2) can be found in several places, for example, [8], [1, page 508]
or [2, Theorem 3.3.6]. For completeness we provide the detailed argument on (3.2),
nonetheless, by a different approach from that in [2, Theorem 3.3.6], which leads us
to establish the spectral factorization associated with Lθ.

The first two cases in (3.2) follow from (3.1) directly. Now, consider the third
case. Note that it corresponds to z1 tan θ < ∥z2∥ and −z1ctanθ < ∥z2∥. Hence we
must have z2 ̸= 0, because otherwise, we would have z1 < 0 and z1 > 0, which is
impossible. Let us calculate the projection in the third case by solving the Karush-
Kuhn-Tucker conditions for the following convex programming problems

min
1

2
∥x− z∥2

s.t. x ∈ Lθ

which is equivalent to

min
1

2
∥x− z∥2

s.t. ∥x2∥ − x1 tan θ ≤ 0.

The KKT point of the above convex programming is to find x ∈ Lθ (noting x ̸= 0
since z ̸= Lθ and z ̸= −L∗

θ) and λ ≥ 0 such that[
x1 − z1
x2 − z2

]
+ λ

{[
0
x2
∥x2∥

]
− tan θ

[
1
0

]}
= 0,
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which is equivalent to solving

(3.3)

 x1 = z1 + λ tan θ,

x2 =
1

1 + (λ/∥x2∥)
z2.

Thus,

∥z2∥ = (1 + (λ/∥x2∥)) ∥x2∥ = ∥x2∥+ λ = ∥x2∥+
x1 − z1
tan θ

= x1 tan θ +
x1 − z1
tan θ

,

where the third equality is due to (3.3) and the last equality comes from the fact
that ∥x2∥ = x1 tan θ since the projection point of z /∈ Lθ must lie in the boundary
of Lθ. Then, we have

x1 =
z1 + ∥z2∥ tan θ

1 + tan2 θ
.

Substituting this into the first equation in (3.3) yields

λ =
∥z2∥ − z1 tan θ

1 + tan2 θ
.

Therefore, according to the second equation in (3.3), we obtain

x2 =

(
z1 + ∥z2∥ tan θ

1 + tan2 θ
tan θ

)
z2

∥z2∥
which says

(3.4) ΠLθ
(z) =


z1 + ∥z2∥ tan θ

1 + tan2 θ(
z1 + ∥z2∥ tan θ

1 + tan2 θ
tan θ

)
z2
∥z2∥


under this subcase.
From (3.1), we see that ΠL◦

θ
(z) = −ΠLπ

2 −θ
(−z) which implies

ΠL◦
θ
(z) = −


−z1 + ∥z2∥ctanθ

1 + ctan2θ(
−z1 + ∥z2∥ctanθ

1 + ctan2θ
ctanθ

)
−z2
∥z2∥



=


z1 − ∥z2∥ctanθ
1 + ctan2θ(

z1 − ∥z2∥ctanθ
1 + ctan2θ

ctanθ

)
−z2
∥z2∥

 .(3.5)

According to the above arguments, we obtain the following result, which is called
the spectral factorization for z associated with circular cone.

Theorem 3.1. For any z ∈ IRn, one has

(3.6) z = λ1(z) · u(1)z + λ2(z) · u(2)z

where

λ1(z) = z1 − ∥z2∥ctanθ
λ2(z) = z1 + ∥z2∥ tan θ
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and

u(1)z =
1

1 + ctan2θ

[
1 0
0 ctanθ

] [
1

−w

]
u(2)z =

1

1 + tan2 θ

[
1 0
0 tan θ

] [
1
w

]
with w =

z2
∥z2∥

if z2 ̸= 0, and any vector in IRn−1 satisfying ∥w∥ = 1 if z2 = 0.

Proof. The case of z2 = 0 is clear by simply calculating (3.6). The case of z2 ̸= 0
follows from (3.1), (3.4), and (3.5) because

z = ΠLθ
(z) + ΠL◦

θ
(z)

=


z1 + ∥z2∥ tan θ

1 + tan2 θ(
z1 + ∥z2∥ tan θ

1 + tan2 θ
tan θ

)
z2

∥z2∥

+


z1 − ∥z2∥ctanθ
1 + ctan2θ(

z1 − ∥z2∥ctanθ
1 + ctan2θ

ctanθ

)
−z2
∥z2∥


=

z1 + ∥z2∥ tan θ
1 + tan2 θ

[
1 0
0 tan θ

] [ 1
z2
∥z2∥

]
+

z1 − ∥z2∥ctanθ
1 + ctan2θ

[
1 0
0 ctanθ

] [ 1

− z2
∥z2∥

]
.

�
With Theorem 3.1, we could derive another expression for the projection shown

as below.

Theorem 3.2. For any z ∈ IRn, we have

(3.7) ΠLθ
(z) =

(
λ1(z)

)
+
· u(1)z +

(
λ2(z)

)
+
· u(2)z ,

where (a)+ := max{0, a}, λi(z) and uiz for i = 1, 2 are given as in Theorem 3.1.

Proof. The proof is divided into two cases, according to whether z2 = 0 or z2 ̸= 0.
Case 1: z2 = 0. If z1 ≥ 0, then z1 tan θ ≥ 0 = ∥z2∥ and λi(z) = z1 ≥ 0. Hence z ∈ Lθ

and both sides of (3.7) are z by (3.2) and (3.6). If z1 < 0, then −z1ctanθ ≥ 0 = ∥z2∥
and λi(z) = z1 < 0 for i = 1, 2. Hence, z ∈ −Lπ

2
−θ = −L∗

θ and both sides of (3.7)

are 0 by (3.2).
Case 2: z2 ̸= 0. If z ∈ Lθ, then z1 tan θ ≥ ∥z2∥ which implies z1 ≥ 0. Therefore,
λi(z) ≥ 0 for i = 1, 2 which gives ΠLθ

(z) = z = λ1(z)u
1
z + λ2(z)u

2
z by (3.2) and

(3.6). If z ∈ −L∗
θ, then −z ∈ Lπ

2
−θ, i.e., −z1ctanθ ≥ ∥z2∥, which says z1 ≤ 0.

Hence, λ1(z) = z1 − ∥z2∥ctanθ ≤ 0 and λ2(z) = z1 + ∥z2∥ tan θ ≤ 0. This indicates
that the right-hand side of (3.7) is zero and it coincides ΠLθ

(z) = 0 by (3.2) under
this case. Other cases correspond to z1 tan θ < ∥z2∥ and −z1ctanθ < ∥z2∥, i.e.,
λ1(z) = z1 − ∥z2∥ctanθ < 0 and λ2(z) = z1 + ∥z2∥ tan θ > 0. Simplifying the right-
hand side of (3.7) with this, we see that (3.2) is also satisfied under this case. Thus,
all the above shows the validity of (3.7). �

In particular, when θ = π/4, expressions (3.6) and (3.7) takes, respectively, the
form of

z = (z1 − ∥z2∥)
1

2

[
1

−w

]
+ (z1 + ∥z2∥)

1

2

[
1
w

]
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and

ΠLθ
(z) = (z1 − ∥z2∥)+

1

2

[
1

−w

]
+ (z1 + ∥z2∥)+

1

2

[
1
w

]
where w =

z2
∥z2∥

if z2 ̸= 0, and any vector in IRn−1 satisfying ∥w∥ = 1 if z2 = 0.

These are exactly the well-known spectral factorization and projection associated
with Kn.

We believe that the spectral factorization given in Theorem 3.1 is very important
for developing theory and algorithm for optimization associated with Lθ like the
role played by the spectral factorization associated with Kn in second-order cone
optimization. We leave it for our future research topic.
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